线性代数自考知识点汇总
- 格式:doc
- 大小:498.00 KB
- 文档页数:12
自考本线性代数知识点总结一、向量和矩阵1. 向量的定义向量是有向线段的数学表示,通常用加粗的小写字母来表示,如a、b等。
向量有大小和方向,可以表示为一组有序的数值,例如a=(a1, a2, ..., an)。
2. 向量的运算向量可以进行加法、数乘和内积运算。
加法是指对应位置上的数值相加,数乘是指一个标量与向量的每个分量相乘,内积是指两个向量对应位置上的数值相乘后再相加得到一个标量。
3. 矩阵的定义矩阵是一个按照长方阵列排列的复数或实数集合。
矩阵通常用大写字母来表示,如A、B 等,可以表示为一个矩形数表格。
4. 矩阵的运算矩阵可以进行加法、数乘和乘法等运算。
矩阵的加法是指对应位置上的元素相加,数乘是指一个标量与矩阵的每个元素相乘,矩阵的乘法则是一种复杂的运算,需要满足一定的规则。
5. 矩阵的转置和逆矩阵的转置是指将矩阵的行和列互换得到的新矩阵,用A^T表示。
矩阵的逆是指对于一个n阶方阵A,存在一个n阶方阵B,使得A与B的乘积为单位矩阵。
二、行列式和特征值1. 行列式行列式是矩阵的一个重要性质,它可以用来描述矩阵线性变换前后的面积或体积的缩放比例。
行列式的计算是一个重要的线性代数知识点,非常重要。
2. 特征值和特征向量特征值是矩阵的一个重要性质,它是矩阵A的一个标量λ,使得矩阵A减去λ乘以单位矩阵的行列式为0。
特征向量是对应于特征值的非零向量,它可以用来描述矩阵线性变换的方向。
三、线性方程组和矩阵的应用1. 线性方程组线性方程组是由线性方程组成的方程组,它可以用矩阵的形式表示为AX=B,其中A为系数矩阵,X为未知数向量,B为常数向量。
2. 矩阵的应用矩阵在各个领域都有着广泛的应用,如在工程学中可以用来描述结构的受力分布,计算机科学中用来表示图像和二维图形的变换,物理学中用来描述物质的状态等。
四、线性变换和空间1. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足两个性质:对于所有的向量u和v以及标量c,有T(u+v) = T(u) + T(v),T(cu) = cT(u)。
线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。
它广泛应用于物理、工程、计算机科学等领域。
下面将对线性代数的主要知识点进行全面归纳。
1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。
常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。
2.向量及其运算:向量是一个有序数组,具有大小和方向。
常见的向量运算有加法、减法、数乘、点乘和叉乘等。
3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。
解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。
4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。
线性变换是一种保持向量空间结构的映射。
5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。
维度是向量空间中基的数量。
6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。
如果向量组中的向量线性无关,则任何线性组合的系数都为零。
7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。
矩阵乘法可以将多个线性变换组合为一个线性变换。
8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。
9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。
正定矩阵是指二次型在所有非零向量上的取值都大于零。
10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。
正交性是指两个向量的内积为零,表示两个向量互相垂直。
11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。
正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。
线性代数第一章行列式(一)行列式的定义行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.1.二阶行列式由4个数得到下列式子:称为一个二阶行列式,其运算规则为2.三阶行列式由9个数得到下列式子:称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.3.余子式及代数余子式设有三阶行列式对任何一个元素,我们划去它所在的第i行及第j列,剩下的元素按原先次序组成一个二阶行列式,称它为元素的余子式,记成例如,,再记,称为元素的代数余子式.例如,那么,三阶行列式定义为我们把它称为按第一列的展开式,经常简写成4.n阶行列式一阶行列式n阶行列式其中为元素的代数余子式.5.特殊行列式上三角行列式下三角行列式对角行列式(二)行列式的性质性质1 行列式和它的转置行列式相等,即性质2 用数k乘行列式D中某一行(列)的所有元素所得到的行列式等于kD,也就是说,行列式可以按行和列提出公因数.性质3 互换行列式的任意两行(列),行列式的值改变符号.推论1 如果行列式中有某两行(列)相同,则此行列式的值等于零.推论2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零.性质4 行列式可以按行(列)拆开.性质5 把行列式D的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.定理1(行列式展开定理)n阶行列式等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即或前一式称为D按第i行的展开式,后一式称为D按第j列的展开式.本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.定理2 n阶行列式的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.即或(三)行列式的计算行列式的计算主要采用以下两种基本方法:(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k时,必须在新的行列式前面乘上k.(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:例1 计算行列式解:观察到第二列第四行的元素为0,而且第二列第一行的元素是,利用这个元素可以把这一列其它两个非零元素化为0,然后按第二列展开.例2 计算行列式解:方法1 这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观察其特点,这个行列式的特点是它的每一行元素之和均为(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子,再将后三行都减去第一行:方法2 观察到这个行列式每一行元素中有多个b,我们采用“加边法”来计算,即是构造一个与有相同值的五阶行列式:这样得到一个“箭形”行列式,如果,则原行列式的值为零,故不妨假设,即,把后四列的倍加到第一列上,可以把第一列的(-1)化为零.例3 三阶范德蒙德行列式(四)克拉默法则定理1(克拉默法则)设含有n个方程的n元线性方程组为如果其系数行列式,则方程组必有唯一解:其中是把D中第j列换成常数项后得到的行列式.把这个法则应用于齐次线性方程组,则有定理2 设有含n个方程的n元齐次线性方程组如果其系数行列式,则该方程组只有零解:换句话说,若齐次线性方程组有非零解,则必有,在教材第二章中,将要证明,n个方程的n元齐次线性方程组有非零解的充分必要条件是系数行列式等于零.第二章矩阵(一)矩阵的定义1.矩阵的概念由个数排成的一个m行n列的数表称为一个m行n列矩阵或矩阵当时,称为n阶矩阵或n阶方阵元素全为零的矩阵称为零矩阵,用或O表示2.3个常用的特殊方阵:①n阶对角矩阵是指形如的矩阵②n阶单位方阵是指形如的矩阵③n阶三角矩阵是指形如的矩阵3.矩阵与行列式的差异矩阵仅是一个数表,而n阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“”与矩阵记号“”也不同,不能用错.(二)矩阵的运算1.矩阵的同型与相等设有矩阵,,若,,则说A与B是同型矩阵.若A与B同型,且对应元素相等,即,则称矩阵A与B相等,记为因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.2.矩阵的加、减法设,是两个同型矩阵则规定注意:只有A与B为同型矩阵,它们才可以相加或相减.由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.3.数乘运算设,k为任一个数,则规定故数k与矩阵A的乘积就是A中所有元素都乘以k,要注意数k与行列式D 的乘积,只是用k乘行列式中某一行或某一列,这两种数乘截然不同.矩阵的数乘运算具有普通数的乘法所具有的运算律.4.乘法运算设,,则规定其中由此定义可知,只有当左矩阵A的列数与右矩阵B的行数相等时,AB才有意义,而且矩阵AB的行数为A的行数,AB的列数为B的列数,而矩阵AB中的元素是由左矩阵A中某一行元素与右矩阵B中某一列元素对应相乘再相加而得到.故矩阵乘法与普通数的乘法有所不同,一般地:①不满足交换律,即②在时,不能推出或,因而也不满足消去律.特别,若矩阵A与B满足,则称A与B可交换,此时A与B必为同阶方阵.矩阵乘法满足结合律,分配律及与数乘的结合律.5.方阵的乘幂与多项式方阵设A为n阶方阵,则规定特别又若,则规定称为A的方阵多项式,它也是一个n阶方阵6.矩阵的转置设A为一个矩阵,把A中行与列互换,得到一个矩阵,称为A的转置矩阵,记为,转置运算满足以下运算律:,,,由转置运算给出对称矩阵,反对称矩阵的定义设A为一个n阶方阵,若A满足,则称A为对称矩阵,若A满足,则称A为反对称矩阵.7.方阵的行列式矩阵与行列式是两个完全不同的概念,但对于n阶方阵,有方阵的行列式的概念.设为一个n阶方阵,则由A中元素构成一个n阶行列式,称为方阵A的行列式,记为方阵的行列式具有下列性质:设A,B为n阶方阵,k为数,则①;②③(三)方阵的逆矩阵1.可逆矩阵的概念与性质设A为一个n阶方阵,若存在另一个n阶方阵B,使满足,则把B称为A的逆矩阵,且说A为一个可逆矩阵,意指A是一个可以存在逆矩阵的矩阵,把A的逆矩阵B记为,从而A与首先必可交换,且乘积为单位方阵E.逆矩阵具有以下性质:设A,B为同阶可逆矩阵,为常数,则①是可逆矩阵,且;②AB是可逆矩阵,且;③kA是可逆矩阵,且④是可逆矩阵,且⑤可逆矩阵可从矩阵等式的同侧消去,即设P为可逆矩阵,则2.伴随矩阵设为一个n阶方阵,为A的行列式中元素的代数余子式,则矩阵称为A的伴随矩阵,记为(务必注意中元素排列的特点)伴随矩阵必满足(n为A的阶数)3.n阶阵可逆的条件与逆矩阵的求法定理:n阶方阵A可逆,且推论:设A,B均为n阶方阵,且满足,则A,B都可逆,且,例1 设(1)求A的伴随矩阵(2)a,b,c,d满足什么条件时,A可逆?此时求解:(1)对二阶方阵A,求的口诀为“主交换,次变号”即(2)由,故当时,即,A为可逆矩阵此时(四)分块矩阵1.分块矩阵的概念与运算对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A的列分块方式与右矩阵B的行分块方式一致,然后把子块当作元素来看待,相乘时A的各子块分别左乘B的对应的子块.2.准对角矩阵的逆矩阵形如的分块矩阵称为准对角矩阵,其中均为方阵空白处都是零块.若都是可逆矩阵,则这个准对角矩阵也可逆,并且(五)矩阵的初等变换与初等方阵1.初等变换对一个矩阵A施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,(1)交换A的某两行(列);(2)用一个非零数k乘A的某一行(列);(3)把A中某一行(列)的k倍加到另一行(列)上.注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“”连接前后矩阵.初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.2.初等方阵由单位方阵E经过一次初等变换得到的矩阵称为初等方阵.由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为,和,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.3.初等变换与初等方阵的关系设A为任一个矩阵,当在A的左边乘一个初等方阵的乘积相当于对A作同类型的初等行变换;在A的右边乘一个初等方阵的乘积相当于对A作同类型的初等列变换.4.矩阵的等价与等价标准形若矩阵A经过若干次初等变换变为B,则称A与B等价,记为对任一个矩阵A,必与分块矩阵等价,称这个分块矩阵为A的等价标准形.即对任一个矩阵A,必存在n阶可逆矩阵P及n阶可逆矩阵Q,使得5.用初等行变换求可逆矩阵的逆矩阵设A为任一个n阶可逆矩阵,构造矩阵(A,E)然后注意:这里的初等变换必须是初等行变换.例2 求的逆矩阵解:则例3 求解矩阵方程解:令,则矩阵方程为,这里A即为例2中矩阵,是可逆的,在矩阵方程两边左乘,得也能用初等行变换法,不用求出,而直接求则(六)矩阵的秩1.秩的定义设A为矩阵,把A中非零子式的最高阶数称为A的秩,记为秩或零矩阵的秩为0,因而,对n阶方阵A,若秩,称A为满秩矩阵,否则称为降秩矩阵.2.秩的求法由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A,只要用初等行变换把A化成阶梯形矩阵T,则秩(A)=秩(T)=T中非零行的行数.3.与满秩矩阵等价的条件n阶方阵A满秩A可逆,即存在B,使A非奇异,即A的等价标准形为EA可以表示为有限个初等方阵的乘积齐次线性方程组只有零解对任意非零列向量b,非齐次线性方程组有唯一解A的行(列)向量组线性无关A的行(列)向量组为的一个基任意n维行(列)向量均可以表示为A的行(列)向量组的线性组合,且表示法唯一.A的特征值均不为零为正定矩阵.(七)线性方程组的消元法.对任一个线性方程组可以表示成矩阵形式,其中为系数矩阵,为常数列矩阵,为未知元列矩阵.从而线性方程组与增广矩阵一一对应.对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求解的同解线性方程组,然后求出方程组的解.第三章向量空间(一)n维向量的定义与向量组的线性组合1. n维向量的定义与向量的线性运算由n个数组成的一个有序数组称为一个n维向量,若用一行表示,称为n维行向量,即矩阵,若用一列表示,称为n维列向量,即矩阵与矩阵线性运算类似,有向量的线性运算及运算律.2.向量的线性组合设是一组n维向量,是一组常数,则称为的一个线性组合,常数称为组合系数.若一个向量可以表示成则称是的线性组合,或称可用线性表出.3.矩阵的行、列向量组设A为一个矩阵,若把A按列分块,可得一个m维列向量组称之为A的列向量组.若把A按行分块,可得一个n维行向量组称之为A的行向量组.4.线性表示的判断及表出系数的求法.向量能用线性表出的充要条件是线性方程组有解,且每一个解就是一个组合系数.例1 问能否表示成,,的线性组合?解:设线性方程组为对方程组的增广矩阵作初等行变换:则方程组有唯一解所以可以唯一地表示成的线性组合,且(二)向量组的线性相关与线性无关1.线性相关性概念设是m个n维向量,如果存在m个不全为零的数,使得,则称向量组线性相关,称为相关系数.否则,称向量线性无关.由定义可知,线性无关就是指向量等式当且仅当时成立.特别单个向量线性相关;单个向量线性无关2.求相关系数的方法设为m个n维列向量,则线性相关m元齐次线性方程组有非零解,且每一个非零解就是一个相关系数矩阵的秩小于m例2 设向量组,试讨论其线性相关性.解:考虑方程组其系数矩阵于是,秩,所以向量组线性相关,与方程组同解的方程组为令,得一个非零解为则3.线性相关性的若干基本定理定理1 n维向量组线性相关至少有一个向量是其余向量的线性组合.即线性无关任一个向量都不能表示为其余向量的线性组合.定理2 如果向量组线性无关,又线性相关,则可以用线性表出,且表示法是唯一的.定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关.定理4 无关组的接长向量组必无关.(三)向量组的极大无关组和向量组的秩1.向量组等价的概念若向量组S可以由向量组R线性表出,向量组R也可以由向量组S线性表出,则称这两个向量组等价.2.向量组的极大无关组设T为一个向量组,若存在T的一个部分组S,它是线性无关的,且T中任一个向量都能由S线性表示,则称部分向量组S为T的一个极大无关组.显然,线性无关向量组的极大无关组就是其本身.对于线性相关的向量组,一般地,它的极大无关组不是唯一的,但有以下性质:定理1 向量组T与它的任一个极大无关组等价,因而T的任意两个极大无关组等价.定理2 向量组T的任意两个极大无关组所含向量的个数相同.3.向量组的秩与矩阵的秩的关系把向量组T的任意一个极大无关组中的所含向量的个数称为向量组T的秩.把矩阵A的行向量组的秩,称为A的行秩,把A的列向量组的秩称为A的列秩.定理:对任一个矩阵A,A的列秩=A的行秩=秩(A)此定理说明,对于给定的向量组,可以按照列构造一个矩阵A,然后用矩阵的初等行变换法来求出向量组的秩和极大无关组.例3 求出下列向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:解:把所有的行向量都转置成列向量,构造一个矩阵,再用初等行变换把它化成简化阶梯形矩阵易见B的秩为4,A的秩为4,从而秩,而且B中主元位于第一、二、三、五列,那么相应地为向量组的一个极大无关组,而且(四)向量空间1.向量空间及其子空间的定义定义1 n维实列向量全体(或实行向量全体)构成的集合称为实n维向量空间,记作定义2 设V是n维向量构成的非空集合,若V对于向量的线性运算封闭,则称集合V是的子空间,也称为向量空间.2.向量空间的基与维数设V为一个向量空间,它首先是一个向量组,把该向量组的任意一个极大无关组称为向量空间V的一个基,把向量组的秩称为向量空间的维数.显然,n维向量空间的维数为n,且中任意n个线性无关的向量都是的一个基.3.向量在某个基下的坐标设是向量空间V的一个基,则V中任一个向量都可以用唯一地线性表出,由r个表出系数组成的r维列向量称为向量在此基下的坐标.第四章线性方程组(一)线性方程组关于解的结论定理1 设为n元非齐次线性方程组,则它有解的充要条件是定理2 当n元非齐次线性方程组有解时,即时,那么(1)有唯一解;(2)有无穷多解.定理3 n元齐次线性方程组有非零解的充要条件是推论1 设A为n阶方阵,则n元齐次线性方程组有非零解推论2 设A为矩阵,且,则n元齐次线性方程组必有非零解(二)齐次线性方程组解的性质与解空间首先对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程组的解.考虑由齐次线性方程组的解的全体所组成的向量集合显然V是非空的,因为V中有零向量,即零解,而且容易证明V对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V成为n维列向量空间的一个子空间,我们称V为方程组的解空间(三)齐次线性方程组的基础解系与通解把n元齐次线性方程组的解空间的任一个基,称为该齐次线性方程组的一个基础解系.当n元齐次线性方程组有非零解时,即时,就一定存在基础解系,且基础解系中所含有线性无关解向量的个数为求基础解系与通解的方法是:对方程组先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能求出一个基础解系.例1 求的通解解:对系数矩阵A,作初等行变换化成简化阶梯形矩阵:,有非零解,取为自由未知量,可得一般解为写成向量形式,令,为任意常数,则通解为可见,为方程组的一个基础解系.(四)非齐次线性方程组1.非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系设为一个n元非齐次线性方程组,为它的导出组,则它们的解之间有以下性质:性质1 如果是的解,则是的解性质2 如果是的解,是的解,则是的解由这两个性质,可以得到的解的结构定理:定理设A是矩阵,且,则方程组的通解为其中为的任一个解(称为特解),为导出组的一个基础解系.2.求非齐次线性方程组的通解的方法对非齐次线性方程组,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.例2 当参数a,b为何值时,线性方程组有唯一解?有无穷多解?无解?在有无穷多解时,求出通解.解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:_当时,,有唯一解;当时,,,无解;当时,,有无穷多解.此时,方程组的一般解为令为任意常数,故一般解为向量形式,得方程组通解为。
完整版线性代数知识点总结线性代数是数学的一个分支,研究向量空间及其上的线性变换。
它在各个领域中都有广泛的应用,包括物理学、计算机科学、工程学等。
以下是线性代数的一些重要知识点总结:1.向量和向量空间:向量是有方向和大小的量,可以用来表示力、速度、位移等。
向量空间是向量的集合,具有加法和标量乘法运算,同时满足一定的性质。
2.线性方程组和矩阵:线性方程组是一组线性方程的集合,研究其解的性质和求解方法。
矩阵是一个由数构成的矩形数组,可以用来表示线性方程组中的系数和常数。
3.矩阵的运算:包括矩阵的加法、减法和乘法运算。
矩阵乘法是一种重要的运算,可以用来表示线性变换和复合变换。
4.行列式和特征值:行列式是一个标量,表示矩阵的一些性质,如可逆性和面积/体积的变换。
特征值是矩阵对应的线性变换中特殊的值,表示该变换在一些方向上的伸缩程度。
5.向量的内积和正交性:向量的内积是一种二元运算,可以用来表示向量之间的夹角和长度。
正交向量是指内积为零的向量,可以用来表示正交补空间等概念。
6.向量的投影和正交分解:向量的投影是一个向量在另一个向量上的投影,可以用来表示向量的分解。
正交分解是将一个向量分解为与另一个向量正交和平行的两个向量之和。
7.线性变换和线性映射:线性变换是指保持向量加法和标量乘法运算的变换。
线性映射是向量空间之间的函数,具有保持线性运算的性质。
8.特征值和特征向量:特征值和特征向量是线性变换或矩阵中一个重要的概念,用于描述变换的性质和方向。
9.正交矩阵和对称矩阵:正交矩阵是一个方阵,其列向量组成的矩阵是正交的。
对称矩阵是一个方阵,其转置等于自身。
10.奇异值分解:奇异值分解(SVD)是一种矩阵的分解方法,用来将一个矩阵分解为三个矩阵的乘积。
SVD在数据压缩、图像处理和机器学习等领域有广泛的应用。
11.最小二乘法:最小二乘法是一种数学优化方法,用来找到一条曲线或超平面,使得这些数据点到该曲线或超平面的距离平方和最小。
线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。
它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。
以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。
- 向量加法:两个向量对应分量相加得到新的向量。
- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。
- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。
- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。
2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。
- 矩阵加法和减法:对应元素相加或相减。
- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。
- 矩阵的转置:将矩阵的行变成列,列变成行。
- 单位矩阵:对角线上全是1,其余位置全是0的方阵。
- 零矩阵:所有元素都是0的矩阵。
3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。
- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。
4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。
- 子空间:向量空间的子集,它自身也是一个向量空间。
- 维数:向量空间的基(一组线性无关向量)的大小。
- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。
5. 线性变换- 定义:保持向量加法和标量乘法的函数。
- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。
6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。
- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。
线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
线性代数知识点1、行列式1.n 行列式共有2n 个元素,展开后有!n 项,可分解为2n 行列式;2.代数余子式的性质:①、ij A 和ij a 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3.代数余子式和余子式的关系:(1)(1)i j i j ij ijij ijM A A M ++=-=-4.设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n D D -=-; 将D 顺时针或逆时针旋转90o,所得行列式为2D ,则(1)22(1)n n D D -=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D =;将D 主副角线翻转后,所得行列式为4D ,则4D D =; 5.行列式的重要公式:①、主对角行列式:主对角元素的乘积;②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( = ◥◣):主对角元素的乘积; ④、 ◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:A O A C AB CB O B==、(1)m n CA OA AB B OB C==-g⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6.对于n 阶行列式A ,恒有:1(1)nnk n k k k E A S λλλ-=-=+-∑,其中k S 为k 阶主子式;7.证明0A =的方法:①、A A =-; ②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A 是n 阶可逆矩阵:⇔0A ≠(是非奇异矩阵);⇔()r A n =(是满秩矩阵) ⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解; ⇔n b R ∀∈,Ax b =总有唯一解; ⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A 的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是n R 的一组基; ⇔A 是n R 中某两组基的过渡矩阵;2.对于n 阶矩阵A :**AA A A A E == 无条件恒成立;3.1**111**()()()()()()T T T T A A A A A A ----===4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均A 、B 可逆:若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭O,则: Ⅰ、12s A A A A =L ;Ⅱ、111121s A A A A ----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭O; ②、111A O A O O B O B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块) ④、11111A C A A CB O B OB -----⎛⎫-⎛⎫=⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O C B B CAB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯) 3、矩阵的初等变换与线性方程组1.一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫= ⎪⎝⎭; 等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵; 对于同型矩阵A 、B ,若()()r A r B A B = ⇔ :; 2.行最简形矩阵:①、只能通过初等行变换获得;②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、若(,)(,)rA E E X :,则A 可逆,且1X A -=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1A B -,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x :,则A 可逆,且1x A b -=; 1. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;②、12n ⎛⎫⎪⎪Λ= ⎪ ⎪⎝⎭Oλλλ,左乘矩阵A ,i λ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k -⎛⎫⎛⎫⎪⎪⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; ⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;2. 矩阵秩的基本性质:①、0()min(,)m n r A m n ⨯≤≤;②、()()T r A r A =;③、若A B :,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩) ⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-;3. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律;②、型如101001a c b ⎛⎫ ⎪⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:01111110()nnnn m n mmn n n nm m n mnnnnnn m a b C a C a b C a b Ca bC b C a b -----=+=++++++=∑L L ;注:Ⅰ、()n a b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====-L L g g g L g m nn n n n n n m n C C C m m n mⅢ、组合的性质:111102---+-===+==∑nm n mm m m rnr r n n n n nnn n r C C C C C CrC nC ;③、利用特征值和相似对角化: 4. 伴随矩阵:①、伴随矩阵的秩:*()()1()10()1nr A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩; ②、伴随矩阵的特征值:*1*(,)AAAX X A A A A X X λλλ- == ⇒ =;③、*1A A A -=、1*n A A-=5. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话)②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;6. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则:①、m 与方程的个数相同,即方程组Ax b =有m 个方程;②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 7. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换);②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;8. 由n 个未知数m 个方程的方程组构成n 元线性方程:①、11112211211222221122n n n n m m nm n na x a x a xb a x a x a x b a x a x a x b +++= ⎧⎪+++= ⎪⎨⎪⎪+++=⎩L L L L L L L L L L L L L L ; ②、1112111212222212n n m m mn m m a a a x b a a a x b Ax b a a a x b ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪=⇔= ⎪⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭L L M M O M M M L(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数)③、()1212n n x x aa a x β⎛⎫⎪ ⎪= ⎪⎪⎝⎭LM (全部按列分块,其中12n b b b β⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭M ); ④、1122n n a x a x a x β+++=L (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性1.m 个n 维列向量所组成的向量组A :12,,,m αααL 构成n m ⨯矩阵12(,,,)m A =L ααα;m 个n 维行向量所组成的向量组B :12,,,T T Tm βββL 构成m n ⨯矩阵12T T T m B βββ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭M ;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出 Ax b ⇔=是否有解;(线性方程组) ③、向量组的相互线性表示 AX B ⇔=是否有解;(矩阵方程) 3. 矩阵m n A ⨯与l n B ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14) 4. ()()T r A A r A =;(101P 例15) 5.n 维向量线性相关的几何意义:①、α线性相关 ⇔0α=;②、,αβ线性相关⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关 ⇔,,αβγ共面;6. 线性相关与无关的两套定理:若12,,,s αααL 线性相关,则121,,,,s s αααα+L 必线性相关;若12,,,s αααL 线性无关,则121,,,s ααα-L 必线性无关;(向量的个数加加减减,二者为对偶) 若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B :若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减) 简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤; 向量组A 能由向量组B 线性表示,则()()r A r B ≤; 向量组A 能由向量组B 线性表示AX B ⇔=有解; ()(,)r A r A B ⇔=向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==8. 方阵A 可逆⇔存在有限个初等矩阵12,,,l P P P L ,使12l A P P P =L ;①、矩阵行等价:~rA B PA B ⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~c A B AQ B ⇔=(右乘,Q 可逆); ③、矩阵等价:~A B PAQ B ⇔=(P 、Q 可逆); 9. 对于矩阵m n A ⨯与l n B ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,A 与B 的任何对应的列向量组有相同的线性相关性; ③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m s s n m n A B C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵;②、C 的行向量组能由B 的行向量组线性表示,T A 为系数矩阵;(转置) 11. 齐次方程组0Bx =的解一定是0ABx =的解,【考试中可以直接作为定理使用,而无需证明】①、0ABx = 只有零解0Bx ⇒ =只有零解;②、0Bx = 有非零解0ABx ⇒ =一定存在非零解;12. 设向量组12:,,,n r r B b b b ⨯L 可由向量组12:,,,n s s A a a a ⨯L 线性表示为:1212(,,,)(,,,)r s b b b a a a K =L L (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴=Q ;充分性:反证法) 注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m n A ⨯,存在n m Q ⨯,m AQ E = ()r A m ⇔=、Q 的列向量线性无关;②、对矩阵m n A ⨯,存在n m P ⨯,n PA E = ()r A n ⇔=、P 的行向量线性无关; 14. 12,,,s αααL 线性相关⇔存在一组不全为0的数12,,,s k k k L ,使得11220s s k k k ααα+++=L 成立;(定义)⇔1212(,,,)0ss x x x ααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭L M 有非零解,即0Ax =有非零解;⇔12(,,,)s r s ααα<L ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-; 16. 若*η为Ax b =的一个解,12,,,n r ξξξ-L 为0Ax =的一个基础解系,则*12,,,,n r ηξξξ-L 线性无关;5、相似矩阵和二次型1. 正交矩阵T A A E ⇔=或1T A A -=(定义),性质:①、A 的列向量都是单位向量,且两两正交,即1(,1,2,)0T i j i j a a i j n i j=⎧==⎨≠⎩L ;②、若A 为正交矩阵,则1T A A -=也为正交阵,且1A =±; ③、若A 、B 正交阵,则AB 也是正交阵; 注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)r a a a L11b a =;1222111[,][,]b a b a b b b =-g L L L 121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----g g L g ; 3. 对于普通方阵,不同特征值对应的特征向量线性无关;对于实对称阵,不同特征值对应的特征向量正交; 4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=PAQ B ,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型;②、A 与B 合同 ⇔=T C AC B ,其中可逆; ⇔T x Ax 与T x Bx 有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P AP B ; 5. 相似一定合同、合同未必相似;若C 为正交矩阵,则T C AC B =⇒A B :,(合同、相似的约束条件不同,相似的更严格); 6. A 为对称阵,则A 为二次型矩阵; 7. n 元二次型T x Ax 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C AC E =; A ⇔的所有特征值均为正数; A ⇔的各阶顺序主子式均大于0;0,0ii a A ⇒>>;(必要条件)第一章 随机事件互斥对立加减功,条件独立乘除清; 全概逆概百分比,二项分布是核心;必然事件随便用,选择先试不可能。
线性代数知识点简单总结线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。
以下是线性代数的一些核心知识点的简单总结:1. 向量与空间- 向量:可以视为空间中的点或箭头,具有大小和方向,可以进行加法和数乘运算。
- 零向量:所有向量加法的单位元,加任何向量结果不变。
- 单位向量:长度为1的向量。
- 向量空间:一组向量的集合,其中任意向量的线性组合仍然在这个集合中。
- 子空间:向量空间的子集,自身也是一个向量空间。
- 维数:向量空间的基的大小,表示为n维空间。
2. 矩阵与线性变换- 矩阵:一个由数字排列成的矩形阵列,可以表示线性变换。
- 行向量与列向量:矩阵中的行和列可以被视为行向量或列向量。
- 线性变换:保持向量加法和数乘的函数,可以用矩阵来表示。
- 单位矩阵:对角线为1,其他为0的方阵,与任何矩阵相乘结果不变。
- 转置:将矩阵的行变成列,列变成行的操作。
3. 线性方程组- 齐次线性方程组:形如Ax=0的方程组,其中A是矩阵,x是未知向量。
- 非齐次线性方程组:形如Ax=b的方程组,b不是零向量。
- 行列式:方阵的一个标量值,可以表示矩阵表示的线性变换对空间体积的缩放因子。
- 克拉默法则:使用行列式解线性方程组的方法,适用于小规模且系数矩阵行列式非零的情况。
4. 特征值与特征向量- 特征值:一个标量λ,使得存在非零向量x满足Ax=λx。
- 特征向量:与特征值对应的非零向量x。
- 特征多项式:用于求解特征值的多项式,定义为det(A-λI)=0。
- 对角化:将矩阵表示为特征向量和特征值的组合。
5. 内积与正交性- 内积(点积):两个向量的函数,满足Schwarz不等式。
- 正交:两个向量的内积为零,表示它们在空间中垂直。
- 正交基:一组向量,任意两个向量都正交。
- 正交补:对于一个向量空间的子集,所有与该子集中所有向量正交的向量组成的集合。
6. 奇异值分解- 奇异值分解(SVD):将任意矩阵分解为三个特殊矩阵的乘积,即A=UΣV*。
线代自考知识点总结一、向量的基本概念1. 向量的定义与性质2. 向量的线性运算3. 向量的数量积与向量积4. 线性相关与线性无关5. 向量组的基和维数向量是线性代数中的基本概念,它是有大小和方向的量。
向量的定义可以通过其几何意义和代数表示两种方式来理解。
在几何意义上,向量可以表示为有向线段,具有模长和方向两个属性。
在代数表示上,向量可以表示为一组有序的实数或复数。
向量的线性运算包括向量的加法和数乘,满足交换律和结合律等性质。
向量的数量积是向量的点乘,其结果是一个实数,表示两个向量的夹角关系。
向量积是向量的叉乘,其结果是一个新的向量,表示两个向量的垂直关系。
线性相关与线性无关是向量组的重要概念,用于刻画向量组之间的线性关系。
向量组的基和维数是向量空间的重要性质,在一定条件下可以用来刻画向量空间的结构。
二、矩阵与行列式1. 矩阵的定义和性质2. 矩阵的运算3. 行列式的定义和性质4. 行列式的性质和应用矩阵是一种重要的数学工具,它可以用来表示线性变换和线性方程组。
矩阵的定义是一个由数构成的矩形阵列,具有行数和列数两个维度。
矩阵的运算包括矩阵的加法、标量乘法和矩阵乘法等。
矩阵乘法是矩阵运算中的基本运算,具有结合律和分配律等性质。
行列式是一个重要的数学概念,它可以用来刻画矩阵的性质和求解线性方程组。
行列式的定义是一个递归定义,它包含二阶和高阶行列式两种情况。
行列式的性质包括对换行列式、倍加行列式和倍减行列式等,这些性质在计算行列式时非常有用。
三、线性方程组1. 线性方程组的概念与解的存在唯一性2. 线性方程组的解的性质3. 线性方程组的解的结构线性方程组是线性代数中的一个重要内容,它可以用来描述多个未知数的线性关系。
线性方程组的解的存在唯一性是一个重要的判别条件,用来判断线性方程组是否有解以及解的唯一性。
线性方程组的解的性质包括解空间的性质、基础解系和特解等,这些性质在求解线性方程组时非常有用。
线性方程组的解的结构是一个重要的理论问题,它可以用来描述线性方程组解的多样性和规律性。
壱第一章 行列式一.行列式的定义和性质1. 余子式ij M 和代数余子式ij A 的定义例1行列式11110111101111------第二行第一列元素的代数余子式21A =( )A .2-B .1-C .1D .2测试点 余子式和代数余子式的概念解析11110111101111------,212121111111(1)10101211101A M +--=-=--=--=--- 答案 B2.行列式按一行或一列展开的公式 1)11,1,2,;(,1,2,)nnijij ij ijij ij nni j A a a A j n A a a A i n ========∑∑2)11 ; 00nn ij ik ij kj i j k j k i A Aa A a A k j k i ====⎧⎧==⎨⎨≠≠⎩⎩∑∑ 例2 设某3阶行列式的第二行元素分别为1,2,3,-对应的余子式分别为3,2,1--则此行列式的值为 .测试点 行列式按行(列)展开的定理解 212223212223212223(1)23(1)(1)2(1)3(1)D A A A M M M +++=-⋅++=--+-+-34310=---=-例3 已知行列式的第一列的元素为1,4,3,2-,第二列元素的代数余子式为2,3,4,x 问x = . 测试点 行列式的任意一行(列)与另一行(列)元素的代数余子式的乘积之和为零.解 因第一列的元素为1,4,3,2-,第二列元素的代数余子式为2,3,4,x ,故1243(3)420x ⨯+⨯+-⨯+= 所以1x =-3.行列式的性质弐1).TA A =2)用数k 乘行列式的某一行(列)所得新行列式=原行列式的k 倍.推论 3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论 4)如果行列式中两行(列)对应元素成比例,则行列式值为0. 5)行列式可以按任一行(列)拆开.6)行列式的某一行(列)的k 倍加到另一行(列)上,所得新行列式与原行列式的值相等.例4 已知1112132122233132333a a a a a a a a a =,那么111213212223313233222222a a a a a a a a a =---( ) A.24- B.12- C.6-D. 12测试点 行列式的性质解析 1112131112132122232122233132333132332222(2)12.222a a a a a a a a a a a a a a a a a a =⨯-=---- 答案 B 例5设行列式2211b a b a =1,2211c a c a =2,则222111c b a c b a++=( )A .3-B .1-C .1D .3测试点 行列式的性质 解111111122222223a b c ab ac a b c a b a c +=+=+ 故应选 D 答案 D二.行列式的计算1.二阶行列式和三角形行列式的计算.2.对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形行列式的计算. 3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开. 4.行列式中各行元素之和为一个常数的类型. 5.范德蒙行列式的计算公式参测试点 行列式的计算解111411140231131002302103(3)6121101031000311110003--==-=-=---例7计算3阶行列式 .767367949249323123解 (1)(1)(2)(2)(1)(3)1232331002331002032494992004992004090.367677300677300607+-+-=== 例8 计算行列式:x a a aa x a a a ax a a a ax测试点 各行元素之和为常数的行列式的计算技巧.解 333000300030x a a ax a a a a x a a a a a x a a x ax a a x a D a ax a x a ax a x a a a a xx a a axx a+++-====+-+-3(3)().x a x a =+-例9计算行列式00000000 000000n a b a ba D ab b a=测试点 行列式中有一行只有两个元素不为零的行列式的计算和三角形行列式的计算四1100000000 =00000aaA a b b a+例10计算行列式60001002005006000D =解 36(1)(6)(2)(5)(3)(4)0001100000200200(1)6!0500005060000006D ↔↔↔==-=- 例11设2311248()139********x x x D x =问(1)()D x 中,3x 项的系数=?(2)方程()0D x =有几个根?试写出所有的根。
行列式1. 行列式的性质性质1 行列式与它的转置行列式相等T D D =.性质2 互换行列式的两行(列),行列式变号.推论1 如果行列式有两行(列)的对应元素完全相同,则此行列式的值为零.如a b ca b c 0a b c'''= 性质3 行列式的某一行(列)中所有的元素都乘以同一数k ,等于用数k 乘此行列式.如111213111213212223212223313233313233a a a a a a ka ka ka k a a a a a a a a a = 推论2 如果行列式中有两行(列)元素成比例,则此行列式的值为零.如a b ca b c 0ka kb kc'''= 性质4 若行列式的某一行(列)的元素都是两数之和,则这个行列式等于两个行列式之和.如111213111213111213212122222323212223212223313233313233313233a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a ''''''+++=+ 性质5 把行列式的某一行(列)的各元素乘以同一数然后加到另一行(列)对应的元素上去,行列式的值不变.如111213111213212223212223313233311132123313a a a a a a a a a a a a a a a a ka a ka a ka =+++2. 余子式与代数余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的n-1阶行列式叫做元素ij a 的余子式,记作ij M ,i jij ij A (1)M +=-叫做元素ij a 的代数余子式.如111213212223313233a a a a a a a a a ,元素23a 的余子式为1112233132a a M a a =,元素23a 的代数余子式为11122323233132a a A (1)M a a +=-=-.3. 行列式按行(列)展开法则定理1 行列式的值等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,即1122i i i i in in D a A a A a A =+++或 1122j j j j nj nj D a A a A a A =+++()1,2,,;1,2i n j n ==如111213212223313233a a a a a a a a a 111112121313a A a A a A =++ 定理2 行列式任一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,即12120,j j i i jn i n a A a A a A +++=或,11220.j j j j nj nj a A a A a A i j +++=≠()1,2,,;1,2i n j n ==4. 行列式的计算 (1)二阶行列式1112112212212122a a a a a a a a =- (2)三阶行列式111213212223313233a a a a a a a a a 112233122331132132132231122133112332a a a a a a a a a a a a a a a a a a =++--- (3)对角行列式1212n nλλλλλλ=,n(m 1)21212n n(1)λλλλλλ-=-(4)三角行列式1111121n 2122222n 1122nn n1n2nnnna a a a a a a a a a a a a a a ==111,n 11n1n n(n 1)212,n 12,n 12n 21n 2,n 1n1n1n1n2nna a a a a a a a (1)a a a a a a a -----==-(5)消元法:利用行列式的性质,将行列式化成三角行列式,从而求出行列式的值.(6)降阶法:利用行列式的性质,化某行(列)只有一个非零元素,再按该行(列)展开,通过降低行列式的阶数求出行列式的值.(7)加边法:行列式每行(列)所有元素的和相等,将各行(列)元素加到第一列(行),再提出公因式,进而求出行列式的值.矩阵1. 常见矩阵1)对角矩阵:主对角线以外的元素全为0的方阵,称为对角矩阵.记作Λ. 2)单位矩阵:主对角线上的元素全为1的对角矩阵,称为单位矩阵.记作E.3)上三角矩阵:对角线以下的元素全为0的方阵.如11121n 222n nn a a a a a a ⎛⎫⎪⎪⎪ ⎪⎝⎭ 4)下三角矩阵:对角线以上的元素全为0的方阵.如112122n1n2nn a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭5)对称矩阵:设A 为n阶方阵,若T A A =,即ij ji a a =,则称A 为对称矩阵. 6)反对称矩阵:设A 为n阶方阵,若T A A =-,即ij ji a a =-,则称A 为反对称矩阵. 7)正交矩阵:设A 为n阶方阵,如果TAA E =或TA A E =,则称A 为正交矩阵. 2. 矩阵的加法、数乘、乘法运算 (1)矩阵的加法如a b c a b c a a b b c c d e f d e f d d e e f f ''''''+++⎛⎫⎛⎫⎛⎫+=⎪ ⎪ ⎪''''''+++⎝⎭⎝⎭⎝⎭注:① 只有同型矩阵才能进行加减运算;② 矩阵相加减就是对应元素相加减. (2)数乘矩阵 如a b c ka kb kc k d e f kd ke kf ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭注:数乘矩阵就是数乘矩阵中的每个元素.(3)矩阵的乘法:设ij m ij n s s A (a ),B (b )⨯⨯==,规定ij m n AB C (c ),⨯== 其中sij i11j i22j is sj ik kj k 1c a b a b a b a b ==+++=∑(i 1,2,,m,j 1,2,,n.)==注:①左矩阵A 的列数等于右矩阵B 的行数;②左矩阵A 的第i 行与右矩阵B 的第j 列对应元素乘积的和是矩阵乘积C 的元素ij c . ③左矩阵A 的行数为乘积C 的行数,右矩阵B 的列数为乘积C 的列数. 如行矩阵乘列矩阵是一阶方阵(即一个数),即()112111121s 111112211s s1s1b ba a a ab a b a b b ⎛⎫ ⎪ ⎪=++⎪ ⎪⎝⎭列矩阵乘行矩阵是s 阶方阵,即()1111111112111s 2121112112211s 11121s s1s111s112s11s a a b a b a b a a b a b a b b b b a a b a b a b ⎛⎫⎛⎫⎪⎪ ⎪ ⎪= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭3. 逆矩阵设n 阶方阵A 、B ,若AB=E 或BA=E ,则A ,B 都可逆,且11A B,B A --==.(1)二阶方阵求逆,设a b A c d ⎛⎫=⎪⎝⎭,则1*d b 11A A c a A ad bc --⎛⎫== ⎪--⎝⎭(两调一除法). (2)对角矩阵的逆11111221n n a a a a a a ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭, 111n 2121n1a a a a a a ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. (3)分块对角阵的逆11111221s s A A A A ;A A ----⎛⎫⎛⎫⎪⎪⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭111s 2121s1A A A A A A ----⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭. (4)一般矩阵求逆,初等行变换的方法:()()ERT1A E EA -−−−→.4. 方阵的行列式由n阶方阵A 的元素所构成的行列式(各元素的位置不变)叫做方阵A 的行列式.记作A 或det (A ). 5. 矩阵的初等变换下面三种变换称为矩阵的初等行(列)变换:(1)互换两行(列);(2)数乘某行(列);(3)某行(列)的倍数加到另一行(列). 6. 初等矩阵单位矩阵经过一次初等变换得到的矩阵,称为初等矩阵.如001100100010,0k 0,010100001k 01⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭都是初等矩阵. 7. 矩阵的秩矩阵A 的非零子式的最高阶数,称为矩阵A 的秩.记作R (A )或r (A ). 求矩阵的秩的方法:(1)定义法:找出A 中最高阶的非零子式, 它的阶数即为A 的秩.(2)初等行变换法:ERTA −−−→行阶梯形矩阵,R (A )=R (行阶梯形矩阵)=非零行的行数. 8. 重要公式及结论(1)矩阵运算的公式及结论()()12121212k k k k k k k k k k k k kk 10A B B A,(A B )C A (B C ),(A B )A B (AB )C A(BC ),(A B )C AC BC ,(AB )(A )B A(B )A A A ,(A )A ,(A )A ,E EAB A BA B ,EA AE A,A Eλλλλλλλλ+-+=+++=+++=+=+=+==⋅========()()()()()()T TTT T T T T T TTT nT n n A A,(A B )A B ,A A ,AB B A A A ,AB B A ,AA A A A EA A ,A A ,AB A B BA ,A A ,A B A Bλλλλ*******=+=+===========+≠+矩阵乘法不满足交换律,即一般地AB ≠AB;矩阵乘法不满足消去律,即一般地若AB=AC ,无B=C ;只有当A 可逆时,有B=C.一般地若AB=O ,则无A=O 或B=O.()222A B ?A 2AB B +++.(2)逆矩阵的公式及定理()()()()()()()()11111111n 11111k1k1T11T 1A A ,A A ,,A A 1A A,A A,A A ,A A AB B A1A A A AAA A ,Aλλ----------*-**--**-----===========A 可逆⇔|A |≠0⇔A ~E (即A 与单位矩阵E 等价) (3)矩阵秩的公式及结论()()()T m n R(O )0,R(A )min{m,n },R(A )R(A ),R(kA )R(A ),k 0A 0R(A )n ,R A B R A R B ⨯=≤==≠≠⇔=+≤+R ( AB ) ≤R ( A ), R ( AB ) ≤R ( B ).特别地,当A 可逆时,R(AB)=R(B);当B 可逆时,R(AB)=R(A).()()ET A B A ~B R A R B −−→⇔⇒= 即等价矩阵的秩相等或初等变换不改变矩阵的秩.9. 矩阵方程(1)设 A 为n 阶可逆矩阵,B 为n ×m 矩阵,则矩阵方程AX=B 的解为1X A B -=;解法:①求出1A -,再计算1A B -; ②()()ERTAB E X −−−→.(2)设 A 为n 阶可逆矩阵,B 为m ×n 矩阵,则矩阵方程XA=B 的解为1X BA -=;解法:①求出1A -,再计算1BA -; ②ECT A E B X ⎛⎫⎛⎫−−−→⎪ ⎪⎝⎭⎝⎭. 10. 矩阵间的关系(1)等价矩阵:如果矩阵A 经过有限次初等变换变成矩阵B ,那么称矩阵A 与B 等价.即存在可逆矩阵P ,Q ,使得PAQ=B.性质:等价矩阵的秩相等.(2)相似矩阵:如果存在可逆矩阵P ,使得1P AP B -=,那么称A 与B 相似. 性质:相似矩阵有相同的特征多项式,相同的特征值,相同的行列式,相同的迹. (3)合同矩阵:如果存在可逆矩阵P ,使得T P AP B =,那么称A 与B 合同. 性质:合同矩阵的秩相等.向量空间1. 线性组合(1)若α=k β,则称向量α与β成比例. (2)零向量O是任一向量组的线性组合.(3)向量组中每一向量都可由该向量组线性表示. 2. 线性相关与线性无关(1) 单独一个向量线性相关当且仅当它是零向量. (2) 单独一个向量线性无关当且仅当它是非零向量. (3) 两向量线性相关当且仅当两向量对应成比例. (4) 两向量线性无关当且仅当两向量不对应成比例. (5) 含有O向量的向量组一定线性相关. (6) 向量组12m ,,,ααα线性相关的充分必要条件是① 齐次线性方程组22m m 11k k 0k ααα+++=有非零解.② 以向量组为列作的矩阵()12m ,,,ααα的秩<向量的个数m.(7)n 个n 维向量12n ,,,ααα线性相关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα=0.(8) 向量组12m ,,,ααα线性无关的充分必要条件是①齐次线性方程组22m m 11k k 0k ααα+++=只有零解.②以向量组为列作的矩阵()12m ,,,ααα的秩=向量的个数m.(9) n 个n 维向量12n ,,,ααα线性无关的充分必要条件是以向量组为列作的行列式的值()12n ,,,ααα≠0.(10)当m>n 时,m 个n 维向量一定线性相关.定理1:向量组a 1 ,a 2 ,……, a m (m ≥2)线性相关的充分必要条件是向量组中至少有一个向量可由其余m-1个向量线性表示.向量组线性无关的充分必要条件是向量组中任何一个向量都不能由其余向量线性表示. 定理2:如果向量组A :a 1 ,a 2 ,……, a r 线性无关,而向量组a 1 ,a 2 ,……, a r ,α线性相关,则α可由A线性表示,且表示式唯一.定理3:设向量组2r 1A :,,,ααα,12r r 1m B :,,,,,,ααααα+若A 线性相关,则向量组B 也线性相关;反之,若向量组B 线性无关,则向量组A 也线性无关.(即部分相关,则整体相关;整体无关,则部分无关). 定理4:无关组的截短组无关,相关组的接长组相关. 3. 极大无关组与向量组的秩定义1如果在向量组T 中有 r 个向量a 1 ,a 2 ,……, a r ,满足条件: ⑴向量组a 1 ,a 2 ,……, a r 线性无关, ⑵T α∀∈,2r 1,,,,αααα线性相关.那么称向量a 1 ,a 2 ,……, a r 是向量组T 的一个极大无关组.定义2向量组的极大无关组中所含向量的个数,称为向量组的秩.定义3 矩阵的行向量组的秩称为矩阵的行秩;矩阵的列向量组的秩称为矩阵的列秩。