硬联接双电机的变频同步驱动方案研究
- 格式:pdf
- 大小:500.45 KB
- 文档页数:3
浅析双电机同步运动控制器的设计与实现发布时间:2021-01-14T02:52:45.059Z 来源:《现代电信科技》2020年第14期作者:毛善高王洪建[导读] 笔者将会在本文的论述中,对现阶段双电机同步运动控制器在半导体设备同步驱动中的应用进行研究,然后由此为基础进行电气同步方案设计,解析双电机控制运动。
(中国电子科技集团公司第四十五研究所)摘要:笔者将会在本文的论述中,对现阶段双电机同步运动控制器在半导体设备同步驱动中的应用进行研究,然后由此为基础进行电气同步方案设计,解析双电机控制运动。
笔者在该系统研发的过程中分为两种方法,开展两步进电机的转速以及控制工作台的测量元件设计,分别是编码器以及光栅尺,从而将该系统打造成为一个完整的封环系统。
笔者在研究的过程中对传统的PID控制算法进行了完善与升级,通过同步偏差调节项的应用打造了一个全新的PID控制器,该控制器能够与环系统的要求相匹配。
根据笔者的研究与分析进行了试验,试验的内容为对该控制器进行不同指令速度的下达并且应用闭环通算法,将处理效果与传统的并行同步算法进行比较分析,从试验的数据结果上来看,证明了环系统的应用具有一定的先进性,并且能够将双电机同步运动控制效果实现最佳化。
闭环同步控制系统,所涉及到的设计方案并不单单能够应用到步进电机上,还能够对其他类型电极的同步运动控制具有一定的参考价值。
希望通过本文的论述能够对相关行业的从业人员提供一定的帮助与借鉴,促进我国双电机同步运动控制器设计水平的提升。
关键词:双电机;步进电机;控制方案;控制器;PID引言:在我国硅材料行业硅芯清洗机、大幅面激光切割机以及大型龙门铣床等工业设备设计安装的过程中,会经常使用输电及同步驱动的方式来驱动设备同一部位的运动。
在该种工艺应用的过程中,最常使用的电气同步控制方式必须要建立一个数学模型,从而进行并行同步以及交叉耦合同步两方面的协调,并且数学模型的建设必须要基于控制对象的实际情况。
变频器同步控制解决方案采用PF755系列变频器对两台电机进行同步控制,不但可以高速同步数据,还可以实现力矩平衡,增强了系统的精确性和稳定性。
文章针对变频器同步控制方案进行分析,希望能够更好的促进变频器发展。
标签:主从控制;PF755变频器;同步控制;解决方案1 变频器同步控制概述变频器由于性能穩定、节能环保、性价比高,在汽车制造行业得到了广泛的应用,随着汽车制造工艺的不断发展,很多应用场合要求两台变频器转矩或转速同步,如四柱式升降机、同步输送等应用场合等。
同步控制一般包括一拖多控制方式和主从控制方式两种方式,一拖多控制方式采用一台大容量变频器带动多台电机,只能采用压频比的控制方式,低速特性及调速特性均不佳。
主从控制是为多电机传动系统设计,每台电机分别由单独的变频器控制,因此,主从控制可以采用具有转矩控制能力的矢量控制和直接转矩控制方法。
利用这个高性能的控制算法,可在同步运行的机构之间建立合理的负载分配关系,充分发挥各电动机的转矩输出能力。
2 PF755系列变频器主从控制原理罗克韦尔自动化PF755系列变频器是一款伺服型、高性能的矢量控制变频器,可以分别对电机转速和转矩进行实时控制。
同时,该变频器内置的以太网接口可以直接连接另外一台变频器组成主从控制系统。
主从变频器均包含16个双字输入,16个双字输出数据寄存器用于同步数据交换。
这样,主变频器就可以将命令字、速度给定值等数据实时传送给从变频器,使得主从变频器同时响应。
除了基础的命令字、速度源等数据外,还可以将逻辑处理结果同步传送给从变频器。
PF755变频器支持逻辑运算处理功能(DeviceLogix功能),不经过PLC 即可完成简单的逻辑运算,这样可以大大提高主从变频器之间的通讯效率,完成设备之间的信号互锁。
(见图1)图1当主变频器和从变频器控制的电机轴采用柔性连接时,从变频器应该采用速度跟随方式,在这种情况下,机械结构不能保证同步运行的要求,在考虑采用速度控制方式解决同步的问题时候,同时还要考虑两套系统的力矩平衡性。
两台电机如何通过变频器实现同步控制呢在工业控制系统中,变频器是一种常见的设备,用于控制电动机的转速和运行状态。
通过变频器,可以实现对电机的精确控制,包括速度、转矩、加速度等。
而在一些应用中,需要实现多台电机的同步控制,即多台电机的转速和运动状态保持一致。
本文将介绍如何通过变频器实现两台电机的同步控制。
首先,要实现电机的同步控制,需要确保两台电机的转速保持一致。
为此,可以将一台电机作为主电机,另一台电机作为从电机。
主电机通过变频器控制其转速,而从电机通过接收主电机的转速信号来实现同步运动。
具体实施时,可以按照以下步骤进行:1.首先,需要确保主电机的位置和转速精确可控。
可以通过编码器或位置传感器来获取主电机的位置和转速信息,并将其传递给变频器。
变频器根据这些信息来调整主电机的转速。
2.从电机需要与主电机保持同步,因此需要获取主电机的位置和转速信息。
可以通过编码器或位置传感器获取从电机的位置和转速信息,并将其传递给从变频器。
4.从变频器接收到主电机的转速信号后,根据这一信号调整从电机的转速。
从变频器将通过调整从电机的电压和频率来控制其转速,以保持与主电机的同步。
需要注意的是,在实际操作中,还需要考虑到一些因素,以确保同步控制能够稳定有效。
例如,变频器之间通信的稳定性和可靠性,编码器或位置传感器的精度和信号的及时性等。
此外,还要根据具体的应用需求和环境条件,调整控制系统的参数和算法,以实现更精确的同步控制。
通过变频器实现两台电机的同步控制,可以应用在许多工业场景中。
例如,自动化生产线中的输送带、同步驱动机械臂等。
通过有效地实现同步控制,不仅可以提高生产线的工作效率和精度,还可以减少因电机运动不同步而引起的故障和损耗。
总结起来,通过变频器实现两台电机的同步控制需要确保主电机的位置和转速精确可控,从电机通过接收主电机的转速信号来实现同步运动。
同时,还需要考虑通信稳定性、传感器精度和环境因素等因素,以优化同步控制系统的性能。
两台电机如何通过变频器实现同步控制呢在众多的现代工业中,电机是最为普遍、关键的机电设备之一,同时,电机同步控制也是电机的一项重要应用。
那么,如何通过变频器实现同步控制呢?本文将由此展开讨论。
变频器的基本介绍变频器,也称为交流调速器、交流变频器等,是一种电力电子设备,其主要作用是将交流电源(一般是380V/220V交流电源)变换为可调变频的交流电源,并将这个交流电源输入电机中从而达到调速的目的。
变频器应用于电机同步控制电机同步控制的基本原理在介绍变频器如何应用于电机同步控制之前,我们先来简单了解一下电机同步控制的基本原理。
电机的同步控制,是指两台电机通过某种控制方式,保持动态相等,即两台电机速度、位移之间始终以一定的相对关系进行运动。
在传统控制方式中,若要实现两台电机同步运动,往往需要使用机械传动或伺服控制等方式,其缺点在于基础设备、系统成本高、维护成本高等,因此,随着现代电力电子技术的不断发展,人们开始在电机同步控制等领域应用变频器。
变频器在电机同步控制中的应用电机同步控制,通过使用变频器进行频率调节,从而控制电机的运动,起到控制电机同步度的作用,能够达到快速调节、稳定控制等优势,在现代化电机控制中扮演着举足轻重的作用。
利用变频器控制电机同步控制,其实现方式是:在两台电机控制某一参数(如转速、电流、位置等)的过程中,其中一台电机是主动运动的电机,另一台电机是主观运动的电机,主动电机的控制箱中安装有位置传感器,将传感器输出的位置信号发给控制箱,然后通过控制箱将这个位置信号发给另一台电机,以此达到两台电机同时运动的目的。
这种控制方式不仅能够简化控制回路,缩小安装空间,而且能够大大降低功耗,提高效率。
电机同步控制的标准对于同步控制的要求,一般通过同步误差来描述。
同步误差就是在两台电机运动过程中,主观电机的位置与主动电机的位置处于的相位差异,这个误差通常用角度或时间来描述。
在电机同步控制中,同步误差越小,同步效率越高。
同步电机变频调速系统的研究随着电力电子技术和控制理论的不断发展,变频调速技术在工业领域中的应用越来越广泛。
同步电机作为一种高效的电能转换器,在变频调速系统中具有重要的应用价值。
本文旨在研究同步电机变频调速系统的优化控制策略,以提高系统的调节精度和稳定性。
同步电机变频调速系统的研究已经取得了许多重要的成果。
然而,现有的研究主要集中在变频器控制策略和同步电机矢量控制等方面,关于同步电机变频调速系统的综合优化控制策略的研究尚不够充分。
不同的应用场景对同步电机变频调速系统的性能要求也不同,因此需要针对具体的应用场景进行优化控制策略的研究。
本文采用理论分析和实验研究相结合的方法,对同步电机变频调速系统的优化控制策略进行研究。
建立同步电机的数学模型,对电机的动态行为和传递函数进行理论分析;设计合适的控制器,采用矢量控制方法实现电机的解耦控制;通过实验平台验证控制策略的可行性和优越性。
通过实验验证,本文提出的优化控制策略在提高同步电机变频调速系统的调节精度和稳定性方面具有显著的优势。
与传统的控制策略相比,本文所提出的控制策略能够有效减小系统的稳态误差和动态误差,并具有更好的抗干扰性能。
实验结果表明,在不同的应用场景下,本文所提出的优化控制策略能够适应不同的性能要求,从而有效提高系统的综合性能。
本文对同步电机变频调速系统的优化控制策略进行了深入研究,通过理论分析和实验研究相结合的方法,取得了显著的研究成果。
所提出的优化控制策略能够有效提高同步电机变频调速系统的调节精度和稳定性,具有重要的应用价值。
然而,本研究仍存在一定的局限性,例如未考虑系统的非线性因素和参数变化对系统性能的影响等问题,因此未来的研究可以进一步拓展和深化。
关键词:永磁同步电机,变频调速,MATLAB,系统仿真随着电力电子技术和控制理论的不断发展,永磁同步电机变频调速系统在工业领域中的应用越来越广泛。
永磁同步电机具有高效、节能、高性能等优点,而变频调速技术则可以实现对电机的无级调速,以满足各种不同的生产需求。
两台电机如何通过变频器实现同步控制掌握要求及方式:
1两台电机同步掌握的方式是以一台为主机,另一台为从机来进行掌握。
2.同步用的变频器均采纳0-10V电压给定速度,我们使用1号电位器为主调电位器,2号,3号为微调电位器。
接线步骤:
1)分别将两台变频器的10V短接,GND短接,主调电位器1号脚接入10V,3号脚接GND,两个微调电位器1号接入主调电位器的2号脚,2号脚接入AI1,3号脚接GND,
2)运行信号分别接入D11,COM
变频器参数设置:
P0-02 命令源选择,设置成1,端子命令通道
P0-03 主频率源X选择,设置成2,AI1端子
P0-14 下限频率,设置成0.4HZ,
P0-17 加速时间设置成5S P0-18 减速时间设置成5S
启动变频器,旋动主电位器观看两台变频器的频率变化,变化是否有规律,分别通过两台微调电位器进行修正,把频率下降5HZ,再观看是否符合规律,松开运行键,变频器停止运行
留意两点:
1)多台变频器的10V端子肯定要短接,不然由于压降而导致不能正
常工作
2)同步掌握不是频率一样,是否同步的依据是线速度。