伺服电机驱动控制器DOC
- 格式:doc
- 大小:1.07 MB
- 文档页数:16
目录一、伺服驱动概述 (1)二、本产品特性 (2)三、电路原理图及PCB版图 (4)四、电路功能模块分析 (4)五、焊接(附元件清单) (14)六、编者设计体会 (16)一.伺服驱动概述1. 伺服电机的概念伺服电机是在伺服系统中控制机械元件运转的发动机,作为一种执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出,是一种补助马达间接变速装置。
伺服电机是可以连续旋转的电-机械转换器,直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。
2.伺服电机分类普通直流伺服电动机直流伺服电机 { 低惯量直流伺服电动机直流力矩电动机3. 控制系统对伺服电动机的基本要求宽广的调速范围机械特性和调节特性均为线性无“自转”现象快速响应控制功率小、重量轻、体积小等。
4. 直流伺服电机的基本特性(1)机械特性在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M 变化而变化的规律,称直流电机的机械特性(2)调节特性直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压Ua变化而变化的规律,被称为直流电机的调节特性(3)动态特性从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性5. 直流伺服电机的驱动原理伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm直流伺服电机分为有刷和无刷电机。
有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。
因此它可以用于对成本敏感的普通工业和民用场合。
和创伺服电机驱动器说明书创伺服电机驱动器是一种高性能、高效率的电机驱动器,广泛应用于工业自动化领域。
本文将详细介绍创伺服电机驱动器的特性、工作原理、安装和调试方法等内容。
一、创伺服电机驱动器特性1.多种型号选择:创伺服电机驱动器提供了多种型号和功率的选择,可以根据实际需求进行适配。
2.高性能:创伺服电机驱动器采用先进的控制算法和高精度的位置检测技术,能够实现快速、准确的位置控制,精度高、响应速度快。
3.高效率:创伺服电机驱动器具有高效的能量转换效率,能够有效地将输入电能转换为有用的机械功,减少能源的浪费。
4.响应灵敏:创伺服电机驱动器的控制系统具有良好的响应特性,能够快速调整电机的转速、位置和力矩,实现更加精确的运动控制。
5.稳定性好:创伺服电机驱动器采用了先进的反馈控制技术,能够实时监测电机的状态,并根据实际情况进行调整,保证系统的稳定性和可靠性。
6.易于安装和调试:创伺服电机驱动器采用模块化设计,安装简便,支持多种通信接口和轴配置,方便调试和使用。
二、创伺服电机驱动器工作原理创伺服电机驱动器主要由控制器和功率放大器两部分组成。
控制器负责接收来自上位机的指令信号,并根据设定的控制算法生成相应的驱动信号。
功率放大器将控制器发出的驱动信号放大后送至电机,控制电机的速度、位置和力矩。
在工作过程中,控制器会不断对电机的输出信号进行采样,并根据实际输出值进行反馈调整,实现闭环控制。
通过与设定值的比较,控制器会不断调整输出信号,使输出值逐渐趋向于设定值,实现精确的控制。
三、创伺服电机驱动器安装方法1.确定电机和驱动器的安装位置,并保证其固定牢固。
注意避免电机和驱动器受到外界的振动和冲击。
2.连接电源线和地线。
根据电机和驱动器的额定电压和电流要求,选择合适的电源线,并保证线路连接牢固可靠。
3.连接电机线缆。
根据电机和驱动器的相关参数,将电机的线缆与驱动器进行连接,确保线缆连接正确无误。
4.连接控制信号。
根据控制系统的要求,将控制信号线连接至驱动器的输入端口,确保信号传输正常。
压缩机用直线伺服电机及其驱动控制器设计摘要:随着工业自动化水平的提高,直线伺服电机,作为一种高效、精确的驱动方式,直线伺服电机在压缩机等设备中的应用越来越广泛。
特别是在压缩机等高精度控制场合,直线伺服电机的性能直接影响着设备的运行效率和稳定性。
本文将重点探讨压缩机用直线伺服电机及其驱动控制器的设计,主要对压缩机用直线伺服电机的工作原理及特点、应用优势、直线伺服电机的设计、驱动控制器设计以及其在应用场景进行详细分析。
以及为相关领域的研究提供参考和借鉴。
关键词:直线伺服电机;压缩机;驱动控制器;设计1引言随着科技的进步,直线伺服电机在许多领域中都有着广泛的应用,特别是在需要高精度和高速度定位的场合。
在压缩机应用中,直线伺服电机的使用能够显著提高压缩效率,降低能耗,提高定位精度。
本文将详细介绍压缩机用直线伺服电机及其驱动控制器的设计。
2 直线伺服电机的工作原理及特点直线伺服电机的工作原理基于传统的旋转伺服电机,通过将旋转运动转换为直线运动,实现了高精度的直线定位。
伺服电机接收来自控制器的命令信号,并根据该信号产生磁场,从而使电机动子进行相应的线性运动。
其主要特点包括:高精度、高速度、高响应、低摩擦、低维护等[1]。
3直线伺服电机在压缩机中的应用优势直线伺服电机在压缩机中的应用优势主要包括以下几个方面:(1)高精度控制:直线伺服电机具有高精度的位置和速度控制能力,可以实现压缩机的精确控制,从而提高压缩机的运行效率和稳定性[2]。
(2)高速响应:直线伺服电机具有快速的响应能力,可以快速地调整压缩机的运行状态,适应不同的工况变化。
(3)降低噪音:由于直线伺服电机的高精度控制能力,可以减少压缩机在运行过程中的振动和噪音,提高压缩机的舒适性。
(4)节能环保:直线伺服电机具有高效的能量转换效率,可以降低压缩机的能耗,实现节能环保的效果。
(5)维护简便:直线伺服电机的设计简单,结构紧凑,易于维护和保养,可以降低压缩机的维护成本和时间。
伺服电机控制器的工作原理伺服电机控制器是一种用于控制伺服电机运动的设备,其工作原理涉及到电机控制、反馈信号和控制算法等多个方面。
本文将从这些方面逐一介绍伺服电机控制器的工作原理。
伺服电机控制器的基本工作原理是通过控制电机的输入信号来实现对电机转速、角度或位置的精确控制。
伺服电机控制器通常由控制器主板、电源、电机驱动器和反馈装置等组成。
当控制器接收到来自外部的控制信号时,它会根据预设的控制算法生成相应的控制信号,并通过电机驱动器将信号传递给电机,从而控制电机的运动。
伺服电机控制器的工作原理还涉及到反馈信号的使用。
伺服电机控制器通常会配备反馈装置,如编码器或霍尔传感器,用于实时监测电机的转速、角度或位置,并将反馈信号传回控制器。
控制器会将反馈信号与目标运动参数进行比较,并根据差异调整输出信号,使电机达到精确的控制效果。
控制算法也是伺服电机控制器工作的关键。
控制算法根据控制器接收到的目标信号和反馈信号,计算出电机应该输出的控制信号。
常见的控制算法包括位置控制算法、速度控制算法和电流控制算法等。
这些算法根据不同的应用场景和要求,选择合适的控制方式来实现精确的电机控制。
在实际应用中,伺服电机控制器的工作原理可以简单概括为以下几个步骤:首先,控制器接收到外部的控制信号,如脉冲信号、模拟信号或数字信号等。
其次,控制器根据预设的控制算法将控制信号转换为电机可识别的信号,并通过电机驱动器将信号传递给电机。
然后,电机根据接收到的信号进行运动,并通过反馈装置实时监测电机的状态。
最后,控制器根据反馈信号与目标信号的差异,调整输出信号,使电机达到精确的控制效果。
伺服电机控制器通过控制电机的输入信号、使用反馈信号和控制算法等多个方面的工作原理,实现对电机运动的精确控制。
它在自动化控制系统中发挥着重要的作用,广泛应用于工业生产、机械设备和机器人等领域。
随着科技的不断进步,伺服电机控制器的工作原理也在不断发展和完善,为电机控制提供更加精确和高效的解决方案。
伺服电机和伺服驱动器的使用介绍伺服电机和伺服驱动器是现代自动控制系统中常用的两种电动执行元件。
伺服电机是一种特殊的电动机,可以根据输入信号来控制输出运动,具有高精度、高响应速度和高稳定性的特点。
而伺服驱动器则是用于控制伺服电机的装置,它能够接收和处理来自控制器的控制信号,将其转化为电机所需要的电流信号,从而控制电机的运动。
1.选择合适的伺服电机和驱动器。
根据实际需求,选择适合的电机和驱动器型号。
考虑到载荷、速度、转矩等因素,并与控制器匹配。
2.安装电机和驱动器。
将电机固定在机械结构上,并与驱动器连接。
通常,电机的旋转轴与负载相连,以实现所需的机械运动。
3.接线。
按照电机和驱动器的说明书连接电源线、控制线和编码器线,确保正确接线,避免短路和电击。
4.参数设定。
使用控制器或编程器设定电机和驱动器的参数。
参数设置包括电机的额定电流、最大转矩、速度范围等。
这些参数的设定将直接影响伺服系统的性能。
5.测试和调试。
将伺服电机连接到控制器,并进行测试和调试。
通过控制器向驱动器发送控制信号,观察电机的运动情况是否符合要求。
6.应用控制。
将伺服电机和驱动器应用到实际控制系统中。
根据需要调整控制器的参数,以实现所需的运动控制。
1.高精度:伺服电机和驱动器具有高分辨率和高重复精度,能够实现精确的位置和速度控制。
因此,它们被广泛应用于需要高精度运动控制的领域,如机器人、数控机床等。
2.高响应速度:伺服电机和驱动器具有快速响应的特点,能够在短时间内完成启动、停止和加减速等运动过程。
因此,它们能够适应高速运动和频繁换向的需求。
3.高稳定性:伺服电机和驱动器能够实时监测和调整输出信号,以实现精确的运动控制。
这种反馈机制使得伺服系统具有较强的抗负载扰动和抗干扰能力。
4.可编程性:伺服驱动器通常具有多种控制模式和参数设置,可以根据具体需求进行编程和改变工作方式,以适应不同的应用场景。
总之,伺服电机和伺服驱动器是现代自动控制系统中常用的电动执行元件。
感谢您使用本产品,本使用操作手册提供LCDA系列伺服驱动器的相关信息。
内容包括:●伺服驱动器和伺服电机的安装与检查●伺服驱动器的组成说明●试运行操作的步骤●伺服驱动器的控制功能介绍与调整方法●所有参数说明●通讯协议说明●检测与保养●异常排除●应用例解说本使用操作手册适合下列使用者参考:●伺服系统设计者●安装或配线人员●试运行调机人员●维护或检查人员在使用前,请您仔细详读本手册以确保使用上的正确。
此外,请将它妥善保存在安全的地点以便随时查阅。
下列在您尚未读完本手册时,务必遵守事项:●安装的环境必须没有水气,腐蚀性气体或可燃性气体。
●接线时,禁止将三相电源接至马达U、V、W的连接器,因为一旦接错时将损坏伺服驱动器。
●接地工程必须确实实施。
●在通电时,请勿拆解驱动器、马达或更改配线。
●在通电动作前,请确定紧急停机装置是否随时开启。
●在通电动作时,请勿接触散热片,以免烫伤。
如果您在使用上仍有问题,请洽询经销商或者本公司客服中心。
安全注意事项LCDA 系列为一开放型(Open Type )伺服驱动器,操作时须安装于遮蔽式的控制箱内。
本驱动器利用精密的回授控制与结合高速运算能力的数字信号处理器(Digital Signal Processor,DSP ),控制IGBT 产生精确的电流输出,用来驱动三相永磁式同步交流伺服马达(PMSM )达到精准定位。
LCDA 系列可使用于工业应用场合上,且建议安装于使用手册中的配线(电)箱环境(驱动器、线材与电机都必须安装于符合环境等级的安装环境最低要求规格)。
在按收检验、安装、配线、操作、维护与检查时,应随时注意以下安全注意事项。
标志[危险]、[警告]与[禁止]代表的含义:✓ 意指可能潜藏危险,若未遵守要求可能会对人员造成严重伤或致命✓ 意指可能潜藏危险,若未遵守可能会对人员造成中度的伤害,或导致产品严重损坏,甚至故障✓ 意指绝对禁止的行动,若未遵守可能会导致产品损坏,或甚至故障而无法使用W ARNINGDANGERSTOP接收检验✧ 请依照指定的方式搭配使用伺服马达与伺服驱动器,否则可能会导至火灾或设备故障。
伺服电机驱动器的工作原理伺服电机驱动器(Servo motor driver)是将电动机与控制电路相结合的设备,主要用于控制电动机的速度、位置和方向。
它通过控制驱动电流来实现对电机的精确控制,使得电机能够按照预定的要求进行运动。
1.脉冲信号接收与解析:伺服电机驱动器通常通过接收外部的脉冲信号来控制电机的转动。
这些脉冲信号一般由编码器或计数器产生,并且与所需的运动参数相关联,如速度、加速度和位置等。
驱动器会解析这些脉冲信号,并将其转换为电机控制所需的电流信号。
2.电流控制:伺服电机驱动器会根据接收到的脉冲信号来控制输出电流的大小和方向。
控制电流可以通过控制电压或PWM(脉宽调制)信号的方式来实现,这取决于驱动器的工作方式。
电机的电流大小直接影响到电机的负载能力和运动性能,较大的电流通常代表着更强大的动力。
3.速度、位置和方向控制:伺服电机驱动器可以根据接收到的脉冲信号来精确控制电机的速度、位置和方向。
在速度控制方面,驱动器会通过调整输出电流的大小和运动时间的长短来实现。
在位置控制方面,驱动器会将脉冲信号的数量和方向与电机的角度测量进行比较,并调整输出电流以实现电机的准确位置控制。
在方向控制方面,驱动器会根据脉冲信号的正负来决定电机的转向。
4.反馈控制:伺服电机驱动器通常具有反馈控制系统,以实现对电机运动的精确控制。
反馈控制常用的传感器包括编码器、霍尔传感器和位置传感器等。
在运动过程中,传感器会实时监测电机的位置和速度,并将这些信息传递给驱动器的控制电路。
控制电路会根据传感器提供的信息进行调整,以实现对电机运动的闭环控制。
通过以上的工作原理,伺服电机驱动器能够实现高精度、高性能的电机控制,广泛应用于各种自动控制系统中,如工业机械、自动化设备、机器人、数控机床、印刷设备等。
伺服电机和伺服驱动器的使用介绍一、伺服电机的定义和工作原理伺服电机是一种主动式电机,其运动状态由外部反馈信号控制,以实现精确的位置、速度和力矩控制。
伺服电机通常由电机、编码器、控制电路和电源组成。
伺服电机的工作原理基于闭环控制系统。
在该系统中,控制器接收输入信号(期望位置、速度或力矩),然后与反馈传感器(编码器)的输出信号进行比较,并计算误差信号。
控制器根据误差信号调整电机的控制信号,以实现期望的动作。
通过不断地反馈和调整,伺服电机可以在稳态中准确地跟踪给定的运动指令。
二、伺服驱动器的定义和工作原理伺服驱动器是一种电子设备,用于将控制信号转换为电机运动的实际驱动信号。
伺服驱动器通常由控制电路、功率放大器、电源和接口电路组成。
伺服驱动器的工作原理基于控制电路和功率器件的协作。
控制电路接收来自控制器的信号,并进行放大和滤波等处理。
然后,放大后的信号被传递给功率放大器,该放大器将信号转换为电机能够接受的电压或电流信号。
最后,通过接口电路将电机信号输出到伺服电机,从而控制电机的运动。
三、伺服电机和伺服驱动器的特点1.高精度:伺服电机和驱动器通常具有高精度的位置和速度控制能力,可在微米级或亚微米级的精度范围内操作。
2.快速响应:伺服系统的动态响应时间短,可以快速准确地响应外部指令,并实现快速的位置和速度变化。
3.高可靠性:伺服电机和驱动器通常采用高质量的电子元件和工艺,以确保其长时间的稳定运行和可靠性。
4.广泛应用:伺服系统广泛应用于工业自动化控制、机器人技术、数控机床、医疗设备、航天航空等领域。
四、伺服电机和伺服驱动器的应用领域1.机床行业:伺服电机和伺服驱动器在机床行业中广泛应用,用于实现高精度的位置和速度控制,提高加工精度和效率。
2.自动化生产线:伺服系统在自动化生产线中用于控制输送带、机械臂等设备的位置和速度,实现准确定位和快速运动。
3.包装设备:伺服电机和驱动器可用于控制包装设备的定位、旋转和速度,实现高精度的封装和包装。
伺服驱动器参数设置方法(总2页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除伺服驱动器参数设置方法在自动化设备中,经常用到伺服电机,特别是位置控制,大部分品牌的伺服电机都有位置控制功能,通过控制器发出脉冲来控制伺服电机运行,脉冲数对应转的角度,脉冲频率对应速度(与电子齿轮设定有关),当一个新的系统,参数不能工作时,首先设定位置增益,确保电机无噪音情况下,尽量设大些,转动惯量比也非常重要,可通过自学习设定的数来参考,然后设定速度增益和速度积分时间,确保在低速运行时连续,位置精度受控即可。
1.位置比例增益:设定位置环调节器的比例增益。
设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。
但数值太大可能会引起振荡或超调。
参数数值由具体的伺服系统型号和负载情况确定。
2.位置前馈增益:设定位置环的前馈增益。
设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡。
不需要很高的响应特性时,本参数通常设为0表示范围:0~100%3.速度比例增益:设定速度调节器的比例增益。
设置值越大,增益越高,刚度越大。
参数数值根据具体的伺服驱动系统型号和负载值情况确定。
一般情况下,负载惯量越大,设定值越大。
在系统不产生振荡的条件下,尽量设定较大的值。
4.速度积分时间常数:设定速度调节器的积分时间常数。
设置值越小,积分速度越快。
参数数值根据具体的伺服驱动系统型号和负载情况确定。
一般情况下,负载惯量越大,设定值越大。
在系统不产生振荡的条件下,尽量设定较小的值。
5.速度反馈滤波因子:设定速度反馈低通滤波器特性。
数值越大,截止频率越低,电机产生的噪音越小。
如果负载惯量很大,可以适当减小设定值。
数值太大,造成响应变慢,可能会引起振荡。
数值越小,截止频率越高,速度反馈响应越快。
伺服电机驱动器参数设置及编码器替代技巧一、伺服电机驱动器参数设置2.加速度和减速度设置:在伺服系统中,加速度和减速度对于保证系统的运动平稳性和精度非常重要。
通常可以根据应用的需要进行适当的调整,但要注意避免设置过高的加速度和减速度,以免导致电机过载或者机械部件损坏。
3.位置环参数设置:位置环参数决定了伺服系统的位置控制性能。
其中包括比例增益、积分增益和微分增益等。
这些参数的设置通常需要根据实际应用来进行调整。
通过试探性地改变这些参数并观察系统的响应,可以逐步优化系统的性能。
4.速度环参数设置:速度环参数决定了伺服系统的速度响应特性。
通常包括比例增益和积分增益等。
与位置环类似,通过试探性地改变这些参数并观察系统的响应,可以逐步优化系统的速度响应性能。
5.角度环参数设置:对于电机转子位置角度的反馈,通常可以通过编码器来实现。
角度环参数的设置与位置环类似,主要包括比例增益、积分增益和微分增益等。
通过试探性地改变这些参数并观察系统的响应,可以优化系统的转子位置控制精度。
传统的伺服系统中,通常使用编码器来提供位置反馈。
然而,在一些情况下,编码器的使用可能存在一些限制,例如受限空间、高成本等。
1.位置传感器替代:可以考虑使用其他类型的位置传感器来替代编码器。
例如,霍尔传感器、磁场传感器等。
这些传感器通常具有较小的尺寸和较低的成本。
2.光电传感器:光电传感器可以使用光源和光敏元件来检测物体的位置。
它们通常具有较高的精度和较快的响应速度,适用于一些较小尺寸的应用。
3.激光测距仪:激光测距仪利用激光束进行测量,可以提供非常精确的位置反馈。
它们通常具有较大的测量范围和较高的精度,适用于一些较大尺寸的应用。
4.视觉系统:视觉系统可以利用相机和图像处理技术来实现位置测量。
这种方式通常可以提供非常准确的位置反馈,但需要较强的计算能力和图像处理算法的支持。
总结:伺服电机驱动器参数设置和编码器替代技巧是确保伺服系统正常运行的重要步骤。
交流伺服电机驱动器说明书一、产品概述交流伺服电机驱动器是一种用于控制、驱动交流伺服电机的设备,通过精确的控制电流和速度,实现对电机的准确控制。
本说明书将详细介绍交流伺服电机驱动器的功能、特点以及使用方法。
二、产品特点1.高精度控制:交流伺服电机驱动器采用先进的控制算法,能够实现高精度的电流和速度控制,确保电机运行稳定。
2.广泛适用:该驱动器适用于各种交流伺服电机,可满足不同应用场景的需求。
3.简便易用:提供简洁明了的操作界面,用户可以通过参数设置实现快速调整,使用方便。
4.稳定可靠:采用高品质元器件和先进技术制造,具有良好的稳定性和可靠性,长期运行不易出现故障。
5.保护功能:内置多种保护功能,如过流保护、过压保护、过热保护等,有效保护电机和驱动器的安全运行。
三、使用方法1.安装接线:将交流伺服电机驱动器按照说明书要求正确接线,确保连接牢固可靠。
2.参数设置:根据实际需求,在界面上进行参数设置,包括电流、速度、加减速度等参数调整。
3.运行测试:完成参数设置后,进行运行测试,观察电机运行情况,调整参数以达到理想效果。
4.使用注意事项:在使用过程中注意电压、电流等参数的范围,避免超载运行,确保电机和驱动器的安全性。
四、维护保养1.定期检查:定期检查驱动器的连接线、散热器等部件,确保无松动、损坏现象,及时进行维修。
2.清洁:定期清洁驱动器表面和散热器,防止灰尘积累影响散热效果,保持通风良好。
3.防水防尘:避免水汽、灰尘等进入驱动器内部,防止损坏元器件,影响使用寿命。
4.保持干燥:存放时保持环境干燥通风,避免潮湿影响驱动器性能。
本文介绍了交流伺服电机驱动器的概述、特点、使用方法和维护保养等内容,希望能够帮助用户更好地了解和使用这一产品。
如有任何疑问或需要进一步信息,请查阅详细的产品说明书或与生产厂家联系。
伺服驱动器控制伺服电机原理伺服驱动器控制伺服电机原理1. 什么是伺服驱动器?伺服驱动器是一种用于控制伺服电机的设备,其作用是接收控制信号,并将此信号转换成电机的动作。
伺服电机则是一种特殊的电机,通过伺服驱动器的控制,可以精确地控制电机的位置、速度和加速度等参数。
2. 伺服驱动器的工作原理伺服驱动器通过接收控制信号,使用内部的反馈系统来控制电机。
以下是伺服驱动器的工作原理的一般步骤:•接收控制信号:伺服驱动器会接收一个来自控制器的控制信号,这个信号可以是模拟信号或数字信号。
•信号解码:伺服驱动器会对接收到的信号进行解码,将其转换为电机可以理解的控制命令。
•控制执行:伺服驱动器根据解码后的控制命令,控制电机做出相应的动作。
•反馈检测:伺服驱动器通过内部的反馈系统,检测电机的实际状态,并将其与控制命令进行比较。
•误差计算:通过比较控制命令和实际状态,伺服驱动器计算出误差值,即控制命令与实际状态之间的差距。
•调整控制:根据误差值,伺服驱动器会相应地调整控制命令,使得电机的状态与控制命令尽可能一致。
•循环反馈:上述过程将持续进行,以保持电机状态的稳定性和精确性。
3. 伺服驱动器的特点及应用伺服驱动器具有以下特点:•高精度控制:伺服驱动器通过反馈系统可以实现高精度的电机控制,使得电机能够精确地按照控制命令进行运动。
•快速响应:伺服驱动器能够快速响应控制信号,实现高速运动和快速加减速的要求。
•稳定性:通过持续的反馈和控制调整,伺服驱动器能够稳定地控制电机状态,减少误差和波动。
•灵活性:伺服驱动器支持多种控制模式和参数调整,以适应不同应用场景的需求。
伺服驱动器广泛应用于各种需要精密控制的领域,例如工业机械、自动化设备、机器人等。
其高精度和快速响应的特点使得伺服驱动器适用于对运动精度和速度要求较高的场合。
4. 总结伺服驱动器是一种用于控制伺服电机的设备,通过接收控制信号和内部反馈系统,实现电机的精确控制。
其特点包括高精度控制、快速响应、稳定性和灵活性,广泛应用于各种需要精密控制的领域。
交流伺服电机驱动器使用说明书1.特点●16位CPU+32位DSP三环(位置、速度、电流)全数字化控制●脉冲序列、速度、转矩多种指令及其组合控制●转速、转矩实时动态显示●完善的自诊断保护功能,免维护型产品●交流同步全封闭伺服电机适应各种恶劣环境●体积小、重量轻2.指标●输入电源三相200V -10%~+15% 50/60HZ●控制方法IGBT PWM(正弦波)●反馈增量式编码器(2500P/r)●控制输入伺服-ON 报警清除CW、CCW驱动、静止●指令输入输入电压±10V●控制电源DC12~24V 最大200mA●保护功能OU LU OS OL OH REG OC STCPU错误,DSP错误,系统错误●通讯RS232C●频率特性200Hz或更高(Jm=Jc时)●体积L250 ×W85 ×H205●重量 3.8Kg3.原理见米纳斯驱动器方框图(图1)和控制方框图(图2)4.接线4.1主回路卸下盖板坚固螺丝;取下端子盖板。
用足够线经和连接器尺寸作连接,导线应采用额定温度600C以上的铜体线,装上端子盖板,拧紧盖板螺丝。
螺丝拧紧力矩大于1.2Nm M4或2.0 Nm M5时才可能损坏端子,接地线径为2.0mm2具体见接线图34.2 CN SIG 连接器[具体见接线图4●驱动器和电机之间的电缆长度最大20M●这些线至少要离开主电路接线30cm,不要让这些线与电源进线走一线槽;或让它们捆扎在一起●线经0.18mm2或以上屏蔽双绞线,有足够的耐弯曲力●屏蔽驱动器侧的屏蔽应连接到CN.SIG 连接器的20脚,电机侧应连接到J脚●若电缆长于10M,则编码器电源线+5V、0V应接双线4.3 CN I/F 连接●控制器等周边设备与驱动器之间距离最大为3M●这些线至少和主电路接线相隔30cm ,不要让这些线与电源进线走同一线槽或和它们捆扎在一起●COM+和COM-之间的控制电源(V DC)由用户供给●控制信号输出端子可以接受最大24V或50mA;不要施加超过此限位的电压和电流●若用控制信号直接使继电器动作要象左图所示那样,并联一只二极管到继电器。
伺服驱动器是用来控制伺服电机的一种控制器,
伺服驱动器
其作用类似于变频器作用于普通交流马达,属于伺服系统的一部分。
目前主流的伺服驱动器均采用数字信号处理器(DSP)作为控制核心,可以实现比较复杂的控制算法,实现数字化、网络化和智能化。
功率器件普遍采用以智能功率模块(IPM)为核心设计的驱动电路,IPM内部集成了驱动电路,同时具有过电压、过电流、过热、欠压等故障检测保护电路,在主回路中还加入软启动电路,以减小启动过程对驱动器的冲击。
功率驱动单元首先通过三相全桥整流电路对输入的三相电或者市电进行整流,得到相应的直流电。
经过整流好的三相电或市电,再通过三相正弦PWM电压型逆变器变频来驱动三相永磁式同步交流伺服电机。
功率驱动单元的整个过程可以简单的说就是AC-DC-AC的过程。
整流单元(AC-DC)主要的拓扑电路是三相全桥不控整流电路。
伺服驱动器一般可以采用位置、速度和力矩三种控制方式,主要应用于高精度的定位系统,目前是传动技术的高端。
随着伺服系统的大规模应用,伺服驱动器使用、伺服驱动器调试、伺服驱动器维修都是伺服驱动器在当今比较重要的技术课题,越来越多工控技术服务商对伺服驱动器进行了技术深层次研究。
目录一、伺服驱动概述 (1)二、本产品特性 (2)三、电路原理图及PCB版图 (4)四、电路功能模块分析 (4)五、焊接(附元件清单) (14)一.伺服驱动概述1. 伺服电机的概念伺服电机是在伺服系统中控制机械元件运转的发动机,作为一种执行元件,把所收到的电信号转换成电动机轴上的角位移或角速度输出,是一种补助马达间接变速装置。
伺服电机是可以连续旋转的电-机械转换器,直流伺服电机的输出转速与输入电压成正比,并能实现正反向速度控制。
2.伺服电机分类普通直流伺服电动机直流伺服电机低惯量直流伺服电动机直流力矩电动机3. 控制系统对伺服电动机的基本要求宽广的调速范围机械特性和调节特性均为线性无“自转”现象快速响应控制功率小、重量轻、体积小等。
4. 直流伺服电机的基本特性(1)机械特性在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M变化而变化的规律,称直流电机的机械特性(2)调节特性直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压Ua变化而变化的规律,被称为直流电机的调节特性(3)动态特性从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性。
5. 直流伺服电机的驱动原理伺服主要靠脉冲来定位,基本上可以这样理解,伺服电机接收到1个脉冲,就会旋转1个脉冲对应的角度,从而实现位移,因为,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,如此一来,系统就会知道发了多少脉冲给伺服电机,同时又收了多少脉冲回来,这样,就能够很精确的控制电机的转动,从而实现精确的定位,可以达到0.001mm直流伺服电机分为有刷和无刷电机。
有刷电机成本低,结构简单,启动转矩大,调速范围宽,控制容易,需要维护,但维护方便(换碳刷),产生电磁干扰,对环境有要求。
因此它可以用于对成本敏感的普通工业和民用场合。
无刷直流伺服电机电机体积小,重量轻,出力大,响应快,速度高,惯量小,转动平滑,力矩稳定。
容易实现智能化,其电子换相方式灵活,可以方波换相或正弦波换相。
电机免维护不存在碳刷损耗的情况,效率很高,运行温度低噪音小,电磁辐射很小,长寿命,可用于各种环境6.步进电机:直流伺服电机,它包括定子、转子铁芯、电机转轴、伺服电机绕组换向器、伺服电机绕组、测速电机绕组、测速电机换向器,所述的转子铁芯由矽钢冲片叠压固定在电机转轴上构成, 按电刷类型可分为有刷直流伺服电机和无刷直流伺服电机;直流伺服电机的基本特性如下:1、机械特性在输入的电枢电压Ua保持不变时,电机的转速n随电磁转矩M变化而变化的规律,称直流电机的机械特性。
2、调节特性直流电机在一定的电磁转矩M(或负载转矩)下电机的稳态转速n随电枢的控制电压Ua变化而变化的规律,被称为直流电机的调节特性。
3、动态特性从原来的稳定状态到新的稳定状态,存在一个过渡过程,这就是直流电机的动态特性。
二、本产品特性此产品为直流电机驱动器,可控制电机的转速,分几个档位,旋动档位可设定电机以不同的速度转动。
此产品可用于带电机的机器的电机控制部分,具有很高的性能。
产品基本特性如下:本产品是基于MC33030直流伺服电机控制器/驱动器芯片的具有过流保护功能的大功率高精度电机控制系统。
该驱动电路输入24V直流电压,为H桥供电,提供大电流驱动直流电机(MC33030驱动能力较弱),经稳压后为芯片供电,并输出5v直流电压,经档位控制分压后,作为基准,输入到MC33030主控芯片;该电路带有微调模块,可以对基准电压进行微调;具有反馈功能,将反馈信号输入MC33030,进行闭环控制;具有过流保护功能,防止电机损坏。
该产品由电源模块,主控芯片MC33030电路, H 驱动桥模块, 过流保护模块, 微调模块, 平衡模块组成。
各模块作用如下:①电源模块: 输入为21V 直流电,输出12V,5V 直流电,并通过自举电路产生24V电源给H 桥供电②微调模块:微调电机速度③平衡模块:电路结构与微调电路相似。
通过U5D 引入正反馈,输出接到微调电路比较器的同相输入端。
与S10共同影响U1A的输出。
④ MC33030伺服模块:MC33030是单片的直流伺服电机控制器。
⑤H桥:增加电路驱动能力,实现大功率输出。
⑥过流保护模块:防止过载烧毁电路1.伺服电机驱动器特性***使用MC33030伺服驱动芯片,可靠性高,带保护功能***支持正传与反转控制,速度控制***高输出功率,高电源转换效率***抗干扰能力强,适用于各种复杂电磁环境***21V 直流电源供电***内部12V,5V 直流电电压调整和稳压,并通过自举电路产生24V 电源给H 桥供电。
***微调电机速度***过流保护, 防止过载烧毁电路2.PCB板特性***双面线路板***工艺:FR-4喷锡板***厚度:1.6mm***阻焊:绿色3.应用***汽车油门控***直流电机驱动三、电路原理图PCB:四、电路功能模块分析(一)系统框图该系统划分为以下几部分:①电源模块:该电源模块的输入为21V直流电,输出12V,5V直流电,并通过自举电路产生24V电源给H桥供电。
②微调模块:微调电机速度③平衡模块④MC33030伺服模块⑤H桥:增加电路驱动能力,实现大功率输出。
⑥过流保护模块:防止过载烧毁电路系统框图如下所示:(二)各模块详细分析1、电源电路:Q12和Q3采用集成稳压器7812和7805。
用78/79系列三端稳压IC来组成稳压电源所需的外围元件极少,电路内部还有过流、过热及调整管的保护电路,使用起来可靠、方便,而且价格便宜。
该系列集成稳压IC型号中的78或79后面的数字代表该三端集成稳压电路的输出电压。
C14,C3,C15,C10,C9,C8,C5,C4,C16为滤波电容。
D1,D13为防反接保护二极管,D34,D14为防反灌二极管,Y是电源指示灯。
R32用于分压,防止7805过热损坏。
MG11019是达林顿复合管,用于过流保护,R1,R2,R3构成电源电流取样电路,电源电流过大会使Q1导通。
ZR1,ZR2时压敏电阻,用于过压保护,防止电路故障时损坏后级电路。
2、微调电路该电路由四比较器U1(LM339)和四运放U2(LM2902)构成,待比较信号从S10,S15,S16,S14输入。
33K和15K电阻构成分压电路,用于衰减输入信号。
100pF电容用于滤除噪声。
八个1N4148二极管用于过压保护,防止输入电压高于电源或低于地。
LM339集成块内部装有四个独立的电压比较器,该电压比较器的特点是:1)失调电压小,典型值为2mV;2)电源电压范围宽,单电源为2-36V,双电源电压为±1V-±18V;3)对比较信号源的内阻限制较宽;4)共模范围很大,为0~(Ucc-1.5V)Vo;5)差动输入电压范围较大,大到可以等于电源电压;6)输出端电位可灵活方便地选用。
LM339类似于增益不可调的运算放大器。
每个比较器有两个输入端和一个输出端。
两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。
用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339输入共模范围的任何一点),另一端加一个待比较的信号电压。
当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。
当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。
两个输入端电压差别大于10mV就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339用在弱信号检测等场合是比较理想的。
LM339的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。
选不同阻值的上拉电阻会影响输出端高电位的值。
因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。
另外,各比较器的输出端允许连接在一起使用。
LM339的反向输入端接固定电平,输出为集电极开路,接电位器以便调节输出电压。
LM2902是通用四运放。
构成电压跟随器,用于降低输出电阻。
四只IN4007二极管用于选出四路中的最高输出电压。
3、平衡电路电路结构与微调电路相似。
通过U5D引入正反馈,输出接到微调电路比较器的同相输入端。
与S10共同影响U1A的输出。
平衡电路是于产生相同和相反信号的电路,它将这些信号送入两个导线。
电路的平衡特性越好,信号的散射就越小,它的噪声抑制特性也越好 (因此它的 EMC 性能就越好)。
4、H桥电路图1中所示为一个典型的直流电机控制电路。
电路得名于“H桥驱动电路”是因为它的形状酷似字母H。
4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图1及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。
如图所示,H桥式电机驱动电路包括4个三极管和一个电机。
要使电机运转,必须导通对角线上的一对三极管。
根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。
图1 H桥驱动电路要使电机运转,必须使对角线上的一对三极管导通。
例如,如图2所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。
按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。
当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。
图2 H桥电路驱动电机顺时针转动图3所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。
当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。
图3 H桥驱动电机逆时针转动使能控制和方向逻辑驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。
如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。
此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。
基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。
图4 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。
4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。
而2个非门通过提供一种方向输人,可以保证任何时候在H 桥的同侧腿上都只有一个三极管能导通。
(与本节前面的示意图一样,图4所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。
)图4 具有使能控制和方向逻辑的H桥电路采用以上方法,电机的运转就只需要用三个信号控制:两个方向信号和一个使能信号。