第六章频率与概率
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
第六章 频率与概率■ 通关口诀:两类事件联生活;概率频率是根本。
古典几何两概型;以频推概初步通。
三种事件和两率;零一之间耍威风。
游戏公平不公平;游戏玩耍你能行。
■ 正奇数学学堂第一讲:频率与事件发生的可能性【知识点一】事件的分类及其定义1.事件的分类:确定事件不确定事件(随机事件)必然事件不可能事件2.定义;⑴必然事件;在一定条件下,有些事情我们事先能肯定它一定发生,这些事情我们称必然事件。
⑵不可能事件:在一定条你下,有些事情我们事先能肯定它一定不会发生,这些事情称不可能事件。
⑶确定事件:必然事件和不可能事件的总称。
⑷不确定事件:在一定条件下,有些事情我们事先无法确定它会不会发生,这些事情称为不确定事件。
也叫随机事件。
⑸研究重点:随机事件。
〖母题示例〗1.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件?(1)太阳从西边下山; (2)某人的体温是100℃;(3)a 2+b 2=-1(其中a,b 都是有理数); (4)水往低处流;(5)13个人中,至少有两个人出生的月份相同; (6)在装有3个球的布袋里摸出4个球。
2..下列事件是必然事件的是( )(A)打开电视机,正在转播足球比赛 (B)小麦的亩产量一定为1000公斤(C)在只装有5个红球的袋中摸出1球是红球 (D)农历十五的晚上一定能看到圆月 【知识点二】不确定事件发生的可能性的大小。
1.随机事件发生的可能性:一般地,不确定事件(随机事件)发生的可能性的大小是不一样的。
事件不同有大有小。
2.语言描述:用一定;很可能;可能;不大可能;不可能几种语言描述事件发生的可能性。
2.数学语言:可能性的大小用一个大于等于0小于等于1的数表示。
理解为一个对应的百分数(率)。
这个数越大事件发生的的可能性也越大。
〖母题示例〗1.下列说法正确的是( )A .如果一件事发生的机会只有千万分之一,那么它就是不可能事件B .如果一件事发生的机会达99.999%,那么它就是必然事件C .如果一件事不是不可能事件,那么它就是必然事件D .如果一件事不是必然事件,那么它就是不可能事件或随机事件2.下列事件中,随机事件是( ) A.没有水分,种子仍能发芽 B.等腰三角形两个底角相等C.从13张红桃扑克牌中任抽一张,是红桃AD.从13张方块扑克牌中任抽一张,是红桃103.中是不可能发生的事件是( )(A)点数之和为12(B)点数之和小于3(C)点数之和大于4且小于8(D)点数之和为135.从一副扑克牌中任意抽出一张,则下列事件中可能性最大的是( )(A)抽出一张红心(B)抽出一张红色老K(C)抽出一张梅花J(D)抽出一张不是Q的牌6.下列事件:(1 )袋中有5个红球,能摸到红球(2)袋中有4个红球,1个白球,能摸到红球(3)袋中有2个红球,3个白球,能摸到红球(4)袋中有5个白球,能摸到红球(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(6)经过有信号灯的十字路口,遇见红灯;(8)抛出的篮球会下落。
第6.1.2课时家庭作业 (频率与概率2) 姓名 学习目标:
学习用树状图和列表法计算涉及两步实验的随机事件发生的概率. 一.掷一枚硬币,落地后,国徽朝上、朝下的概率各是多少?
二.质地均匀的骰子被抛起后自由落在桌面上,点数为“1”或“3”的概率是多少?
三.掷两枚硬币,规定落地后,国徽朝上为正,国徽朝下为“反”,则会出现以下三种情况.
“正正”
“反反”
“正反”
分别求出每种情况的概率.
(1)小刚做法:通过列表可知,每种情况都出现一次,因此各种情况发生的概率均占1.
小敏的做法:
通过以上列表,小敏得出:“正正”的情况发生概率为4
1.“正反”的情况发生的概率为2
1,
“反反”的情况发生的概率为
4
1.
(1)以上三种做法,你同意哪种,说明你的理由. (2)用列表法求概率时要注意哪些?
四.一布袋中放有红、黄、白三种颜色的球各一个,它们除颜色外其他都一样,小亮从布袋中摸出一个球后放回去摇匀,再摸出一个球.请你利用列举法(列表或画树状图)分析并求出小亮两次都能摸到白球的概率.
第6.1.2课时家庭作业参考答案
一.国徽朝上,朝下各占50%. 二.点数为“1或3”的概率为31
.
三.(1)小涵和小敏的做法正确.
(2)注意对比各结果是否列全,是否有重复的结果. 四.解:列表如下:
答:小亮两次都能摸到白球的概率为19
.。
《 第六章 频率与概率》单元检测试题东平县州城街道第二中学2011-12-3一、填空题:(每题3分,共30 分)1.当试验的结果有很多并且各种结果发生的可能性相同时,我们可以用__________ 的方式得出概率.2.当试验的所有可能的结果不是有限个或各种可能的结果发生的可能性不相等时,我们一般通过_____ 来估计概率.3.现有50张大小、质地及背面图案均相同的北京奥运会吉祥物福娃卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘福娃的名字后原样放回,洗匀后再抽,不断重复上述过程,最后记录抽到欢欢的频率为20%。
则这些卡片中欢欢约为______张4.用6个球(除颜色外没有区别)设计满足以下条件的游戏:摸到白球的概率为21,摸到红球的概率为31,摸到黄球的概率为61.则应设___个白球,____个红球,___个黄球5.有副残缺的扑克牌,只有红心和黑桃两种花色的牌,并且缺6 张,通过若干次抽样调查知道红心和黑桃出现的频率分别为 45%和55%,则共有红心牌______张.6.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为O .4,O .1,0.2,O .1,0.2.根据上述数据,小亮可估计口袋中大约有_______个黑球.7.将含有4种花色的36张扑克牌正面都朝下.每次抽出一张记下花色后再原样放回,洗匀牌后再抽,不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有________张.8.某公司有50名职工,现有6张会议入场券,经理决定任意地分配给6名职工,他们将50名职工按l ~50进行编号,用计算器随机产生_______~________之间的整数,随机产生的______个整数所对应的编号的人就去参加会议.9.从一副52张(没有大小王)的扑克牌中每次抽出l 张。
睿德教育—《正奇数学立体通关学案》让孩子象玩游戏通关一样爱上并学好数学。
睿待—睿其智,德其行。
1第六章频率与概率■通关口诀:两类事件联生活;概率频率是根本。
古典几何两概型;以频推概初步通。
三种事件和两率;零一之间耍威风。
游戏公平不公平;游戏玩耍你能行。
■正奇数学学堂第一讲:频率与事件发生的可能性【知识点一】事件的分类及其定义1.事件的分类:确定事件不确定事件(随机事件)必然事件不可能事件2.定义;⑴必然事件;在一定条件下,有些事情我们事先能肯定它一定发生,这些事情我们称必然事件。
⑵不可能事件:在一定条你下,有些事情我们事先能肯定它一定不会发生,这些事情称不可能事件。
⑶确定事件:必然事件和不可能事件的总称。
⑷不确定事件:在一定条件下,有些事情我们事先无法确定它会不会发生,这些事情称为不确定事件。
也叫随机事件。
⑸研究重点:随机事件。
〖母题示例〗1.下列问题哪些是必然事件?哪些是不可能事件?哪些是随机事件? (1)太阳从西边下山; (2)某人的体温是100℃;(3)a 2+b 2=-1(其中a,b 都是有理数);(4)水往低处流;(5)13个人中,至少有两个人出生的月份相同;(6)在装有3个球的布袋里摸出4个球。
2..下列事件是必然事件的是()(A)打开电视机,正在转播足球比赛(B)小麦的亩产量一定为1000公斤(C)在只装有5个红球的袋中摸出1球是红球(D)农历十五的晚上一定能看到圆月【知识点二】不确定事件发生的可能性的大小。
1.随机事件发生的可能性:一般地,不确定事件(随机事件)发生的可能性的大小是不一样的。
事件不同有大有小。
2.语言描述:用一定;很可能;可能;不大可能;不可能几种语言描述事件发生的可能性。
2.数学语言:可能性的大小用一个大于等于0小于等于1的数表示。
理解为一个对应的百分数(率)。
这个数越大事件发生的的可能性也越大。
〖母题示例〗 1.下列说法正确的是()A.如果一件事发生的机会只有千万分之一,那么它就是不可能事件 B.如果一件事发生的机会达99.999%,那么它就是必然事件 C.如果一件事不是不可能事件,那么它就是必然事件 D.如果一件事不是必然事件,那么它就是不可能事件或随机事件 2.下列事件中,随机事件是() A.没有水分,种子仍能发芽B.等腰三角形两个底角相等。
第六章 频率与概率一、可能性1.必然事件,不可能事件,不确定事件:在自然和社会现实中,有些事件我们事先能肯定它一定会发生,这类事件称为必然事件;也有一些事件我们事先能肯定它一定不会发生,这类事件称为不可能事件;还有这样一类事件,它在相同条件下,由于偶然因素的影响,可能发生也可能不发生,这类事件称为不确定事件.2.P 必然事件=1,P 不可能事件=0,0<P 不确定事件<13.区分“不可能”,“必然”和“可能”是非常重要的,不可能发生就是指每次都完全没有机会发生,或者说,发生的机会是0.例如:“今天星期二,明天星期日”这是不可能发生的;必然发生是指每次一定发生,不可能不发炎,或者说,发生的机会是100%.例如:“人总是要死的”这是必然发生的,无一例外;可能发生是指有时会发生,有时不会发生,或者说,发生的机会介于0和100%之间.例如:“打开电视机,正在播广告”是可能发生的.二、频率与概率:1、频率:每个对象出现的次数与总次数的比值为频率。
(实际值)2、概率:随机事件出现的可能性的量度。
(理论值)3、频率与概率的关系:在一个事件中,当试验次数很大时,这个事件的试验频率稳定在相应的理论概率附近4、用频率来估计概率:注意:试验的次数需要足够多。
5、 概率的计算方法:1、 列表法2、 用树状图法第六章 频率与概率经典练习1、从1到9这九个自然数中任取一个,既是2的倍数又是3的倍数的概率是 ( )(A ) 91 (B ) 31 (C ) 21 (D ) 97 2、在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( )(A ) 1 (B )12(C ) 13 (D ) 23 3、一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是( )A 、154 B 、31 C 、51 D 、152 4、下列事件发生的概率为0的是( )A 、随意掷一枚均匀的硬币两次,至少有一次反面朝上;B 、今年冬天茂名会下雪;C 、随意掷两个均匀的骰子,朝上面的点数之和为1;D 、一个转盘被分成6个扇形,按红、白、白、红、红、白排列,转动转盘,指针停在红色区域。
一、你还记得什么是频数、什么叫频率、什么叫概率吗试举例说明.二、将一枚硬币抛起,使其自然下落,每抛两次作为一次实验,当硬币落定后,一面朝上,我们叫做“正”,另一面朝上,我们叫做“反”.(1)一次实验中,硬币两次落地后可能出现几种情况(2)做20次实验,根据实验结果,填写下表.结果正正正反反反频数频率(3)根据上表,制作相应的频数分布直方图.(4)经观察,哪种情况发生的频率较大.(5)实验结果为“正反”的频率是多大.(6)5个同学结成一组,分别汇总其中两人,三人,四人,五人的实验数据,得到40次,60次,80次,100次的实验结果,将相应数据填入下表。
次数40次60次80次100次“正反”的频数“正反”的频率(7)依上表,绘制相应的折线统计图.(8)计算“正反”出现的概率.(9)经过以上多次重复实验,所得结果为“正反”的频率与你计算的“正反”的概率是否相近.小知识:在篮球比赛和足球比赛中,人们往往用抛硬币的方法决定由谁先来开球.那么抛硬币后,正面向上和反面向上的几率有多大呢相等吗下面我们来想办法解决这个问题.首先想到的是实验方法.投掷硬币500次记总抛出次数正面向上次正面向上频率§6.1.1频率与概率(次) 数(次) (…%)500225我们得到的是硬币正面向上的频率的百分比.即硬币正面向上的频率.其次我们又想到硬币的正、反面都没有什么特殊性,所以在落下时正面向上和反面向上的可能性相等.所以正面向上与反面向上都有21的可能性,也就是说正面向上的概率是___________.生活中常见一些概率问题的应用,例如彩票.20选5第2003178期中奖号码 05、12、15、16、17 一等奖 6注 18678元 二等奖 1214注 50元 三等奖 19202注5元本期销售额 548538元出球顺序05、15、12、16、17一、掷一枚硬币,落地后,国徽朝上、朝下的概率各是多少二、质地均匀的骰子被抛起后自由落在桌面上,点数为“1”或“3”的概率是多少三、掷两枚硬币,规定落地后,国徽朝上为正,国徽朝下为“反”,则会出现以下三种情况.“正正”“反反”“正反”分别求出每种情况的概率.(1)小刚做法:通过列表可知,每种情况都出现一次,因此各种情况发生的概率均占31. 可能出现正正正反反反§6.1.2频率与概率的情况 概率31 31 31 小敏的做法:第一枚硬币的可能情况第二枚硬币的可能情况正反正 正正 反正 反正反反反通过以上列表,小敏得出:“正正”的情况发生概率为41.“正反”的情况发生的概率为21,“反反”的情况发生的概率为41. (1)以上三种做法,你同意哪种,说明你的理由.(2)用列表法求概率时要注意哪些一、如图(1)是不是所有的随机事件的概率都可以用画树形图或列表的方法来求,试举例说明你的理由.二、图(2)钉落地实验,将图钉抛在地上. (1)观察图钉落地后出现几种状态.(2)猜想哪种情况发生的概率大(3)连续抛掷50次,将实验结果填在下表. 落地状态钉尖朝上钉尖着地频 数 频 率§6.2.1频率与概率(4)实验结果中各种情况发生的概率与你猜想的概率是否相符呢(5)如果班里有50位同学,每人做50次实验共做了2500次实验,请将实验数据汇总,再进一步计算各种情况发生的频率.(6)现在你能估计钉尖着地的概率了吗(7)以上做法是:利用大量的实验数据计算出某一情况发生的频率,再利用此频率来估计这一情况发生的概率,你还能举出生活中利用这一原理求概率的实例吗三、(如下图所示)把一小球从箭头处自由释放,落入一个内有阻碍物的容器中,小球一种情况是落入A槽,一种是落入B槽,你能通过列表法分别算出它们的概率吗一、填空题1.口袋中有2个白球,1个黑球,从中任取一个球,用实验的方法估计摸到白球的概率为_________.2.把一对骰子掷一次,共有_________种不同的结果.3.任意掷三枚均匀硬币,如果把掷出正面朝上记为“上”,掷出正面朝下记为“下”,所有的结果为_________.4.必然事件的概率为_________,不可能事件的概率为_________,不确定事件的概率范围是_________.5.频数和频率都能反映一个对象在实验总次数中出现的频繁程度,我认为:(1)频数和频率间的关系是_________.(2)每个实验结果出现的频数之和等于_________. (3)每个实验结果出现的频率之和等于_________..上学方式 步行 骑车 乘车 “正”字法记录正正正频数 9 频率40%抛掷结果 5次 50次 300次 800次 3200次 6000次 9999次 出现正面的频数 1 31 135 408 1580 2980 5006 出现正面的频率20%62%45%51%%%%(1)由这张频数和频率表可知,机器人抛掷完5次时,得到1次正面,正面出现的频率是20%,那么,也就是说机器人抛掷完5次时,得到_________次反面,反面出现的频率是_________. (2)由这张频数和频率表可知,机器人抛掷完9999次时,得到_________次正面,正面出现的频率是_________.那么,也就是说机器人抛掷完9999次时,得到_________次反面,反面出现的频率是_________. 二、选择题8.给出以下结论,错误的有( )①如果一件事发生的机会只有十万分之一,那么它就不可能发生. ②如果一件事发生的机会达到%,那么它就必然发生. ③如果一件事不是不可能发生的,那么它就必然发生. ④如果一件事不是必然发生的,那么它就不可能发生. 个 个 个 个9.一位保险推销员对人们说:“人有可能得病,也有可能不得病,因此,得病与不得病的概率各占§6.2.2频率与概率50%”他的说法()A.正确B.不正确C.有时正确,有时不正确D.应由气候等条件确定10.某位同学一次掷出三个骰子三个全是“6”的事件是()A.不可能事件B.必然事件C.不确定事件可能性较大D.不确定事件可能性较小三、解答题11.请制作一个方案说明你在你们班的同学中花“零花钱”属于多的还是少的12.走近你家附近的商店,统计几类主要产品的月销量,制出相应的条形统计图.13.与他人合作掷骰子100次,要求(2)制出条形统计图.(3)计算出各点的概率.(4)有可能再现7点吗它的概率为多少一、有400位同学,其中一定有至少两人生日相同吗若有367位同学呢说说你的理由.二、通过本节实验,你发现50位同学中有至少两位同学出生月日相同的频率占多少,估计这个情况的概率是多少三、通过本节学习,我们发现有些实验估计起来既费时,又费力,可以用摸球实验或其他模拟实验.(1)请再回顾一下我们是怎样将复杂的调查转化成模球实验的(2)请熟悉你的计算器产生随机数字的操作程序.四、取出一副扑克中的红桃A至红桃K共13张牌,牌面朝下放在桌面上,每次摸取一张看后放回,共摸取4次,试用计算器产生的随机数进行摸拟实验.小知识:小威和小丽在同一天过生日,他们班共有50名同学.想一想:这样能说50个人中2个人生日相同的概率为1吗为什么在§这一节我们将来研究怎样调查50个人中2个人生日相同的概率.下面我们来考虑几个类似的问题:1.估计六个人中同属相的概率.2.估计六个人中同星座的概率.§频率与概率在研究这种问题中,要想使估算的概率准确,就必须尽可能多的增加调查对象,这样既费时又费力,想一想有什么方法可以替代做调查来估算概率呢预习下节课的内容。
第六章 概率初步
1.必然事件:在一定条件下,有些事情我们事先能肯定它一定发生,这些事件称为必然事件
2.不可能事件:有些事件我们事先能肯定它一定不会发生,这些事件称为不可能事件.
3.确定事件:必然事件和不可能事件统称为确定事件.
4.不确定事件:有些事情我们事先无法肯定它会不会发生,这些事件称为不确定事件,也称 为随机事件.
确定事件 必然事件
事件 不可能事件
不确定事件
5.判断方法:判断这个句子是否正确.
6.不确定事件的可能性是有大小的
7.折线统计图能清楚的反映数据的变化趋势.
8.频率的定义:在N 次重复实验中,不确定事件A 发生了M 次,则比值n m
则称为事件A 发生的频率.
9.频率具有稳定性:当实验次数逐渐增大时,事件A 发生的频率都会趋近于某一个常数,这就是频率的稳定性.
10.概率:用常数来表示事件A 发生的可能性的大小,我们把刻画事件A 发生的可能性大小的数值,称为事件A 发生的概率,记作P (A )一般地,
11.概率和频率的关系:大量重复试验中,我们常用不确定事件A 发生的频率来估计事件A 发生的概率.
12.P (必然事件)=1; P (不可能事件)=0; 0πP (不确定事件A )π1.;
p (正面向上)=21
;0≤P (任何事件)≤1
13.①当试验次数很大时,可以发现一个随机事件发生的频率总是在某个常数附近摆动,也就是频率呈现出稳定性,随着试验次数的不断增加,摆动的幅度将会越来越小,在大量的重复试验中,某个事件发生的频率将接近于某一个常数,则称此常数为该随机事件的概率. ②频率不等于理论概率。
频率是变化的,概率是不变的,虽然多次试验的频率逐渐接近概率,但也可能无论做多少次试验,频率仍然是概率的一个近似值,而不能等同于概率。
③概率是频率的稳定值
④概率是随机事件规律性的一个表现
⑤概率可以看作是频率是在理论上的期望值,它在数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似的作为这个事件的概率.
例题1.用频率估计概率
2.用频率估计球的个数
3.画频率折线图估计概率
4.利用概率解决实际问题.
13.等可能事件和概率:一般地,如果一个试验有n 种可能,而事件A 包含其中的m 种可能,
那么事件A 发生的概率为P (A )=n m (0≤n m
≤1)
14.当我们作一次试验时,如果总计有n 种可能的结果,且每种结果发生的可能性都相同,即机会相等,那么每种结果发生的概率均为n 1
15.当计算概率问题时,可以先列举所有可能出现的结果,再列出所求事件可能出现的结果,然后把各自的结果带入概率公式进行计算.
16.游戏的公平性:是指双方获胜的概率相等.(并不一定每方获胜的概率必为21
)
17.几何图形中的概率:P (A )=形的面积所有可能结果组成的图图形的面积
发生的所有可能组成的事件A
①分析事件所占面积与总面积的关系②计算出各部分面积③代入公式
18.转盘问题的概率计算:
P (指针停留在某扇形内)=圆的面积某扇形的面积=总份数某扇形所占圆的份数
19.设计一个概率为n k
的几何概率模型,需将这个几何图形均分为n 个,其中符合A 事件的要有K 份即可。