同济大学数学系《高等数学》(上册)学习辅导书(导数与微分)【圣才出品】
- 格式:pdf
- 大小:1.80 MB
- 文档页数:69
福建警察学院《高等数学一》课程教学大纲课程名称:高等数学一课程编号:学分:4适用对象:一、课程的地位、教学目标和基本要求(一)课程地位高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。
高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。
(二)教学目标通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。
(三)基本要求1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。
2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。
二、教学内容与要求第一章函数与极限【教学目的】通过本章学习1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分解,掌握基本初等函数的性质及其图形,理解初等函数的概念。
2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。
3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与左、右极限之间的关系,了解函数极限的性质。
4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。
5、掌握极限运算法则。
6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
第二篇 一元函数微积分第二章 导数与微分微积分学包含微分学和积分学两部分,而导数和微分是微分学的核心概念.导数反映了函数相对于自变量的变化的快慢程度,微分则指明了当自变量有微小变化时,函数大体上变化了多少,即函数的局部改变量的估值.本章主要讨论导数和微分的概念、性质以及计算方法和简单应用.第1节 导数的概念1.1 导数概念的引入1。
1。
1 质点做变速直线运动的瞬时速度问题现有一质点做变速直线运动,质点的运动路程s 与运动时间t 的函数关系式记为()s s t =,求在0t 时刻时质点的瞬时速度0()v t 为多少?整体来说速度是变化的,但局部来说速度可以近似看成是不变的.设质点从时刻0t 改变到时刻0t t +∆,在时间增量t ∆内,质点经过的路程为00()()s s t t s t ∆=+∆-,在t ∆时间内的平均速度为00()()s t t s t s v t t+∆-∆==∆∆, 当时间增量t ∆越小时,平均速度v 越接近于时刻0t 的瞬时速度0()v t ,于是当0t ∆→时,v 的极限就是质点在时刻0t 时的瞬时速度0()v t ,即00000()()()lim limlim t t t s t t s t sv t v t t∆→∆→∆→+∆-∆===∆∆. 1.1.2 平面曲线的切线斜率问题已知曲线:()C y f x =,求曲线C 上点000(,)M x y 处的切线斜率.欲求曲线C 上点000(,)M x y 的切线斜率,由切线为割线的极限位置,容易想到切线的斜率应是割线斜率的极限.图2—1如图2—1所示,取曲线C 上另外一点00(,)M x x y y +∆+∆,则割线0M M 的斜率为000()()tan M M f x x f x y k x x+∆-∆===∆∆ϕ. 当点M 沿曲线C 趋于0M 时,即当0x ∆→时,0M M 的极限位置就是曲线C 在点0M 的切线0M T ,此时割线的倾斜角ϕ趋于切线的倾斜角α,故切线的斜率为00000()()lim tan limlimx x x f x x f x yk x x∆→∆→∆→+∆-∆===∆∆ϕ. 前面我们讨论了瞬时速度和切线斜率两个问题,虽然实际意义不同,但如果舍弃其实际背景,从数学角度看,却有着相同的数学形式,即当自变量的改变量趋于零时,求函数的改变量与自变量的改变量之比的极限.在自然科学、社会科学和经济领域中,许多问题都可以转化为上述极限形式进行研究,如电流强度、人口增长速度、国内生产总值的增长率、边际成本和边际利润等.因此,我们舍弃这些问题的实际意义,抽象出它们数量关系上的共同本质—-导数.1。
第二章 导数与微分2.2 课后习题详解习题2-1 导数概念1.设物体绕定轴旋转,在时间间隔[0,t]上转过角度θ,从而转角θ是t的函数:θ=θ(t).如果旋转是匀速的,那么称为该物体旋转的角速度.如果旋转是非匀速的,应怎样确定该物体在时刻t 0的角速度?解:物体在时间间隔上的平均角速度在时刻t 0的角速度2.当物体的温度高于周围介质的温度时,物体就不断冷却.若物体的温度T 与时间t 的函数关系为T =T(t),应怎样确定该物体在时刻t 的冷却速度?解:物体在时间间隔上平均冷却速度[,]t t t +∆在时刻t 的冷却速度3.设某工厂生产x件产品的成本为函数C(x)称为成本函数,成本函数C(x)的导数在经济学中称为边际成本.试求(1)当生产100件产品时的边际成本;(2)生产第101件产品的成本,并与(1)中求得的边际成本作比较,说明边际成本的实际意义.即生产第101件产品的成本为79.9元,与(1)中求得的边际成本比较,可以看出边际成本的实际意义是近似表达产量达到x单位时再增加一个单位产品所需的成本.4.设f(x)=10x2,试按定义求.解:5.证明证:6.下列各题中均假定存在,按照导数定义观察下列极限,指出A表示什么:以下两题中给出了四个结论,从中选出一个正确的结论:7.设则f(x)在x=1处的( ).A.左、右导数都存在B.左导数存在,右导数不存在C.左导数不存在,右导数存在D.左、右导数都不存在【答案】B【解析】 故该函数左导数存在,右导数不存在.8.设f(x)可导,,则f(0)=0是F(x)在x=0处可导的( ).A.充分必要条件B .充分条件但非必要条件C .必要条件但非充分条件D .既非充分条件又非必要条件【答案】A 【解析】 当f(0)=0时,,反之当时,f(0)=0,为充分必要条件.9.求下列函数的导数:10.已知物体的运动规律为s =t 3m ,求这物体在t =2s 时的速度.解:11.如果f(x)为偶函数,且f '(0)存在,证明f '(0)=0.证:f(x)为偶函数,得.因为所以f '(0)=0.。
5.2 课后习题详解习题5-1 定积分的概念与性质1.利用定积分定义计算由抛物线y =x 2+1,两直线x =a 、x =b (b >a )及x 轴所围成的图形的面积.解:因为函数f(x)=x 2+1在区间[a ,b]上连续,所以函数可积,为计算方便,不妨把[a ,b]分成n 等份,则分点为每个小区间长度为取ξi 为小区间的右端点x i ,则当n→∞时,上式极限为即为所求图形的面积.2.利用定积分定义计算下列积分:解:因为被积函数在积分区间上连续,所以把积分区间分成n等份,并取ξi为小区间的右端点,得到(1)(2)3.利用定积分的几何意义,证明下列等式:证:(1)根据定积分的几何意义,定积分表示由直线y=2x、x=1及x轴围成的图形的面积,该图形是底边长为1、高为2的三角形,因此面积为1,即(2)根据定积分的几何意义,定积分表示的是由曲线以及x轴、y轴围成的在第I象限内的图形面积,即单位圆的四分之一的图形,因此有(3)因为函数y=sinx在区间[0,π]上非负,在区间[-π,0]上非正.根据定积分的几何意义,定积分表示曲线y=sinx(x∈[0,π])与x轴所围成的图形D1的面积减去曲线y=sinx(x∈[-π,0])与x轴所围成的图形D2的面积,显然图形D1与D2的面积是相等的,所以有(4)因为函数y=cosx在区间上非负.根据定积分的几何意义,定积分表示曲线与x轴和y轴所围成的图形D1的面积加上曲线与x轴和y轴所围成的图形D2的面积,而图形D1的面积和图形D2的面积显然相等,所以有4.利用定积分的几何意义,求下列积分:解:(1)根据定积分的几何意义,表示的是由直线y=x,x=t以及x轴所围成的直角三角形面积,该直角三角形的两条直角边的长均为t,因此面积为因此有(2)根据定积分的几何意义,表示的是由直线x=-2,x=4以及x轴所围成的梯形的面积,该梯形的两底长分别为梯形的高为4-(-2)=6,因此面积为21.因此有(3)根据定积分的几何意义,表示的是由折线y=|x|和直线x=-1,x=2以及x轴所围成的图形的面积.该图形由两个等腰直角三角形组成,一个由直线y=-x,x=-1和x轴所围成,其直角边长为1,面积为另一个由直线y=x,x=2和x轴所围成,其直角边长为2,面积为2.因此(4)根据定积分的几何意义,表示的是由上半圆周以及x轴所围成的半圆的面积,因此有5.设a<b,问a、b取什么值时,积分取得最大值?解:根据定积分几何意义,表示的是由y=x-x2,x=a,x=b,以及x轴所围成的图形在x轴上方部分的面积减去x轴下方部分面积.因此如果下方部分面积为0,上方部分面积为最大时,的值最大,即当a=0,b=1时,积分取得最大值.6.已知试用抛物线法公式求出ln2的近似值(取n=10,计算时取4位小数).解:计算y i并列表表5-2-1按抛物线法公式,求得7.设求解:(1)(2)(3)(4)8.水利工程中要计算拦水闸门所受的水压力.已知闸门上水的压强p与水深h存在函数关系,且有p=9.8h(kN/m2).若闸门高H=3m,宽L=2m,求水面与闸门顶相齐时闸门所受的水压力P.解:在区间[0,3]上插入n-1个分点,取ξi∈[h i-1,h i],并记Δh i=h i-h i-1,得到闸门所受水压力的近似值为根据定积分的定义可知闸门所受的水压力为因为被积函数连续,而连续函数是可积的,因此积分值与积分区间的分法和ξi的取法无关.为方便计算,对区间[0,3]进行n等分,并取ξi为小区间的端点所以。
高等数学辅导教材推荐高等数学是大学阶段的重要学科之一,对于理工科、经济学等专业的学生来说,它是必修课程。
好的辅导教材可以帮助学生更好地理解和掌握高等数学的概念和方法。
本文将为大家推荐几本适合高等数学辅导的教材。
一、《高等数学(上、下册)》(同济大学版)同济大学出版社的《高等数学》是一套经典的高等数学教材。
该教材从基础概念出发,逐步深入,内容结构合理,逻辑严谨。
它既包含了数学原理的讲解,又涵盖了大量的例题和习题,可以帮助学生巩固所学知识。
该教材通俗易懂,注重培养学生的实际运算能力,是高等数学学习的首选教材之一。
二、《高等数学导学与习题解析》(高等教育出版社)《高等数学导学与习题解析》是高等教育出版社出版的一本辅导教材。
该教材以导学方式呈现知识点,每个知识点都附带大量习题。
通过讲解和解题过程的详细分析,学生可以更清晰地理解和掌握数学概念和方法。
该教材注重思维方法的培养,凸显数学的应用,对于理解高等数学的思维逻辑起到了积极的辅助作用。
三、《高等数学分析习题解法详解》(清华大学出版社)清华大学出版社的《高等数学分析习题解法详解》是一本专门针对高等数学分析课程的辅导教材。
它选取了一些经典的高等数学分析习题,详细解析了解题的方法和技巧。
该教材旨在帮助学生更好地理解和运用高等数学分析的基本概念,强化学生的问题解决能力。
它的解题思路独特,注重方法的总结和推广,对于数学分析课程的学习具有较高的参考价值。
四、《高等数学习题精选与解析》(人民邮电出版社)《高等数学习题精选与解析》是人民邮电出版社出版的一本高等数学辅导教材。
该教材以习题为主线,选取了一些典型的难题,通过详细解析和分析,帮助学生理解习题的解题技巧和思路。
该教材的解析过程详细,习题数量较多,对于提高学生的解题能力和应对考试有一定的帮助。
以上是本文为大家推荐的几本适合高等数学辅导的教材。
需要强调的是,教材只是辅助学习的工具,学生在选择教材时应根据个人的学习特点和需求来进行选择。