伺服驱动系统方案设计
- 格式:doc
- 大小:612.00 KB
- 文档页数:9
基于PLC与HMI的伺服电机运动控制系统设计与实现摘要:随着计算机技术、可编程控制器及触摸屏科技的进步,现在机械制造行业几种控制系统越来越多的被应用到处理复杂事务中使其变得处理简易,在生活中,几种控制系统的应用提高了生产效率,使我们生活变得简单化,提高了机械产品的安全性和可操作性。
本文提出了选用S7-200SMARTCPUST30PLC为主控制器,发送脉冲指令作为伺服驱动器的输入信号,通过伺服驱动器实现对伺服电机前/后点动及连续运转、相对/绝对位置的精确控制以及自动查找参考点等操作,由SMART1000IEV3触摸屏搭建监控画面的思路。
关键词:伺服电机;PLC;运动控制;HMI1、系统总体方案设计1.1PLC和HMI简介1.1.1可编程里辑控制器简介可编辑逻辑控制器简称PLC,能够适应工作环境较为恶劣的条件,适用范围较广。
另外,PLC的维护较为方便,使用可靠性比较高。
CPU的运行状态是决定系统流畅的重要保证,而PLC的工作状态就是通过软件控制CPU的运行情况,当然通过硬件开关进行强制控制也是一种有效的控制手段,比如在进行测试阶段或者对系统进行检修时,硬件控制是一种较为方便的方式。
1.1.2 HMI简介随着我国工业水平提高,在生产过程中生产工艺越来越复杂,生产设备也在不断更新换代,生产控制人员不仅仅要对生产的每个流程熟知,还要对设备运行状况了解,做到设备运转的透明化。
HMI便是实现人机互通的关键技术,它实现了工作人员与机器之间的可靠连接。
在工作人员与Wincc flexible之间,HMI是实现二者链接的重要接口。
在控制器与Wincc flexible之间也同样需要这样的接口。
1.2 总体方案设计整个系统分为硬件设计、PLC程序设计、HMI与PLC通讯、系统实验调试共4部分。
硬件方面,主控制器选用S7-200SMARTCPUST30PLC,发送脉冲指令作为台达伺服驱动器(ASDA-B2-0121-B)的输入信号;通过伺服驱动器实现控制伺服电机(ASDAB2)的旋转速度和驱动丝杆滑台的移动位置[1]。
电子信息与电气工程系课程设计报告设计题目:直流伺服电机控制系统设计系别:电子信息与电气工程系年级专业:学号:学生姓名:2006级自动化专业《计算机控制技术》课程设计任务书摘要随着集成电路技术的飞速发展,微控制器在伺服控制系统普遍应用,这种数字伺服系统的性能可以大大超过模拟伺服系统。
数字伺服系统可以实现高精度的位置控制、速度跟踪,可以随意地改变控制方式。
单片机和DSP在伺服电机控制中得到了广泛地应用,用单片机作为控制器的数字伺服控制系统,有体积小、可靠性高、经济性好等明显优点。
本设计研究的直流伺服电机控制系统即以单片机作为核心部件,主要是单片机为控制核心通过软硬件结合的方式对直流伺服电机转速实现开环控制。
对于伺服电机的闭环控制,采用PID控制,利用MATLAB软件对单位阶跃输入响应的PID 校正动态模拟仿真,研究PID控制作用以及PID各参数值对控制系统的影响,通过试凑法得到最佳PID参数。
同时能更深度地掌握在自动控制领域应用极为广泛的MATLAB软件。
关键词:单片机直流伺服电机 PID MATLAB目录1.引言 ...................................................... 错误!未定义书签。
2.单片机控制系统硬件组成.................................... 错误!未定义书签。
微控制器................................................ 错误!未定义书签。
DAC0808转换器.......................................... 错误!未定义书签。
运算放大器............................................... 错误!未定义书签。
按键输入和显示模块....................................... 错误!未定义书签。
伺服驱动器硬件设计方案伺服驱动器的硬件研发主要包括控制板和电源板的设计,控制板承担与上位机进行交互和实时生成精准的PWM信号。
电源板的作用根据PWM信号,利用调制的原理产生特定频率,特定相位和特定幅值的三相电流以驱动电机以达到最优控制。
一控制板研发1)控制板的架构主要的任务就是核心器件的选择。
安川、西门子等国际知名的公司都是采样ASIC的方式的芯片,这样就可以按照自己的设计需要来制造专用于伺服控制的芯片,由于采样ASIC方式,所以芯片的运行速度非常快,那么就比较容易实现电流环的快速响应,并且可以并行工作,那么也很容易实现多轴的一体化设计。
采样ASIC的方式有很多的好处,比如加密等。
但是采样ASIC的风险和前期的投入也是非常的巨大的,并且还要受该国的芯片设计和制造工艺的限制。
根据我国的实际的国情和国际的因素等多种原因,核心芯片比较适宜采样通用的DSP,ARM等处理器,比如Ti的C2000飞思卡尔的K60,英飞凌的XE164等。
研究台达的伺服驱动器发现其架构是采用Ti的DSP 2812+CPLD,这和我们公司GSK的方案基本一样。
我们也是采用DSP2812加CPLD(EPM570T144)来实现核心的控制功能。
2)核心器件的控制功能的分工。
DSP实现位置环、速度环、电流环的控制以及利用事件管理器PWM接口实现产生特定的PWM信号。
可以利用其灵活的编程特性快速的运算能力实现特定的控制算法等,还可以利用其自身的A/D完成对电机电流的转换,但是DSP自身的A/D精度普遍较低,并且还受基准电压电源的纹波PCB的LAYOUT模数混合电路的处理技巧影响,所以高档的伺服几乎都采用了外部A/D来完成电流采样的处理。
比如路斯特安川等。
也有一些高档的伺服使用一些特殊的电流传感器,该传感器的输出已经是数字信号,这样就可以节省了外部A/D芯片和增强抗干扰能力。
如西门子的变频器采用ACPL7860,发那克用于机器人的六驱一体的伺服也是采用了ACPL7860,西门子的伺服S120采用了Ti的芯片AMC1203。
伺服驱动系统设计方案伺服电机的原理:伺服的基本概念是准确、精确、快速定位。
与普通电机一样,交流伺服电机也由定子和转子构成。
定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。
伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度{线数)。
伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。
交流伺服电机的工作原理和单相感应电动机无本质上的差异。
但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。
而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。
交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。
它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。
因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。
图3 伺服电动机的转矩特性2、运行范围较宽如图3所示,较差率S在0到1的范围内伺服电动机都能稳定运转。
3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。
当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)如图4所示,与普通的单相异步电动机的转矩特性(图中T′-S曲线)不同。
伺服驱动系统设计方案及对策一、硬件设计方案及对策:1.选用高性能的伺服电机和驱动器:根据具体需要选择适合的伺服电机和驱动器,确保其具备足够的功率和控制精度。
在选择过程中,需要对驱动器的技术参数进行充分了解,并评估其适用性和可靠性。
2.采用合适的编码器:编码器用于测量电机的位置和速度,对伺服驱动系统的控制精度至关重要。
选择合适的编码器,能够提供高分辨率和高精度的反馈数据,并且具备良好的抗干扰性能。
3.电源设计:伺服驱动系统对电源质量和稳定性要求较高,需要提供稳定的电源供应和电磁兼容性设计,避免电源波动对系统性能的影响。
4.散热设计:伺服电机和驱动器在运行时会产生较大的热量,必须进行有效的散热设计,以确保系统的稳定性和可靠性。
可采用风扇散热、散热片等方式来降低温度。
5.机械设计:在伺服驱动系统中,机械结构的设计对系统性能有很大影响。
需要针对具体应用场景选择合适的传动方式和结构设计,考虑到负载、速度、精度等因素。
6.停电保护设计:为了避免突发停电导致系统损坏,可以设计备用电池或超级电容器等储能装置,以保证在停电短时间内继续工作并正常停机。
二、软件设计方案及对策:1.控制算法设计:通过对伺服电机的位置、速度和加速度等参数进行精细控制,实现对运动轨迹的准确控制。
设计合理的控制算法,能够提高系统的控制精度和稳定性。
2.运动控制软件设计:根据伺服驱动系统的应用需求,设计合理的运动控制软件,包括运动插补算法、软件调速、位置校正等功能。
3.通信接口设计:伺服驱动系统通常需要与上位机或其他设备进行通信,需要设计合适的通信接口,以实现数据传输和控制。
4.用户界面设计:为了方便用户操作和监测系统运行状态,可以设计友好的用户界面,包括参数设置、故障诊断、实时监控等功能。
5.系统诊断与故障检测设计:通过设计合理的系统诊断和故障检测功能,可以检测和排除系统故障,提高系统的可靠性和稳定性。
三、通信网络设计方案及对策:1.选择适当的通信协议:根据伺服驱动系统所处的应用环境和通信要求,选择适当的通信协议,如CAN总线、以太网等。
伺服驱动器硬件设计方案伺服驱动器得硬件研发主要包括控制板与电源板得设计,控制板承担与上位机进行交互与实时生成精准得PWM信号。
电源板得作用根据PWM信号,利用调制得原理产生特定频率,特定相位与特定幅值得三相电流以驱动电机以达到最优控制。
一控制板研发1)控制板得架构主要得任务就就是核心器件得选择。
安川、西门子等国际知名得公司都就是采样ASIC得方式得芯片,这样就可以按照自己得设计需要来制造专用于伺服控制得芯片,由于采样ASIC方式,所以芯片得运行速度非常快,那么就比较容易实现电流环得快速响应,并且可以并行工作,那么也很容易实现多轴得一体化设计。
采样ASIC得方式有很多得好处,比如加密等。
但就是采样ASIC得风险与前期得投入也就是非常得巨大得,并且还要受该国得芯片设计与制造工艺得限制.根据我国得实际得国情与国际得因素等多种原因,核心芯片比较适宜采样通用得DSP,ARM等处理器,比如Ti得C2000飞思卡尔得K60,英飞凌得XE164等。
研究台达得伺服驱动器发现其架构就是采用Ti得DSP 2812+CPLD,这与我们公司GSK得方案基本一样。
我们也就是采用DSP2812加CPLD(EPM570T144)来实现核心得控制功能。
2)核心器件得控制功能得分工.DSP实现位置环、速度环、电流环得控制以及利用事件管理器PWM接口实现产生特定得PWM信号。
可以利用其灵活得编程特性快速得运算能力实现特定得控制算法等,还可以利用其自身得A/D完成对电机电流得转换,但就是DSP自身得A/D精度普遍较低,并且还受基准电压电源得纹波PCB得LAYOUT模数混合电路得处理技巧影响,所以高档得伺服几乎都采用了外部A/D来完成电流采样得处理。
比如路斯特安川等.也有一些高档得伺服使用一些特殊得电流传感器,该传感器得输出已经就是数字信号,这样就可以节省了外部A/D芯片与增强抗干扰能力。
如西门子得变频器采用ACPL7860,发那克用于机器人得六驱一体得伺服也就是采用了ACPL7860,西门子得伺服S120采用了Ti得芯片AMC1203。
基于英飞凌XC2267的电机控制系统设计电机驱动系统是电动汽车的关键部件之一。
永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)伺服调速性能优越,去除了直流伺服电机的额机械换向器和电刷,使结构更加简单;且具有质量轻、体积小、功率因数高等优点;被广泛应用于对精度和性能要求较高的领域。
本文基于磁场定向控制(FOC)原理,设计了以资源丰富和高速响应为特点的英飞凌16位微控制器XC2000作为主控芯片构建一个高性能的永磁同步电机伺服控制系统。
最后,在Simulink环境下构建控制系统模型,验证了控制系统的有效性。
1 系统总体控制设计方案1.1 FOC原理永磁同步电机矢量控制是在磁场定向坐标上,将定子电流矢量分解成励磁电流分量和转矩电流分量,实现解耦定子电流的完全解耦,然后分别对两者进行调节选择。
从而简化PMSM 的控制。
根据磁势和功率不变原则,将永磁同步电机的三相电压、电流和磁链经过坐标变换由三相ABC静止坐标系下的量变换成d—q旋转坐标系下的量,定子电流矢量被分解为按转子磁场定向的两个相互正交的电流分量,即定子电流的励磁分量id和转矩分量iq。
iq调节参考量由速度控制器给出,经过电流环调节后输出d—q轴上的电压分量,即ud和uq。
将控制量ud和uq经过反Parke变换后,得到α-β坐标系上的分量uα和uβ。
根据uα和uβ值的大小和SVPWM空间矢量合成方法实现矢量控制的输出,达到矢量控制的目的。
1.2 三闭环控制系统设计系统采用电流、转速、位置三闭环控制来实现对电机的转速控制。
其中速度环的作用在于保证电机的实际转速与指令值一致,消除负载转矩扰动等因素对电机转速的影响。
速度指令与反馈的电机实际转速相比较,其差值通过速度调节器产生相应的电流参考信号的幅值,再与通过磁极位置检测得到的电流参考信号相位相乘,既得到完整的电流参考信号,该信号控制电机加速、减速或匀速,从而使电机的实际转速与指令值保持一致。
《伺服控制系统课程设计》指导书⾃动化与电⼦⼯程学院⼆零⼀⼋年⼗⽉⼀、伺服控制系统课程设计的意义、⽬标和程序 (3)⼆、伺服控制系统课程设计内容及要求 (5)三、考核⽅式和报告要求 (11)⼀、伺服控制系统课程设计的意义、⽬标和程序(⼀)伺服控制系统程设计的意义伺服控制系统课程设计是⾃动化专业⼈才培养计划的重要组成部分,是实现培养⽬标的重要教学环节,是⼈才培养质量的重要体现。
通过伺服控制系统课程设计,可以培养考⽣⽤所学基础课及专业课知识和相关技能,解决具体的⼯程问题的综合能⼒。
本次课程设计要求考⽣在指导教师的指导下,独⽴地完成伺服控制系统的设计和仿真,解决与之相关的问题,熟悉伺服控制系统中控制器设计与整定、电机建模和仿真和其他检测装置的选型以及⼯程实践中常⽤的设计⽅法,具有实践性、综合性强的显著特点。
因⽽对培养考⽣的综合素质、增强⼯程意识和创新能⼒具有⾮常重要的作⽤。
伺服控制系统课程设计是考⽣在课程学习结束后的实践性教学环节;是学习、深化、拓宽、综合所学知识的重要过程;是考⽣学习、研究与实践成果的全⾯总结;是考⽣综合素质与⼯程实践能⼒培养效果的全⾯检验;也是⾯向⼯程教育认证⼯作的重要评价内容。
(⼆)课程设计的⽬标课程设计基本教学⽬标是培养考⽣综合运⽤所学知识和技能,分析与解决⼯程实际问题,在实践中实现知识与能⼒的深化与升华,同时培养考⽣严肃认真的科学态度和严谨求实的⼯作作风。
使考⽣通过综合课程设计在具备⼯程师素质⽅⾯更快地得到提⾼。
对本次课程设计有以下⼏⽅⾯的要求:1.主要任务本次任务在教师指导下,独⽴完成给定的设计任务,考⽣在完成任务后应编写提交课程设计报告。
2.专业知识考⽣应在课程设计⼯作中,综合运⽤各种学科的理论知识与技能,分析和解决⼯程实际问题。
通过学习、研究和实践,使理论深化、知识拓宽、专业技能提⾼。
3.⼯作能⼒考⽣应学会依据课程设计课题任务进⾏资料搜集、调查研究、⽅案论证、掌握有关⼯程设计程序、⽅法和技术规范。
伺服驱动系统设计方案伺服电机的原理:伺服的基本概念是准确、精确、快速定位。
与普通电机一样,交流伺服电机也由定子和转子构成。
定子上有两个绕组,即励磁绕组和控制绕组,两个绕组在空间相差90°电角度。
伺服电机内部的转子是永磁铁,驱动控制的u/V/W三相电形成电磁场转子在此磁场的作用下转动,同时电机自带的编码器反馈信号给驱动器,驱动器根据反馈值与目标值进行比较,调整转子转动的角度。
伺服电机的精度决定于编码器的精度{线数)。
伺服电动机又称执行电动机,在自动控制系统中,用作执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出。
其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降作用:伺服电机,可使控制速度,位置精度非常准确。
交流伺服电机的工作原理和单相感应电动机无本质上的差异。
但是,交流伺服电机必须具备一个性能,就是能克服交流伺服电机的所谓“自转”现象,即无控制信号时,它不应转动,特别是当它已在转动时,如果控制信号消失,它应能立即停止转动。
而普通的感应电动机转动起来以后,如控制信号消失,往往仍在继续转动。
交流伺服电动机的工作原理与分相式单相异步电动机虽然相似,但前者的转子电阻比后者大得多,所以伺服电动机与单机异步电动机相比,有三个显著特点:1、起动转矩大由于转子电阻大,其转矩特性曲线如图3中曲线1所示,与普通异步电动机的转矩特性曲线2相比,有明显的区别。
它可使临界转差率S0>1,这样不仅使转矩特性(机械特性)更接近于线性,而且具有较大的起动转矩。
因此,当定子一有控制电压,转子立即转动,即具有起动快、灵敏度高的特点。
图3 伺服电动机的转矩特性2、运行范围较宽如图3所示,较差率S在0到1的范围内伺服电动机都能稳定运转。
3、无自转现象正常运转的伺服电动机,只要失去控制电压,电机立即停止运转。
当伺服电动机失去控制电压后,它处于单相运行状态,由于转子电阻大,定子中两个相反方向旋转的旋转磁场与转子作用所产生的两个转矩特性(T1-S1、T2-S2曲线)以及合成转矩特性(T-S曲线)如图4所示,与普通的单相异步电动机的转矩特性(图中T′-S曲线)不同。
这时的合成转矩T 是制动转矩,从而使电动机迅速停止运转。
图4 伺服电动机单相运行时的转矩特性图5是伺服电动机单相运行时的机械特性曲线。
负载一定时,控制电压Uc愈高,转速也愈高,在控制电压一定时,负载增加,转速下降。
图5 伺服电动机的机械特性交流伺服电动机的输出功率一般是0.1-100W。
当电源频率为50Hz,电压有36V、110V、220、380V;当电源频率为400Hz,电压有20V、26V、36V、115V等多种。
交流伺服电动机运行平稳、噪音小。
但控制特性是非线性,并且由于转子电阻大,损耗大,效率低,因此与同容量直流伺服电动机相比,体积大、重量重,所以只适用于0.5-100W 的小功率控制系统。
***机器手伺服控制系统设计分析变频与伺服的关系:目前市场上变频控制器的用途要大大的大于伺服机构,有必要搞清伺服和变频两个系统之间的关系,以便提高可参考设计的途径,这样才能以最低的成本达到设计出自己的伺服控制的目的。
简单的说:变频只是伺服的一个部分,伺服是在变频的基础上进行闭环的精确控制从而达到更理想的效果。
我们的目标和步骤要在变频系统的基础上,首先解决电机的驱动问题,达到调速目的,然后加入对反馈的采样,设计自己的PID算法,最终完成闭环控制。
当然,这种系统的设计是有难度的,因为简单的看如果系统完成仅仅做一个单独的伺服电机的控制系统就已经能有一定的市场,如果系统简单的话,伺服系统的价格应该不是现在的价位!所以正确的分析系统难度是保证系统的正确完成的基础。
首先控制部分的算法是各厂家保密的技术环节,如果仅仅使用传统的调节电容移相的控制方式不适合于高精度定位控制的需要。
那么我们必然要选择AC-DC-AC的过程,这中间的DC-AC的三相逆变技术是必须要攻克的。
如果简单的PWM电机调速使用通常的技术手段可以实现,但是相对高频的(400HZ)三相逆变需要系统处理要有很高的速度。
其次DSP技术的应用需要比较高的理论基础,这对我们是一种挑战,合理的算法和处理机制是实现最终控制的必然途径,要克服理论上的差距,必要的学习和钻研过程是不可避免的。
这中间和熟悉的技术开发产品的差异是时间的损耗!PID的控制算法是销售伺服控制系统公司的技术命脉,PID算法的好坏直接决定下一步机械手系统的运转的平稳和系统精度的保证。
对任何公司来说,设计专用的PID 算法都是公司技术含量最高的部分。
这部分包含自动控制算法、错误的处理和动作判断以及控制方式的选择。
伺服电机的选择:目前定型为松下400HZ36V三相交流伺服电机?(原因)伺服电机的驱动原理:交流伺服的技术本身就是借鉴并应用了变频的技术,在直流电机的伺服控制的基础上通过变频的PWM方式模仿直流电机的控制方式来实现的,也就是说交流伺服电机必然有变频的这一环节:变频就是将工频的50、60HZ的交流电先整流成直流电,然后通过可控制门极的各类晶体管(IGBT,IGCT等)通过载波频率和PWM调节逆变为频率可调的波形类似于正余弦的脉动电,由于频率可调,所以交流电机的速度就可调了(n=60f/2p ,n转速,f频率,p极对数)。
交流伺服系统根据其处理信号的方式不同,可以分为模拟式伺服、数字模拟混合式伺服和全数字式伺服;如果按照使用的伺服电动机的种类不同,又可分为两种:一种是用永磁同步伺服电动机构成的伺服系统,包括方波永磁同步电动机(无刷直流机)伺服系统和正弦波永磁同步电动机伺服系统;另一种是用鼠笼型异步电动机构成的伺服系统。
二者的不同之处在于永磁同步电动机伺服系统中需要采用磁极位置传感器而感应电动机伺服系统中含有滑差频率计算部分。
若采用微处理器软件实现伺服控制,可以使永磁同步伺服电动机和鼠笼型异步伺服电动机使用同一套伺服放大器。
1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm:如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。
可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。
应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。
2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。
由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。
应用领域如数控机床、印刷机械等等。
3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时速度模式也可以进行定位,但必须把电机的位置信号或直接负载的位置信号给上位反馈以做运算用。
位置模式也支持直接负载外环检测位置信号,此时的电机轴端的编码器只检测电机转速,位置信号就由直接的最终负载端的检测装置来提供了,这样的优点在于可以减少中间传动过程中的误差,增加了整个系统的定位精度。
交流伺服电动机有以下三种转速控制方式:◆幅值控制控制电流与励磁电流的相位差保持90°不变,改变控制电压的大小。
◆相位控制控制电压与励磁电压的大小,保持额定值不变,改变控制电压的相位。
◆幅值—相位控制同时改变控制电压幅值和相位。
交流伺服电动机转轴的转向随控制电压相位的反相而改变。
一般伺服电机驱动系统框图伺服电机控制部分框图系统的设计步骤:(1)制定控制方案的技术路线,确定驱动电机转动的控制电路:a)首先确认使用DSP的厂家型号;b)找出使用该信号控制器驱动伺服电机的模型;(最好可以演示)c)绘制控制部分原理图和PCB图通过试验手段,试验各种控制模式下电机的运转;d)封装硬件及软件模块;(2)本阶段总结上一阶段的试验成果,吸收并进一步测试各种控制的适用范围,制定电机控制模块的通讯协议、控制模式和PID控制的指导方案:a)测试反馈信号和处理速度之间的匹配;b)封装模块的适用范围测试;c)论证机械手系统适用的伺服电机控制方式;d)确认系统整体功能需求。
(3)整体系统方案确认阶段:a)机械手综合控制单元的功能确认;b)人机界面:按键和显示单元的模块试验;c)通讯方式的测试和联机调试;d)逐次增加电机的数量,测试电机的协调性动作和模块封装;e)电路安装的结构方案设计。
(4)综合设计阶段:a)全部硬件的综合性能调试;b)不同控制模式和不同动作下,细致动作的准确性测试;c)复杂动作的压力测试和快速反应的数据流量测试;d)整体功耗测试和烤机测试。
(5)联机调试阶段:a)脱机操作的各种动作的稳定性测试;b)待机状态的EMC测试和硬件电路的抗干扰设计验证;c)联机状态下的综合动作测试及到位反馈;d)模拟实际现场的烤机测试。
第一阶段所涉及到技术细节及难点分析如上图首先要通过数学手段,模拟出三相逆变的交流400HZ控制电源;数学模型和6路3对上下臂的PWM输出方式是这一阶段的两个难点。
上图为三相逆变电路的原理图,但是根据此原理图对功率模块的测试和对称性选择会严重的阻碍项目的进度。
根据,目前掌握的情况,建议我们直接选择IPM模块。
下图为IPM模块的功能图。
根据前期进度要求,同时建议使用单电源的IPM模块。
图1 hvic内部结构示意图图2 单电源ipm 内部电路附录:伺服马达编码器工作原理。