第二章光的偏振效应.

  • 格式:pdf
  • 大小:1.76 MB
  • 文档页数:51

下载文档原格式

  / 51
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎛ El ⎞ ⎛ Ex ⎞ 表象 ⎜ ⎟ 和 ⎜ ⎟ 之间的关系是幺正变换: ⎝ Er ⎠ ⎝ Ey ⎠ ⎛ Ex ⎞ 1 ⎛ 1 1⎞ ⎛ El ⎞ Exy = ⎜ ⎟ = = FElr , ⎜ ⎟ ⎜ ⎟ 2 ⎝ −i i ⎠ ⎝ Er ⎠ ⎝ Ey ⎠
式中
1 ⎛ 1 1⎞ F= ⎜ ⎟, 2 ⎝ −i i ⎠ F + = F −1.
R −1 (ϕ ) = R + (ϕ ) = R(−ϕ ), R(ϕ1 ) R(ϕ2 ) = R(ϕ1 + ϕ2 ),
任意椭圆偏振光的琼斯矩阵
利用坐标系的旋转,可以计算一个斜椭圆偏振光的琼斯矩阵。 先假设在
ξη
坐标系中有一个正椭圆偏振态,再将此坐标系
连同椭圆偏振态一起逆时针旋转
ϕ.
斜椭圆偏振态在xy坐标系表示为:
第二章 光的偏振效应和琼斯 矩阵表示
1. 光波偏振态的琼斯矩阵表示 2. 基本偏振器件的变换矩阵
1. 光波偏振态的琼斯矩阵表示
平面偏振光可表示为
⎛ cos φ ⎞ π π ˆ J =⎜ ⎟ (− ≤ φ < ) 2 2 ⎝ sin φ ⎠
归一化的琼斯矩阵
ˆ+J ˆ =1 J
式中 φ 为偏振光的振动平面与xz平面的夹角,即方位角。 将φ 用
1 ˆR = ˆx + ie ˆy ) (e e 2 1 ˆ ˆx − ie ˆy ) (e eL = 2
圆偏振光可由一对相位差为 ±π / 2 的平面偏振光组合而成
1 ˆx = ˆR + e ˆL ) (e e 2 i ˆy = − ˆR − e ˆL ) (e e 2
一对圆偏振光可组成平面偏振光。
φ + π / 2 代替,就得到与上述平面偏振光正交的偏振态。
⎛ − sin φ ⎞ ˆ J′ = ⎜ ⎟ φ cos ⎝ ⎠
沿z方向传播的简谐平面波,可以用分量形式表示如下:
⎧ Ex = Ax cos(τ + δ x ) ⎪ ⎨ E y = Ay cos(τ + δ y ) ⎪ ⎩ Ez = 0
2
2
2 2
2. 基本偏振器件的变换矩阵
利用琼斯矩阵的方法可以很方便地计算出光束通过波片,移 相器等元件的偏振态的变化。 在琼斯矩阵法中,通常假定光在波片等元件表面上不存在反 射,认为光通过波片等元件是全透射的。 如图,一个方位角为 矢量描述
φ
的波片,入射光束的偏振态由琼斯
⎛ Ex ⎞ E =⎜ ⎟ ⎝ Ey ⎠
⎛ Eξ ⎞ ⎛ cos ϕ sin ϕ ⎞ ⎛ Ex ⎞ Eξη = ⎜ ⎟ = ⎜ ⎜ ⎟ = R(ϕ ) Exy , ⎜ E ⎟ ⎝ − sin ϕ cos ϕ ⎟ ⎠ ⎝ Ey ⎠ ⎝ η⎠
式中
⎛ cos ϕ sin ϕ ⎞ R(ϕ ) = ⎜ ⎟ sin cos ϕ ϕ − ⎝ ⎠
R(ϕ ) 也是幺正矩阵,满足
⎛ 0⎞ ˆ Elr = ⎜ ⎟ , ⎝1 ⎠
⎛1 ⎞ ˆ Elr = ⎜ ⎟ ⎝ 0⎠
坐标变换(旋转wenku.baidu.com下琼斯矩阵的变换
ˆx , e ˆy ) 将坐标轴旋转角度 ϕ 得到新的基矢 (e ˆξ , e ˆη ) (e
⎛ Eξ ⎞ ˆξ , e ˆη ) 下的表示 ⎜ ⎟ 以及在 (e ˆx , e ˆy ) 任意偏振态在 (e ⎜E ⎟ ⎝ η⎠ ⎛ ⎞ 下的表示 Ex 之间的关系为 ⎜ ⎟ ⎜E ⎟ ⎝ y⎠
⎛ cos ϕ − sin ϕ ⎞⎛ cos ε ⎞ Exy = R(−ϕ ) Eξη = ⎜ ⎟⎜ ⎟ i sin cos sin ϕ ϕ ε ⎝ ⎠⎝ ⎠ ⎛ cos ϕ cos ε − i sin ϕ sin ε ⎞ =⎜ ⎟ i sin cos cos sin ϕ ε ϕ ε + ⎝ ⎠
偏振光的强度
右旋和左旋的圆偏振光的琼斯矩阵
1 ⎛ 1⎞ 1 ⎛1 ⎞ ˆR = ˆL = e ⎜ ⎟, e ⎜ ⎟ i 2⎝ ⎠ 2 ⎝ −i ⎠
ˆR + ie ˆL = 0 e
ˆL , e ˆR ) 均可作为二维琼斯矩阵矢量空间的 ˆx , e ˆ y ) 或 (e (e
正交归一化的基矢,他们可以互相表示如下:
或表示为
1 ⎛1 i ⎞⎛ cos ε ⎞ 1 ⎛ cos ε − sin ε ⎞ Elr = F Exy = ⎜ ⎟⎜ ⎟= ⎜ ⎟, 2 ⎝1 −i ⎠⎝ i sin ε ⎠ 2 ⎝ cos ε + sin ε ⎠
+
定义 tan ε 为椭圆率, ε > 0 表示右旋,ε < 0 表示左旋。 在上式中取 ±π / 4 分别得到右旋和左旋圆偏振光:
式中, Ex , E y 为两个复数分量, x轴和y轴是固定的实验坐标轴。
光强可表示为
I = E E = ( Ex
+
*
⎛ Ex ⎞ 2 2 E y ) ⎜ ⎟ = Ex + E y . ⎝ Ey ⎠
*
如设光波通过器件后的琼斯矩阵为 E ′
⎛E ′ ⎞ x Exy′ = ⎜ ⎟ , ⎜E ′⎟ ⎝ y ⎠
则器件的透过率为
T=
E′ E′
+
E E
+
=
′ + E′ Ex y Ex + E y
⎛ El ⎞ Elr = ⎜ ⎟ , ⎝ Er ⎠
F为幺正矩阵,有 逆变换:
1 ⎛ 1 i ⎞ ⎛ Ex ⎞ + = Elr = F Exy , ⎜ ⎟ ⎜ ⎟ E 2 ⎝1 −i ⎠ ⎝ y ⎠
一个单位振幅、零方位角的椭圆偏振态可表示为:
⎛ cos ε ⎞ Exy = ⎜ ⎟, ⎝ i sin ε ⎠
光波振幅为 Ax , Ay , 相位为 该平面波用琼斯矩阵表示为
τ = ωt − k ir .
⎛ Ax exp(iδ x ) ⎞ ⎛ J x ⎞ ˆ J =⎜ ⎟=⎜ ⎟ ⎝ Ay exp(iδ y ) ⎠ ⎝ J y ⎠
基本的琼斯矩阵与偏振的基态
沿x轴和沿y轴的单位矢量
⎛1 ⎞ ˆ ⎛ 0⎞ ˆ ˆx = ⎜ ⎟ , J = e ˆy = ⎜ ⎟ J =e ⎝ 0⎠ ⎝1 ⎠
一任意偏振态可表示为基矢的线性组合
⎛ Ex ⎞ ⎛1 ⎞ ⎛ 0⎞ ˆx + E y e ˆy , Exy = ⎜ ⎟ = Ex ⎜ ⎟ + E y ⎜ ⎟ = Ex e ⎝ 0⎠ ⎝1 ⎠ ⎝ Ey ⎠
Er ⎛1⎞ El ⎛1 ⎞ ˆR + El e ˆL , Exy = ⎜ ⎟+ ⎜ ⎟ = Er e 2 ⎝i ⎠ 2 ⎝ −i ⎠