工程光学(理想光学系统)
- 格式:ppt
- 大小:930.50 KB
- 文档页数:61
第二章 理想光学系统1.针对位于空气中的正透镜组()0'>f 及负透镜组()0'<f ,试用作图法分别对以下物距 ∞---∞-,,2/,0,2/,,2,f f f f f ,求像平面的位置。
解:1.0'>f ()-∞=l a()'2f l b -=()f f l c =-=()/f l d -=()0=l e()/f l f =')(f f l g -=='22)(f f l h -==+∞=l i )(2.0'<f -∞=l a )(l b )(=l c =)(/)(f l d -=0 el(=)f=l2/ (f)()fg=l(=h)ll i)(+∞=2. 已知照相物镜的焦距f’=75mm,被摄景物位于(以F 点为坐标原点)=x ,2,4,6,8,10,m m m m m -----∝-处,试求照相底片应分别放在离物镜的像方焦面多远的地方。
解: (1)x= -∝ ,xx ′=ff ′ 得到:x ′=0 (2)x ′= (3)x ′= (4)x ′= (5)x ′=(6)x ′=3.设一系统位于空气中,垂轴放大率*-=10β,由物面到像面的距离(共轭距离)为7200mm , 物镜两焦点间距离为1140mm 。
求该物镜焦距,并绘出基点位置图。
解:∵ 系统位于空气中,f f -='10''-===ll y y β 由已知条件:1140)('=+-+x f f7200)('=+-+x l l解得:mm f 600'= mm x 60-=4.已知一个透镜把物体放大*-3投影到屏幕上,当透镜向物体移近18mm 时,物体将被放大*-4,试求透镜的焦距,并用图解法校核之。
解:方法一:31'11-==l l β ⇒ ()183321'1--=-=l l l ①42'22-==l l β ⇒ 2'24l l -= ② 1821+-=-l l ⇒ 1821-=l l ③ '/1/1/11'1f l l =-'/1/1/12'2f l l =-将①②③代入④中得 mm l 2702-= mm l 1080'2-= ∴ mm f 216'=方法二: 311-=-=x fβ 422-=-=x fβ ⇒ mm f 216-= 1812=-x x方法三: 12)4)(3(21''=--==∆∆=ββαnn x x2161812'-=⨯=∆x''fx -=β143''''2'121=+-=∆=+-=-∴fx fx x ββ mm x f 216''=∆=∴5.一个薄透镜对某一物体成实像,放大率为⨯-1,今以另一个薄透镜紧贴在第一个透镜上,则见像向透镜方向移动,放大率为原先的3/4倍,求两块透镜的焦距为多少 解:⇒ 2'21'1/1/1/1/1l l l l -=- ④6.有一正薄透镜对某一物成倒立的实像,像高为物高的一半,今将物面向物体移近100mm , 则所得像与物同大小,求该正透镜组的焦距。
工程光学课件总结班级:姓名:学号:目录第一章几何光学基本原理 (1)第一节光学发展历史 (1)第二节光线和光波 (1)第三节几何光学基本定律 (3)第四节光学系统的物象概念 (6)第二章共轴球面光学系统 (7)第一节符号规则 (7)第二节物体经过单个折射球面的成像 (8)第三节近轴区域的物像放大率 (10)第四节共轴球面系统成像 (12)第二章理想光学系统 (14)第一节理想光学系统的共线理论 (14)第二节无限远轴上物点与其对应像点F’---像方焦点 (14)第三节理想光学系统的物像关系 1, 作图法求像 (17)第四节理想光学系统的多光组成像 (22)第五节实际光学系统的基点和基面 (25)第六节习题 (27)第四章平面系统 (27)第一节平面镜 (27)第二节反射棱镜 (28)第三节平行平面板 (29)第四节习题 (30)第五章光学系统的光束限制 (31)第一节概述 (31)第二节孔径光栅 (33)第三节视场光栅 (34)第四节景深 (35)第五节习题 (35)第八章典型光学系统 (36)第一节眼睛的光学成像特性 (36)第二节放大镜 (39)第三节显微镜系统 (41)第四节望远镜系统 (45)第五节目镜 (46)第六节摄影系统 (48)第七节投影系统 (49)第八节光学系统外形尺寸计算 (50)第九节光学测微原理 (53)第一章几何光学基本原理光和人类的生产活动和生活有着十分密切的关系, 光学是人类最古老的科学之一。
对光的每一种描述都只是光的真实情况的一种近似。
研究光的科学被称为“光学”(optics), 可以分为三个分支:几何光学物理光学量子光学第一节光学发展历史1,公元前300年, 欧几里得论述了光的直线传播和反射定律。
2,公元前130年, 托勒密列出了几种介质的入射角和反射角。
3,1100年, 阿拉伯人发明了玻璃透镜。
4,13世纪, 眼镜开始流行。
5,1595年, 荷兰著名磨镜师姜森发明了第一个简陋的显微镜。
理想光学系统第三章 理想光学系统第一节 理想光学系统的共线理论● 理想光学系统:在任意大的空间内、以任意宽的光束都能成完善像的光学系统 ● 理想光学系统理论又称“高斯光学”,理想光学系统所成的完善像又称“高斯像” ●描述理想光学系统必须满足的物像关系的理论称为“共线理论”共线理论(1)物空间的每一点对应像空间的相应一点,且只对应一点(点对应点)(2)物空间的每一条直线对应像空间的相应直线,且只对应一条直线(直线对应直线) (3)物空间的每一平面对应像空间的相应平面,且只对应一个平面(平面对应平面)● 这种对应关系称为“共轭”,相应的点构成一对共轭点,直线构成一对共轭直线,平面构成一对共轭平面● 推论:物空间某点位于一条直线上,则像空间中该点的共轭点必定也位于这条直线的共轭直线上(点在线上对应点在线上)● 共轴球面系统用结构参数(r 、d 、n )描述系统 ● 理想光学系统用“基点”和“基面”来描述系统 ● 基点基面就是理想光学系统的特征参数第二节 无限远轴上物点与其对应像点F ’---像方焦点● 设有一理想光学系统● 有一条平行于光轴的光线A1E1入射到这个系统● 在像空间必有一条直线与之共轭,即PkF’,交光轴于F’点●在物空间中平行于光轴入射的光线都将汇聚在F’点上,F’点称为“像方焦点”共轴球面系统焦点、焦平面、主平面示意图焦点、焦平面、主平面示意图● 过F’点作垂直于光轴的平面,称为“像方焦平面” ● 像方焦平面与物方无限远处垂直于光轴的物平面共轭● 物方的任何平行光线若不与光轴平行,表示无限远处的轴外点,将汇聚在像方焦平面上的一点2,无限远的轴上像点和它所对应的物方共轭点F ——物方焦点● 像方平行于光轴的光线,表示像方光轴上的无限远点● 在物方光轴上必定有一点F 与之共轭,F 点称为物方焦点,过F 点的垂轴平面称为物方焦平面 ● 物方焦点F 与像方焦点F’不是一对共轭点3,垂轴放大率β=+1的一对共轭面——主平面● 在光学系统中存在着垂轴放大率β=+1的一对共轭平面,这一对共轭面称为“主平面”即物方主平面和像方主平面● 共轭垂轴平面QH 和Q’H’满足β=+1(因为高度h 相等) ● QH 为物方主平面,Q’ H’为像方主平面 ● H 为物方主点,H’为像方主点 ● 物方主平面QH 与像方主平面Q’H’共轭 ● 物方主点H 与像方主点H’共轭● 对于理想光学系统,不论其实际结构如何,只要知道了主点和焦点的位置,其特性就完全被决定了 4,光学系统焦距● 像方焦距:像方主点H ’到像方焦点F ’的距离f ’ ● 物方焦距:物方主点H 到物方焦点F 的距离f●焦距均以各自的主点为原点,与光线传播方向一致为正,相反为负 光学系统的焦距计算式tan tan h f U h f U '='=焦距包含了光学系统主点和焦点的相对位置,是描述光学系统性质的重要参数 像方焦距f ’>0的光组称为正光组,f ’<0的光组称为负光组无限远轴外物点的共轭像点焦点、焦平面、主平面示意图当光学系统的物方与像方处于同一介质中时,物方焦距与像方焦距数值相等,符号相反f = -f ’单折射球面的主平面和焦点共轴球面系统的成像性质可以用一对主平面和两焦点表示,为此目的,先研究单个折射球面的主平面和焦点位置。
工程光学名词解释一、几何光学(1)理想光学系统具有下述性质:①光学系统物方一个点(物点)对应像方一个点(像点)。
即从物点发出的所有入射光线经光学系统后,出射光线均交于像点。
由光的可逆性原理,从原来像点发出的所有光线入射到光学系统后,所有出射光线均交于原来的物点,这一对物、像可互换的点称为共轭点。
某条入射光线与对应的出射光线称为共轭光线。
②物方每条直线对应像方的一条直线,称共轭线;物方每个平面对应像方的一个平面,称为共轭面。
③主光轴上任一点的共轭点仍在主光轴上。
任何垂直于主光轴的平面,其共轭面仍与主光轴垂直。
④对垂直于主光轴的共轭平面,横向放大率(见凸透镜)为常量。
(2)入射瞳孔:由轴上物点发出的光线。
经过孔径阑前的组件而形成的孔径阑之像,即由轴上物点的位置去看孔径阑所成的像。
(3)出射瞳孔:由轴上像点发出的光线,经过孔径阑后面的组件而形成的孔径阑之像,即由像平面轴上的位置看孔径阑所成的的像。
(4)入光瞳直经:入光瞳直径等于物空间中用透镜单位表示的近轴像光阐的大小。
(5)出光瞳直径:出光瞳直径等于近轴像空间用透镜单位表示的近轴像光阐的大小。
近轴出光瞳的位置相联系于像表面。
(6)视场、视角:物空间中,在某一距离光学系统所能接受的最大物体尺寸,此量值以角度为单位。
(7)子午平面:在一个轴对称系统中,包含主光线与光轴的平面。
(8)数值孔径:折射率乘以孔径边缘至物面(像面)中心的半夹角之正弦值,其值为两倍的焦数之倒数。
数ˋ值孔径有物面数值孔径与像面数值孔径两种。
(9)物空间数值孔径:物空间数值孔径是度量从物方进入光线的散度。
数值孔径被定义作近轴边缘光线角的折射指数。
(10)球面像差:近轴光束与离轴光束在轴上的焦点位置不同而产生。
(11)渐晕、光晕:离轴越远(越接近最大视场)的光线经过光学系统的有效孔径阑越小,所以越离轴的光线在离轴的像面上的光强度就越弱,而形成影像由中心轴向离轴晕开。
(12)渐晕因子:渐晕因子是描述入瞳大小和不同场角位置的系数。
课程名称:工程光学授课对象:本科生课时:2课时教学目标:1. 使学生掌握理想光学系统的基本概念和成像性质。
2. 理解基点、基面及其在光学系统表示中的作用。
3. 学会使用图解法和解析法求解像。
4. 了解高斯成像公式及其应用。
教学重点:1. 理想光学系统的成像性质。
2. 基点、基面的概念及其在光学系统表示中的应用。
3. 高斯成像公式的推导与应用。
教学难点:1. 高斯成像公式的推导。
2. 不同类型光学系统的成像性质分析。
教学过程:第一课时一、导入1. 介绍工程光学在光学工程领域的重要性。
2. 回顾几何光学的基本概念和原理。
二、讲解1. 理想光学系统的概念:通过实际光学系统抽象出的理想模型。
2. 成像性质:光学系统对物体成像的规律。
3. 基点、基面的概念及其在光学系统表示中的应用。
三、实例分析1. 分析几种典型光学系统的成像性质,如凸透镜、凹透镜、平面镜等。
2. 举例说明基点、基面在光学系统表示中的作用。
四、高斯成像公式1. 推导高斯成像公式。
2. 解释公式中各个参数的含义。
3. 应用高斯成像公式进行成像计算。
第二课时一、复习1. 回顾上一节课的重点内容。
2. 提问学生,检查对重点知识的掌握情况。
二、讲解1. 分析不同类型光学系统的成像性质。
2. 讨论光学系统的像差及其产生原因。
三、实例分析1. 分析典型光学系统的成像质量评价。
2. 讨论如何提高光学系统的成像质量。
四、总结1. 总结本节课的主要内容和重点。
2. 强调学生在实际应用中应注意的问题。
教学评价:1. 学生对理想光学系统成像性质的理解程度。
2. 学生运用高斯成像公式进行成像计算的能力。
3. 学生对光学系统像差及其产生原因的认识。
课后作业:1. 查阅资料,了解光学系统的实际应用案例。
2. 完成光学系统成像计算题目,加深对成像公式的理解。
教学反思:1. 关注学生对重点知识的掌握情况,及时调整教学策略。
2. 结合实际案例,提高学生对光学知识的兴趣和应用能力。