9.2一元一次不等式(第一课时)公开课教案
- 格式:doc
- 大小:136.50 KB
- 文档页数:5
9.2 一元一次不等式第1课时解一元一次不等式【知识与技能】1.掌握一元一次不等式的解法.2.列一元一次不等式解决简单的实际问题.【过程与方法】通过实际问题引出复杂的一元一次不等式,类比一元一次方程的解法解一元一次不等式.【情感态度】通过类比的方法得到解一元一次不等式的方法,体验类比地进行研究是学习时获取新知的重要途径,从而激发兴趣,树立信心.【教学重点】一元一次不等式的解法.【教学难点】不等式性质3的运用,由实际问题中的不等式关系列一元一次不等式.一、情境导入,初步认识问题 1 甲、乙两家商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费,顾客怎样选择商店购物能获更大优惠?解:设累计购物x元.当0<x≤50时,两店_________.当50<x≤100时,_________店优惠.当x>100时,在甲店需付款______元,在乙店需付款______元.分三种情况讨论:(1)在甲店花费小,列不等式:____________.(2)甲店、乙店花费相同,列方程:__________________.(3)在乙店花费小,列不等式:__________________.问题 2 回顾一元一次方程的解法,类比地得到一元一次不等式的解法,并解问题1中的不等式和方程.【教学说明】可鼓励学生独立完成上面的两个问题,然后交流战果.二、思考探究,获取新知思考:解一元一次不等式的一般步骤是什么?【归纳结论】解一元一次不等式的一般步骤是:去分母、去括号,移项,合并同类项,系数化为1.注意:在系数化为1时,若遇到需要运用不等式性质3,必须改变不等号的方向.三、运用新知,深化理解1.解下列不等式,并在数轴上表示解集.(1)256x-≤314x+;(2)10.5x--210.75x+≥18.2.当x取什么值时,3x+2的值不大于732x-的值.3.一次知识竞赛共30道题,规定答对一道题得4分,答错或不答一道题得-1分,在这次竞赛中,小明获得优秀(90分或90分以上),则小明至少答对了___道题.4.已知方程组2315x y ax y a-=⎧⎨+=-⎩,的解x与y的和为正数,求a的取值范围.5.已知关于x的不等式52x+-1>22ax+的解集是x<1/2,求a的值.6.已知不等式4x-3a>-1与不等式2(x-1)+3>5的解集相同,求a的值.7.当k是什么自然数时,方程2/3x-3k=5(x-k)+6的解是负数?8.当x取什么值时,代数式546x+的值不小于7/8-13x-的值,并求出此时x的最小值.【教学说明】题1可由两名学生在黑板上板书解题过程.其它学生在草稿纸上解答,教师巡视,适时指导有困难的学生;板书完后,教师给予点评,加深印象:题2~3,教师给予提示,帮助学生理解题意,寻找不等关系;题4~8,先让学生自主思考,交流,寻找解题思路.然后,师生共同完成解答.教师可根据实际情况选取部分习题来讲解.【答案】1.解:(1)去分母得:2(2x-5)≤3(3x+1),4x-10≤9x+3,-5x≤13,x≥-13/5.解集在数轴上表示为:(2)化简得:2(x-1)-4/3(2x+1)≥18, 6(x-1)-4(2x+1)≥54,6x-6-8x-4≥54,-2x≥64,x≤-32.解集在数轴上表示为:2.解:由题意得:73 322xx-+≤6x+4≤7x-3-x≤-7.x≥73.24 解析:设小明答对了x道题,则4x-(30-x)≥90,5x≥120,x≥24.即小明至少答对了24道题.4.解:将两个方程相加得2x+2y=1-3a.∴x+y= 123a -.∵x+y>0,∴123a->0,∴a<1/3.5.解:化简不等式得(1-a)x>-1.∵x<1/2,∴1-a<0.∴x<1 1a --∴11a--=1/2,∴a=3.6.解:解不等式4x-3a>-1得,4x>3a-1,x>31 4a-;解不等式2(x-1)+3>5得,2x-2+3>5,2x>4,x>2;由于上述两个不等式的解集相同,∴314a-=2,∴a=3.7.解:解方程得x=61813k-<0,6k-18<0,k<3,故自然数可取k=2,1,0.8.解:依题意:546x+≥78-13x-,解得x≥-1/4,即当x≥-1/4时,代数式546x+的值不小于78-13x-的值,此时x的最小值为-14.四、师生互动,课堂小结1.解一元一次不等式的一般步骤与解一元一次方程相同,只是在系数化为1时,若遇到运用不等式性质3,一定要改变不等号方向.2.解一元一次方程,要根据等式的性质,将方程逐步化为x=a的形式;而解一元一次不等式,则要根据不等式的性质,将不等式逐步化为x<a(或x>a)的形式.1.布置作业:从教材“习题9.2”中选取.2.完成练习册中本课时的练习.本课主要是掌握解一元一次不等式的方法和步骤,在教学过程中采取讲练结合的方法,让学生充分参与到教学活动中来,主动、自主地练习.有理数的减法法则l .有理数的减法法则是:减去一个数等于加上这个数的___________, 用字母表示成:_______________________________ 2.下列括号内应填什么数?(1)(-2)-(-5)=(-2)+(______); (2)0-(-4)=0+(______); (3)(-6)-3=(-6)+(______); (4)1-(+37)=1+(______). 3.温度3℃比-7℃高_______;温度-8℃比-2℃低_______.4.海拔-200m 比300m 高________;从海拔250m 下降到100m ,下降了________. 5.数轴上表示数-3的点与表示数-7的点的距离为________.6.85减去1的差的相反数等于________;352-的相反数为________.7.3--比-(-3)小________;比-5小-7的数是________;比0小-3的数是________.8.下列结论中正确的是( )A .两个有理数的和一定大于其中任何一个加数B .零加上一个数仍得这个数C .两个有理数的差一定小于被减数D .零减去一个数仍得这个数8.下列说法中错误的是( )A .减去一个负数等于加上这个数的相反数B .两个负数相减,差仍是负数C .负数减去正数,差为负数D .正数减去负数,差为正数9.下列说法中正确的是( ) A .减去一个数等于加上这个数 B .两个相反数相减得OC .两个数相减,差一定小于被减数D .两个数相减,差不一定小于被减数10.下列说法正确的是( ) A .绝对值相等的两数差为零B .零减去一个数得这个数的相反数C .两个有理数相减,就是把它们的绝对值相减D .零减去一个数仍得这个数 11.差是-7.2,被减数是0.8,减数是( ) A .-8B .8C .6.4D .-6.412.若0>a ,且ba >,则b a -是( )A .正数B .正数或负数C .负数D .013.计算:(1)(-5)-(-3); (2)0-(-7); (3)(+25)-(-13); (4)(-11)-(+5); (5)12-21;(6)(-1.7)-(-2.5); (7)⎪⎭⎫ ⎝⎛--2132; (8)⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-3161; (9)()8.1546--⎪⎭⎫⎝⎛-.一元一次方程的解法(第1课时)(30分钟50分)一、选择题(每小题4分,共12分)1.下列方程变形是移项的是( )A.由3=x得,9=8xB.由x=-5+2x,得x=2x-5C.由2x-3=x+5,得x-=+D.由y-1=y+2,得y-y=2+1【解析】选D.A是根据等式性质2,两边同乘以3得到的,B是利用了加法交换律得到的,C是将方程两边同除以2得到的,D中变形是移项.2.解方程4(x-1)-x=2,步骤如下:①去括号,得4x-4-x=2x+1,②移项,得4x+x-2x=1+4,③合并同类项,得3x=5,④两边都除以3,得x=,经检验,x=不是原方程的解,说明解题的四个步骤中有错误,其中开始出现错误的一步是( )A.①B.②C.③D.④【解析】选B.步骤②中等号左边的-x没有移动,不能变号.3.(2013·淄博中考)把一根长100cm的木棍锯成两段,使其中一段的长比另一段的2倍少5cm,则锯出的木棍的长不可能为( )A.70 cmB.65 cmC.35 cmD.35 cm或65 cm【解析】选 A.设一段木棍长为xcm,则另一段长为(2x-5)cm,根据两段木棍共长100cm,可列方程x+(2x-5)=100,解得x=35,2x-5=65,因为这两段没有顺序,所以锯出的木棍的长可能为65cm或35cm.二、填空题(每小题4分,共12分)4.(2013·贵阳中考)方程3x+1=7的解是.【解析】移项,得3x=7-1,合并同类项,得3x=6,方程两边同除以3,得x=2.答案:x=25.若单项式-4x m-1y n+1与x2m-3y3n-5是同类项,则m= ,n= .【解析】根据同类项的概念可得m-1=2m-3,n+1=3n-5,由m-1=2m-3,移项,得m-2m=-3+1,合并同类项得-m=-2,两边都除以-1,得m=2.由n+1=3n-5,移项,得n-3n=-5-1,合并同类项,得-2n=-6,两边都除以-2,得n=3.答案:2 36.(2013·绍兴中考)我国古代数学名著《孙子算经》中有这样一道题:今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是鸡有23只,兔有12只.现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是鸡有只,兔有只.【解析】设鸡有x只,则兔有(33-x)只,根据题意可得2x+4(33-x)=88,解得x=22,33-x=11,即鸡有22只,兔有11只.答案:22 11三、解答题(共26分)7.(8分)解方程:(1)2(y-2)-(4y-1)=9(1-y).(2)4(y-7)-2[9-4(2-y)]=22.【解析】(1)去括号,得2y-4-4y+1=9-9y,移项,得2y-4y+9y=9+4-1,合并同类项,得7y=12,两边都除以7,得y=.(2)去小括号,得4y-28-2[9-8+4y]=22,去中括号,得4y-28-18+16-8y=22,移项,得4y-8y=22+28+18-16,合并同类项,得-4y=52,两边都除以-4,得y=-13.8.(8分)关于x的方程4x+2m=3x+1和3x+2m=4x+1的解相同,求m的值和方程的解. 【解析】解两个方程得x=1-2m和x=2m-1.因为它们的解相同,所以1-2m=2m-1,解得m=.将m=代入x=1-2m或者x=2m-1,得x=0.所以m=,方程的解为x=0.【培优训练】9.(10分)当m取何值时,关于x的方程2mx=(m+1)x+6的解是正整数?【解析】2mx=(m+1)x+6,去括号,得2mx=mx+x+6,移项,合并同类项,得(m-1)x=6,当m-1=0时,原方程无解,当m-1≠0时,两边都除以m-1,得x=(m-1≠0).因此当m-1=1或2或3或6时,方程的解是正整数,因此,m的值为2或3或4或7.。
9.2 一元一次不等式第1课时 一元一次不等式活动一. 知识点1.含有________个未知数,未知数的次数是________的不等式,叫做一元一次不等式.2.类比一元一次方程的解法步骤,掌握一元一次不等式的解法步骤:(1)去分母;(2)______;(3)移项;(4)合并同类项;(5)____________.活动二. 典例精讲知识点1:一元一次不等式的定义例1.下列不等式中哪一个不是一元一次不等式( )A .x >3B .-y +1>y C.1x>2 D .2x >1 知识点2:一元一次不等式的定义和其解法例2.若(m +1)x |m |+2>0是关于x 的一元一次不等式,则m 的取值是________,此不等式的解集为________.知识点3:解一元一次不等式例3.解不等式:(1) 3x -1>5+x . (2)3(x -1)>2x +2.练习:1.下列不等式中哪一个不是一元一次不等式( )A .3x -2>4B .2y >4C .2x<5 D .2<3x +17 2.若(m -2)x 2m +1-1>5是关于x 的一元一次不等式,则该不等式的解集为________.活动三 . 基础巩固1.下列不等式是一元一次不等式的是( )A .2(1-y )+y >4y +2B .x 2-2x -1<0C .12+13>16D .x +1<x +2 2.不等式2x <4的解集是( )A .x >2B .x <2C .x >-2D .x <-23.不等式12x +1<3的正整数解有( ) A .1个 B .2个 C .3个 D .4个4.关于x 的方程4x -2m +1=5x -8的解是负数,则m 的取值范围是( )A .m >92B .m <0C .m <92D .m >05.解不等式:(1)5x +3<3(2+x ). (2)2(x +1)-1≥3x +2.(3)5x +15>4x -1. (4)-2x +2<x +17.活动四. 课堂反馈6.不等式13(x -m )>2-m 的解集为x >2,则m 的值为( ) A .4 B .2 C .32 D .127.若12x 2m -1-8>5是关于x 的一元一次不等式,则m =________.8.不等式5x -12≤2(4x -3)的负整数解是____________.9.已知不等式12x -3≥2x 与不等式3x -a ≤0解集相同,则a =________.10.关于x 的方程ax =3x -5有负数解,则a 的取值范围是________.培优训练11.已知x =12是方程6(2x +m )=3m -6的解,求关于x 的不等式mx +2>m (1-2x )的解集.。
作者为你精心整理了9篇《一元一次不等式教案》的内容,但愿对你的工作学习带来帮助,希望你能喜欢!当然你还可以在搜索到更多与《一元一次不等式教案》相关的内容。
篇1:一元一次不等式教案实际问题与一元一次不等式教案教学目标1、会从实际问题中抽象出数学模型,会用一元一次不等式解决实际问题;2、通过观察、实践、讨论等活动,经历从实际中抽象出数学模型的过程,积累利用一元一次不等式解决实际问题的经验,渗透分类讨论思想,感知方程与不等式的内在联系;3、在积极参与数学学习活动的过程中,初步认识一元一次不等式的应用价值,形成实事求是的态度和独立思考的习惯。
教学难点弄清列不等式解决实际问题的思想方法,用去括号法解一元一次不等式。
知识重点寻找实际问题中的不等关系,建立数学模型。
教学过程(师生活动)设计理念提出问题某学校计划购实若干台电脑,现从两家商店了解到同一型号的电脑每台报价均为6000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一台按原报价收款,其余每台优惠25%;乙商场的优惠条件是:每台优惠20%.如果你是校长,你该怎么考虑,如何选择?(多媒体展示商场购物情景)通过买电脑这个学生非常熟悉的生活实例,引起学生浓厚的学习兴趣,感受到数学来源于生活,生活中更需要数学。
探究新知1、分组活动.先独立思考,理解题意.再组内交流,发表自己的观点.最后小组汇报,派代表论述理由.2、在学生充分发表意见的基础上,师生共同归纳出以下三种采购方案:(1)什么情况下,到甲商场购买更优惠?(2)什么情况下,到乙商场购买更优惠?(3)什么情况下,两个商场收费相同?3、我们先来考虑方案:设购买x台电脑,如果到甲商场购买更优惠.问题1:如何列不等式?问题2:如何解这个不等式?在学生充分讨论的基础上,教师归纳并板书如下:解:设购买x台电脑,如果到甲商场购买更优惠,则6000+6000(1-25%)(x-1)<6000(1-20%)x 去括号,得去括号,得:6000+4500x-45004<4800x移项且合并,得:-300x<1500不等式两边同除以-300,得:x<5答:购买5台以上电脑时,甲商场更优惠.4、让学生自己完成方案(2)与方案(3),并汇报完成情况.教师最后作适当点评.鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模。
课题:9.2 一元一次不等式(第1课时)
教学任务分析
教学目标
1.知识目标: 了解一元一次不等式的概念,掌握一元一次不等式的解法,并能在数
轴上表示出不等式的解集.
2.过程与方法:学生能通过类比解一元一次不等式的过程,获得解一元一次不等式的
思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x<a的形式.学
生能借助具体例子,将化归思想具体化,获得解一元一次不等式的步骤.
3.情感目标: 通过一元一次不等式的学习,培养学生认真、坚持等良好的学习习惯.
教学重点
1. 一元一次不等式的概念.
2. 解一元一次不等式.
教学难点
一元一次不等式的解法.
板书设计
9.2 一元一次不等式(第1课时)
一、探究一元一次不等式的概念
二、探究一元一次不等式的解法
三、巩固练习
四、归纳小结和布置作业
教学过程设计
问题与情境 师生行为 设计意图
【活动1】
复习不等式的三条基本性质
不等式两边加(或减)同一
个数(或式子),不等号的方向不
变.
不等式两边乘(或除以)同
一个正数,不等号的方向不变.
不等式的两边乘(或除以)
同一个负数,不等号的方向改变.
由学生回答出不等式的三条基本性质,教师出示幻灯片,巩固复习上节课所学内容。教师对学生的回答进行适当的点评和总结。尤其要提醒学生注意不等式的性质3,不等号的方向需要改变的问题。 此环节的设置意图在于从学生已
有的数学知识自然的过渡到新知
识的学习,符合学生的认知规律。
与等式一样,不等式的三条基本性
质是解不等式的基础和依据。
问题与情境 师生行为 设计意图
【活动2】
1、 引入概念 问题(1) 观察下面的等式,它们有 哪些共同特征? 726x,321xx, 2503x,43x. 问题(2)观察下面的不等式,它们有哪些共同特征? 726x,321xx, 2503x,43x. 问题(3) 下面我们判断一下,以下的不等式是不是一元一次不等式.请大家讨论. 1(1)314(2)263xx 1(3)30(4)0xx 132(5)3(6)062xxx 2(7)(8)354xxxyy 教师展示幻灯片,呈现问题,学生思考并回
答问题。
一元一次方程:只含有1个未知数,未知数
的次数都是1次,这样的整式方程叫做一元
一次方程。
通过与一元一次方程的定义类比,学生很容
易归纳获得一元一次不等式的概念。
一元一次不等式:①只含有1个未知数,②
未知数的次数都是1次,③这样的整式不等
式叫做一元一次不等式。如:12512xx
学生分组合作完成,并说明理由。
教师对学生的回答进行总结。进一步加深对
一元一次不等式概念中的三个特征的理解。
引导学生通过观察给出
的一元一次方程的定
义,学会类比,进而归
纳出它们的共同特征,
得出一元一次不等式的
定义。培养学生观察、
归纳的能力。
通过交流,让学生用自
己的语言清楚地表达解
决问题的过程,提高学
生的语言表达能力.
问题与情境 师生行为
设计意图
【活动3】
2.研究解法
练习 利用不等式的性质解不等式:
726x
问题(1) 解一元一次方程的依据和一般步骤,对你解一元一次不等式有什么启发? 巩固练习 解下列方程 22123xx 追问方程解的形式 问题(2)(教学重点) 如果把方程改成不等式,你会求解吗?试试看 例题 解下列不等式 22123xx 追问不等式解集的形式 学生完成练习,出示解题过程 教师结合以上解题过程,指出:由726x可得到267x,也就是说解不等式和解方程一样,也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向。 学生指出解一元一次方程的依据是等式的性质,一般步骤是:去分母,去括号,移项,合并同类项,系数化为1. 师生合作完成,由学生口答解题的每一步结果,进行的是哪一步步骤,依据又是什么。注意适当表扬。 幻灯片展示解题的每一个步骤和依据以及注意的事项,充分发挥学生的归纳概括能力,教师深入小组参与活动、指导、倾听学生的交流。尤其是最后一步不等号的方向需要改变,这是和方程有所区别的地方,再三强调! 通过解简单的一元一次不等式,让学生回忆利用不等式的性质解不等式的过程。教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以移项,为下面类比解方程形成解不等式的步骤作好准备
引导学生对比一元一次
不等式和一元一次方程
的解法,思考二者的相
同和不同之处,加深对
一元一次不等式解法的
理解,体会化归思想和
类比思想。
问题与情境 师生行为 设计意图
问题(3) 对比解一元一次方程,你觉得在解一元一次不等式的时候需要注意哪些地方? 问题(4) 回顾这两道题,我们发现方程的解只有唯一的一个8x,但不等式的解有无数多个8x,它们共同构成了不等式的解集,怎样把不等式的解集在数轴更直观的表示出来? 师生共同归纳得出: ① 在解方程中易犯的错误,在解不等式时也要注意。 如:去分母时,不能漏乘不含分母的项,分子是多项式的去完分母后要记得加括号 去括号时,利用乘法分配律去乘括号里的每一项,不能漏乘,注意符号 移项时,移项记得要变号 合并同类项时,系数相加减,字母和字母的指数不变 系数化为1时,不要颠倒分子分母的位置。 ② 移项,合并,谁先谁后,要根据具体题目来定,当两边项数较多时应先合并再移项较好。 ③ 在利用不等式的性质3时,不等号的方向一定要改变(强调要检查)。 步骤 :画数轴,定界点,选方向 教师出示幻灯片,指导学生在数轴上画出不等式解集的方法和注意事项。强调一般情况下,求出不等式的解集和利用数轴表示出不等式的解集二者缺一不可!做到数形结合!
通过具体的操作,归纳
出解一元一次不等式的
基本步骤及每一步变形
的依据,提高学生的总
结、归纳能力。
用数轴表示不等式的解
集是数形结合的又一个
重要体现,也是学习不
等式的一种重要工具,
并易于确定不等式组的
解集。操作时,要掌握
好“两定”,一是定界点,
一般在数轴上只标出原
点和界点即可,边界点
不含于解集中用空心圆
圈,包含于解集中用实
心圆点;二是定方向,
小于向左,大于向右。
问题与情境 师生行为 设计意图
【活动4】
巩固提高.
问题(1)火眼金睛.
解不等式 23225xx.
解:去分母,得5(2)22(3)xx
去括号,得105226xx
移项,得522610xx
合并同类项,得314x
系数化为1,得143x
问题(2) 比一比.
课本124页的课后练习
1.解下列不等式,并在数轴上表示解集
(1)51541xx
(2)2(5)3(5)xx
(3)12573xx
(4)125164xx
学生独立找出各个步骤存在的错误,教师给予适当肯定和表扬。 学生独立完成解一元一次不等式的过程,教师巡视、指导。再请学生板书,师生共同归纳讲解。 考查学生是否掌握解一元一次不等式的一般步
骤。
通过练习,巩固所学知
识,用实践来加深解一
元一次不等式的认识
通过竞赛发挥学生的竞
争意识,增加课堂的生
动性和趣味性。
【活动5】
小结、布置作业.
教师指导学生共同归纳本节的知识。本次活动中教师应重点关注: (1)学生能否总结本节课所学的知识,是否掌握了一元一次不等式的解法。 (2)学生是否能准确表达自己的观点。 通过问题引导学生再次
回顾本节课,从数学知
识、数学思想方法等层
面,提升对本节课所研
究内容的认识。