频率与概率
- 格式:ppt
- 大小:1.77 MB
- 文档页数:19
频率与概率的关系
事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.
要点诠释:
(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率;
(2)频率和概率在试验中可以非常接近,但不一定相等;
(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.
第1页共1页。
随机事件的频率与概率1.随机事件的频率随机事件的频数与频率:在相同的条件下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例n n A f A n )(为事件A 出现的频率. 2.随机事件的概率一般来说,随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上,这个常数可以用来度量事件A 发生的可能性的大小,称为事件A 的概率,记作P(A).3.频率与概率的区别和联系(1) 频率本身是随机的,在试验前不能确定。
做同样次数的重复试验得到事件的频率会不同。
(2) 概率是一个确定的数,与每次试验无关。
是用来度量事件发生可能性大小的量。
(3) 频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率。
例1.某射击运动员在同一条件下进行练习,结果如下表所示:(1)计算表中击中10环的各个频率;(2)这名运动员射击一次,击中10环的概率是多少分析:(1)分清m ,n 的值,用公式nm 计算; (2)观察各频率是否与某一常数接近,且在它附近摆动.解:(1)(2)从上表可以看出,这名运动员击中10环的频率在附近波动,且射击次数越多,频率越接近,故可以估计,这名运动员射击一次,击中10环的概率约为.点评:在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们就可以用这个常数来刻画该随机事件发生的可能性的大小,而将频率作为其近似值.从中要进一步体会频率与概率的定义及它们的区别与联系.如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率n m 作为事件A 发生的概率的近似值,即P(A)≈nm . 例2.为了估计水库中的鱼的尾数,可以使用以下方法:先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数.分析:用样本估计总体.解:设水库中鱼的尾数为n,n 是未知的,现在要估计n 的值,将n 的估计值记作nˆ. 假定每尾鱼被捕的可能性是相等的,从库中任捕一尾鱼,设事件A 为“带有记号的鱼”,易知P(A)=n2000. 第二次从水库中捕出500尾鱼,其中带有记号的鱼有40尾,即事件A 发生的频数n A =40,由概率的统计定义知50040)(≈A P . 所以500402000≈n . 解得n≈25 000,即nˆ=25 000.故可以估计水库中约有鱼25000尾.点评:随着试验次数的变化,事件发生的频率也可能发生变化,但总体来看频率趋于一个稳定值,所以我们也可借助于频率来对一些实际问题作出估计. 例3.某校举办2021年元旦联欢晚会,为了吸引广大同学积极参加活动,特举办一次摸奖活动.凡是参加晚会者,进门时均可参加摸奖,摸奖的器具是黄、白两色的乒乓球,这些乒乓球的大小和质地完全相同.另有一只密封良好且不透光的立方体木箱(木箱的上方可容一只手伸入).拟按中奖率为101设大奖,其余109则为小奖,大奖奖品的价值为40元,小奖奖品的价值为2元.请你运用概率的有关知识设计一个摸奖方案以满足校方的要求. 分析:借助于现有的乒乓球,使一种情况产生的可能性为101即可,并将其定为大奖的条件.解:方案一:在箱子里放10个乒乓球,其中1个黄色的,9个白色的.摸到黄球时为大奖,摸到白球时为小奖.方案二:在箱子里放5个乒乓球,3个白色的,2个黄色的.每位参加者在箱子里摸两次,每次摸一个乒乓球,并且第一次摸出后不放回.当摸到2个黄色乒乓球时为大奖,其他情况视为小奖.点评:概率知识来源于生活、生产实残,由实际问题可以总结出发生某一事件的可能性的大小,在实际生活中设计某一活动的实施方案,一般可以以希望得到的统计数据为依据,还要注意与实际相结合.。
频率与概率知识点总结频率与概率是概率论中非常重要的概念,它们在统计学、数据分析、风险管理等领域都有着广泛的应用。
本文将对频率与概率的概念、性质、常见计算方法以及应用进行全面的总结。
一、频率的概念频率是指某一事件在一定时间或次数内发生的次数。
频率通常由次数除以总数得到,可以用来描述某一事件出现的概率大小。
频率的计算通常使用简单的数学方法,适用于各种具体的事件。
频率的性质1. 频率的取值范围为[0, 1]。
因为频率是事件发生的次数与总数的比值,所以其取值范围必然在0到1之间,表示事件发生的概率。
2. 频率的和为1。
在多次实验中,各个事件的频率之和等于1,这是因为所有事件发生的可能性都包括在内。
3. 频率与事件的发生次数成正比。
频率是事件的发生次数与总数的比值,所以事件发生的次数增加时,其频率也会增加。
频率的计算方法频率的计算通常使用下面的公式:频率 = 事件发生的次数 / 总数频率的应用频率广泛应用于统计学、数据分析、市场调研等领域。
通过对样本进行频率统计,可以得到样本中各个事件发生的概率大小,从而为决策提供参考依据。
二、概率的概念概率是描述某一事件发生可能性的数值,表示事件发生的可能性大小。
概率的分析通常使用概率分布、基本概率、条件概率等方法,适用于各种抽样实验、随机变量等概率事件。
概率的性质1. 概率的取值范围为[0, 1]。
因为概率是事件发生的可能性大小,所以其取值范围必然在0到1之间,表示事件发生的概率。
2. 概率的和为1。
在多个互斥事件的情况下,各个事件的概率之和等于1,这是因为所有事件发生的可能性都包括在内。
3. 概率与频率有关。
概率也可以用频率表示,即概率等于事件发生的频率。
在多次实验中,事件的频率趋于稳定时,可用频率代替概率。
概率的计算方法概率的计算通常使用下面的公式:概率 = 事件发生的次数 / 总数概率的应用概率广泛应用于统计学、概率论、数据分析、风险管理等领域。
通过对概率的分析,可以评估各种事件发生的可能性大小,为风险管理、模型建立、决策制定等提供参考依据。
概率与统计中的频率与概率的计算在概率与统计中,频率和概率是两个重要的概念。
它们都与事件发生的可能性有关,但在计算方法和应用上有所不同。
频率是指某个事件在重复试验中发生的次数与总试验次数的比值。
它用来描述随机事件在实际观察中的相对频繁程度。
频率可以用来估计概率,特别是在试验次数较少或无穷大的情况下不能直接计算概率时,频率是一种常用的近似计算方法。
频率的计算公式为:频率 = 某个事件发生的次数 / 总试验次数例如,某个骰子六个面的数字出现次数分别为1、2、3、4、5、6,则各个数字出现的频率分别为1/6,2/6,3/6,4/6,5/6,6/6。
与频率相比,概率是事件发生的理论上的可能性。
概率可以用数值表示,范围在0到1之间。
概率越接近于1,事件发生的可能性越大;概率越接近于0,事件发生的可能性越小。
概率的计算方法包括经典概率和统计概率。
经典概率是基于等可能性原理的计算方法。
当每个事件发生的可能性相等时,事件A的概率可以用下式计算:概率A = A发生的情况数 / 总情况数例如,一枚硬币正面朝上的概率可以用1/2表示,因为正面朝上的情况只有一种,总情况数为两种(正面和反面)。
统计概率是基于统计数据的计算方法。
当无法保证每个事件发生的可能性相等时,可以通过实验或观察得到事件发生的频率,进而估计概率。
例如,通过投掷一枚硬币100次,正面朝上的频率为60次,反面朝上的频率为40次。
则可以估计硬币正面朝上的概率为60/100=0.6。
在实际应用中,频率和概率都有其独特的作用。
频率可以用来描述实际观察中的现象和实验结果,是验证概率理论的基础。
而概率则可以用来预测事件发生的可能性,是决策和风险管理的重要工具。
总结起来,频率和概率在概率与统计中扮演着重要的角色。
频率描述了事件在实际观察中的相对频繁程度,可以用来估计概率;而概率则是事件发生的理论上的可能性。
它们的计算方法和应用略有不同,但都是研究和理解随机事件的重要工具。
简述概率和频率的关系概率和频率是概率统计学中两个重要的概念,它们之间有着密切的关系。
概率是指某个事件发生的可能性大小,通常用一个介于0和1之间的数来表示。
在概率论中,我们可以通过定义一个概率空间来描述随机试验的所有可能结果及其对应的概率。
这样,我们就可以对随机试验中不同事件发生的可能性进行量化和比较。
概率可以帮助我们预测事件的发生概率,从而做出相应的决策。
频率是指某个事件在多次试验中出现的次数。
在统计学中,我们通常通过实验的重复运行来观察事件发生的频率,并用频率来估计概率。
频率是对概率的一种近似估计,当试验次数足够大时,频率会逐渐接近概率。
这是因为随着试验次数的增加,事件发生的频率会趋于稳定,逐渐接近事件的真实概率。
概率和频率之间的关系可以通过大数定律来解释。
大数定律是概率论中的一个重要原理,它指出当独立重复实验次数趋于无穷大时,事件发生的频率将趋于事件的概率。
也就是说,当我们进行足够多次的试验时,事件发生的频率会逐渐接近事件的概率值。
举个例子来说明概率和频率的关系。
假设我们抛掷一枚公平硬币,事件A表示出现正面的情况。
根据概率的定义,硬币出现正面的概率为0.5。
如果我们进行100次抛硬币的实验,记录下出现正面的次数,那么事件A的频率就是正面出现的次数除以总的实验次数。
当试验次数足够大时,事件A的频率会逐渐接近0.5,即事件A的概率。
概率和频率的关系也可以从另一个角度来理解。
概率是一种理论上的概念,是对事件发生可能性的一种度量。
而频率是通过实际观察和实验获得的数据,是对概率的一种估计。
通过频率的观察和统计,我们可以验证和检验概率的理论结果,从而增加对事件发生模式和规律的认识。
总结起来,概率是描述事件发生可能性的理论概念,而频率是通过实验观察到的事件发生次数。
概率和频率之间的关系可以用大数定律来解释,即当试验次数足够大时,事件发生的频率会逐渐接近事件的概率。
概率和频率相辅相成,互相验证和补充,共同构成了概率统计学的基础。
初中数学知识点:频率与概率的关系
事件的概率是一个确定的常数,而频率是不确定的,当试验次数较少时,频率的大小摇摆不定,当试验次数增大时,频率的大小波动变小,并逐渐稳定在概率附近.可见,概率是频率的稳定值,而频率是概率的近似值.
要点诠释:
(1)频率本身是随机的,在试验前不能确定,无法从根本上来刻画事件发生的可能性的大小,在大量重复试验的条件下可以近似地作为这个事件的概率;
(2)频率和概率在试验中可以非常接近,但不一定相等;
(3)概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同,两者存在一定的偏差是正常的,也是经常的.
第1 页共1 页。
概率和频率区别这是概率和频率区别,是优秀的数学教案文章,供老师家长们参考学习。
概率和频率区别第1篇概率是一个稳定的数值,也就是某件事发生或不发生的概率是多少。
频率是在一定数量的某件事情上面,发生的数与总数的比值。
频率是有限次数的试验所得的结果,概率是频数无限大时对应的频率。
联系与区别1、他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值;3、频率是近似值,概率是准确值;4、频率值一般容易得到,所以一般用来代替概率。
概率和频率区别第2篇对事件发生可能性大小的量化引入“概率”。
独立重复试验总次数n,事件A 发生的频数μ,事件A发生的频率Fn(A)=μ/n,A的频率Fn(A)有没有稳定值?如果有,就称频率μ/n的稳定值p为事件A发生的概率,记作P(A)=p(概率的统计定义)。
P(A)是客观的,而Fn(A)是依赖经验的。
数学频率和概率的区别卡尔达诺的数学著作中有很多给赌徒的建议。
这些建议都写成短文。
然而,首次提出系统研究概率的是在帕斯卡和费马来往的一系列信件中。
这些通信最初是由帕斯卡提出的,他想找费马请教几个关于由Chevvalier de Mere提出的问题。
Chevvalier de Mere是一知名作家,路易十四宫廷的显要,也是一名狂热的赌徒。
问题主要是两个:掷骰子问题和比赛奖金分配问题。
研究支配偶然事件的内在规律的学科叫概率论。
属于数学上的一个分支。
概率论揭示了偶然现象所包含的内部规律的表现形式。
所以,概率,对人们认识自然现象和社会现象有重要的作用。
比如,社会产品在分配给个人消费以前要进行扣除,需扣除多少,积累应在国民收入中占多大比重等,就需要运概率和频率区别第3篇教学目标(一)教学知识点1.如何收集与处理数据.2.会绘制频数分布直方图与频数分布折线图.3.了解频数分布的意义,会得出一组数据的频数分布.(二)能力训练要求1.初步经历数据的收集与处理的过程,发展学生初步的统计意识和数据处理能力.2.通过经历调查、统计、研讨等活动,发展学生实践能力与合作意识.(三)情感与价值观要求通过学习,培养学生勇于提出问题,大胆设计,勇于探索与解决问题的能力.教学重点1.了解频数分布的意义,会得出一组数据的频数分布直方图、频数分布折线图.2.数据收集与处理.教学难点1.决定组距与组数.2.数据分布规律.教学方法交流探讨式教具准备投影片教学过程Ⅰ.导入新课[师]请大家一起回忆一下,我们如何收集与处理数据.[生]1.首先通过确定调查目的,确定调查对象.2.收集有关数据.3.选择合理的数据表示方式统计数据.4.根据所收集的数据进行数据计算.根据特征数字,估计总体情况,设计可行的计划与方案,并不断实施与改进方案.[师]这位同学总结得很好.你能否帮卖雪糕的李大爷设计一种方案,确定各种牌子的雪糕应进多少?[生]首先应开展调查.统计一下李大爷每天卖出的a、b、c、d、e五个牌子雪糕的数量.。
频率与概率的关系公式
频率(Frequency)和概率(Probability)之间的关系也可用简单的公式表示:
Frequency = Number of Occurrences of Event / Number of Opportunities to Occur。
Probability = Number of Successful Events / Number of Trials。
从上面两个公式可以得出:Frequency = Probability * Total Trials 。
举个例子来说,假设有一个抛硬币的实验,硬币可以抛出正面或者反面,那么频率就是正面出现的次数除以总次数,而概率就是正面出现的次数除以总次数。
也就是说:Frequency = Probability * Total Trials,其中Total Trials是总次数。
该公式可以应用于各类概率问题,用来描述发生某种事件的概率。
假如把抛硬币的实验换成投掷一个三角形的实验,那么概率就是正面出现的次数除以总次数,而频率就是正面出现的次数除以总次数。
可以用频率与概率的关系公式来描述这种情况:Frequency = Probability * Total Trials。
总的来说,频率与概率的关系是:频率等于概率乘以总试验次数。
这个关系可以用来计算各种概率实验的结果,帮助我们更好的理解概率的概念。
揭示频率与概率之间的关系一、频率与概率的区别与联系(1)区别:频率是随着试验次数的改变而改变,即频率是随机的,而试验前是不确定的,而概率是一个确定的常数,是客观存在的,与试验次数无关,是随机事件自身的一个属性。
(2)联系:在相同的条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,所以可用频率作为概率的近似值,当试验次数越来越多时频率向概率靠近,概率是频率的近似值。
二、频率与概率应注意的问题①求一个事件的概率的基本方法是做大量的重复试验。
②只有当频率在某个常数附近摆动时,这个常数才叫做事件A 的概率。
③概率是频率的稳定值,而频率是概率的近似值。
④概率反应了随机事件发生的可能性的大小。
⑤概率的值越接近1表明事件发生的可能性越大,反过来值越接近0,则事件发生的可能性越小。
三、典型例题精析例1:某射击运动员在同一条件下进行练习,结果如下所示射击次数n 10 20 50 100 200 500 击中10环次数m8 19 44 93 178 453 击中10环频率n m(1)计算表中击中10环的各个频率;(2)这名射击运动员射击一次,击中10环的概率为多少?分析:(1)逐个将n 、m 值代入公式n m进行计算.(2)观察各频率能否在一常数附近摆动,用多次试验的频率估测概率。
解:(1)射击次数n 10 20 50 100 200 500 击中10环次数m8194493178453击中10环频率n m0.8 0.95 0.88 0.93 0.89 0.906 (2)这名射击运动员射击一次,击中10环的概率约是0.9.点评:利用概率的统计定义求事件的概率是求一个事件概率的基本方法,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,就用事件发生的频率趋近的常数作为事件的概率。
例2:为迎接2008年奥运会,某工厂大批生产奥运会吉祥物----福娃,该工厂对甲乙两职工生产福娃进行了测试,然后进行了统计,下表是统计结果。
班级:___ 姓名:________一、新知导学1.概率的定义:一般地,在n 次重复进行的试验中,事件A 发生的频率nm,当n 很大时,总是在某个常数附近摆动,随着n 的增大,摆动幅度越来越小,这时就把这个常数叫做事件A 的______,记作____。
从概率的定义中,我们可以看出随机事件A 发生的频数m 满足0m n ≤≤,所以事件A 发生的概率P(A)满足___________。
当A 是必然事件时,P(A)=1,当A 是不可能事件时,P(A)=0。
一般来说,随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验中,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间 中的某个常数上,这个常数可以用来度量事件A 发生的可能性的大小,定义为概率,概率的这种定义叫做概率的统计定义.所以概率是频率的稳定值,而频率是概率的近似值.概率越大,事件A 发生的频数就越大,此事件发生的可能性就越大,反之,概率越小,事件A 发生的频数就越小,此事件发生的可能性就越小. 但随机事件的概率大,并不表明它在每一次试验中一定能发生。
概率的大小只能说明随机事件在一次试验中发生的可能性的大小。
二、课前自测1.事件A 的概率满足( )A. P(A)=0B. P(A)=1C.1)(0≤≤A PD. P(A)<0或P(A)>1 2.下列说法:(1)频率是反映事件的频繁程度,概率反映事件发生的可能性大小 (2)做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件的概率 (3)频率是不能脱离n 次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值 (4)频率是概率的近似值,概率是频率的稳定值 其中正确的是_________________。
3.掷一颗骰子,骰子落地时向上的数是3的倍数的概率是_______。
4.某人将一枚硬币边掷了10次,下面朝上的情形出现了6次,若用A 表示下面朝上这一事件,则A 的( ) A 概率为35 B 频率为35C 概率为6D 概率接近0.6。
概率和频率有什么区别和联系
概率是一个稳定的数值,也就是某件事发生或不发生的概率是多少。
频率是在一定数量的某件事情上面,发生的数与总数的比值。
假设事件A的概率是0.3,在100次中发生28次,那么它的频率是一百分之二十八=0.28。
频率是有限次数的试验所得的结果,概率是频数无限大时对应的频率。
1、他们都是统计系统各元件发生的可能性大小。
2、频率一般是大概统计数据经验值,概率是系统固有的准确值。
3、频率是近似值,概率是准确值。
4、频率值一般容易得到,所以一般用来代替概率。
事件的频率与概率是度量事件出现可能性大小的两个统计特征数。
频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。
因此,只能近似地反映事件出现可能性的大小。
概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小。
虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,
这在实际工作中往往是难以做到的。
所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到。
需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。
所以,我们才用频率代替概率,以概率的计算方法来计算频率。