摩托车传统电喷系统零部件结构、原理和主要参数介绍全解
- 格式:ppt
- 大小:1.11 MB
- 文档页数:18
摩托车传统电喷系统零部件结构原理和主要参数介绍一、零部件结构1.燃油泵:燃油泵是将汽油从燃油箱中抽取并提供给燃油喷射器的装置。
燃油泵通常由电动泵和燃油过滤器组成。
电动泵通过电机驱动,将燃油从燃油箱中吸入,并通过燃油过滤器过滤后输送至燃油喷射器。
2.燃油喷射器:燃油喷射器是将燃油雾化并喷射到发动机气缸内的装置。
燃油喷射器通常由电磁阀、喷嘴和喷射孔组成。
电磁阀控制喷油量,喷嘴将燃油雾化,喷射孔将燃油喷射至气缸内部。
3.电子控制单元(ECU):ECU是摩托车电喷系统的核心部件,它接收传感器信号,控制燃油泵和燃油喷射器工作,并实现燃油喷射量、喷射时机、混合气组成等参数的控制。
ECU通常由微处理器、存储器、输入输出接口和时钟电路组成。
二、工作原理1.传感器感知:传感器感知发动机的工作状态,如转速、进气温度、大气压力、节气门开度等。
这些信号通过电缆传输至ECU。
2.控制策略:ECU根据传感器信号及预设的控制策略,计算出燃油喷射量、喷射时机和喷射持续时间。
3.控制执行:ECU通过输出端口发送指令,控制燃油喷射器的开关状态以及燃油泵的运转状态。
4.喷油过程:燃油泵将汽油从燃油箱中抽取,并通过燃油喷射器喷射至发动机气缸内。
5.燃烧效果监测:ECU根据传感器反馈信号监测燃烧效果,如氧浓度、CO浓度、NOx浓度等。
6.反馈修正:根据燃烧效果监测结果,ECU会对喷油量、喷油时机等参数进行修正,以保证发动机的正常运行。
三、主要参数1. 喷油量:表示单位时间内喷射的燃油量,通常以毫升/分钟(mL/min)为单位。
2.喷油时机:表示喷油开始的时刻,通常以相对于活塞上止点的角度或发动机的转角来表示。
3. 喷射持续时间:表示喷油持续的时间,通常以毫秒(ms)为单位。
4.喷油模式:摩托车传统电喷系统通常有顺序喷射和全程喷射两种模式,顺序喷射是指各气缸依次喷油,全程喷射是指各气缸同时喷油。
5.油气比:表示燃油和空气混合物中的燃油含量,通常以质量比或体积比表示。
摩托车电喷工作原理摩托车电喷系统是现代摩托车上常见的燃油供给系统,它通过电子控制单元(ECU)来管理燃油喷射,以实现更高的燃油效率和更好的动力输出。
电喷系统相比传统的化油器系统具有更精确的燃油控制和更好的适应性,因此在现代摩托车上得到了广泛的应用。
首先,电喷系统通过传感器来获取发动机工作状态的信息。
这些传感器包括进气压力传感器、进气温度传感器、曲轴位置传感器、节气门位置传感器等。
这些传感器可以实时地监测发动机的工作状态,将这些信息传输给ECU。
其次,ECU根据传感器获取的信息,计算出最佳的燃油喷射量和喷射时机。
在不同的工况下,发动机需要的燃油量和喷射时机都是不同的,ECU可以根据实时的工作状态做出调整,以保证发动机的工作效率和排放性能。
然后,ECU通过喷油嘴来实现燃油喷射。
喷油嘴是由电磁阀控制的,当ECU发出喷射信号时,电磁阀会打开,喷油嘴就会向进气道喷射适量的燃油。
这样就可以保证燃油的喷射量和喷射时机都是精确控制的。
最后,发动机通过点火系统来点燃喷射进来的燃油混合气。
点火系统同样由ECU控制,它可以根据发动机的工作状态来调整点火时机和点火角度,以保证最佳的点火效果。
总的来说,摩托车电喷系统通过传感器、ECU、喷油嘴和点火系统的协同工作,可以实现对发动机燃油供给的精确控制,从而提高燃油效率和动力输出,同时也可以降低排放物的排放,更好地适应不同工况下的发动机工作要求。
摩托车电喷系统的工作原理虽然复杂,但是它为摩托车提供了更好的动力性能和更高的燃油经济性,因此得到了越来越多摩托车制造商和消费者的青睐。
随着科技的不断进步,相信摩托车电喷系统会在未来得到更广泛的应用,为摩托车的性能和环保性能带来更大的提升。
带你认识电喷摩托车行车电脑ECU,它是整车的大脑!作者:行思止随昨天我们讲到了电喷摩托车不再需要点火器了,已经被ECU取代了功能,并罗列了ECU的四大功能。
今天,我们就讨论一下ECU的内部结构及工作流程。
ECU内部包含存储单元,它能将各传感器或其它装置输入的信息进行综合处理后,输出执行指令。
所以说,它其实就是一部微型电脑。
从直观上说,ECU包括硬件和软件。
硬件是指电喷系统ECU的专用控制单片机、物理电路与输入、输出接口。
软件是加载到ECU内部的系统程序和应用程序。
ECU的系统程序分成两部分,分别是输入、输出程序及应用程序。
ECU的所有输入、输出都通过输入、输出程序完成,其工作流程是:各分系统传感器反馈的信号,经输入程序转换后提供给ECU应用程序,根据发动机工作状况和车主操控信号计算后,经输出程序分发给各系统执行器。
问我执行器是啥?火花塞就是个执行器,它根据接收到的高压信号进行跳火,以引爆混合气。
喷油器也是个执行器,它根据喷油脉宽信号向缸内喷油,以形成混合气。
电喷摩托车的ECU通常安装在摩托车坐垫下面,也有的踏板车安装在脚踏位置,与电瓶放在一起,但无论它放在哪里,都是通过接插件与总电缆线相连接。
其主要功能有:(1)输入整流、滤波电路,即接收传感器或其他装置输入的信息,将输入的信息转变为单片机所能识别的信号。
比如氧传感器检测到燃烧不完全了,就反馈一个信号,经输入电路和程序提供给ECU。
(2)给传感器提供5V基准电压。
这个没什么可解释的,就是给传感器和执行器粮食吃。
(3)用于给ECU写数据及ECU错误诊断接口的通讯电路,即存储、计算、分析处理各种需要的信息。
就是通常所说的故障码,即辅助诊断系统。
(4)运算分析、根据采集的信号求出输出的数值。
这个准备输出的数值,就是准备执行的指令。
(5)输出执行指令,将微弱的信号转变为点火线圈、油泵和喷油器等驱动电路信号。
接着上面说,传感器给ECU提供反馈信号后,ECU计算后,再通过输出电路和程序,将指令输出到执行机构进行工作。
摩托车电喷原理摩托车电喷原理是现代摩托车引擎系统中的重要组成部分,它通过精确控制燃油喷射,实现了引擎燃烧效率的最大化,从而提高了动力性能和燃油经济性。
电喷系统相对于传统的化油器系统具有更高的精度和稳定性,因此在现代摩托车上得到了广泛的应用。
电喷系统由多个部件组成,包括传感器、控制单元、喷油嘴等。
其中,传感器负责采集各种参数信息,如进气压力、进气温度、曲轴转速等;控制单元根据传感器采集的数据,计算出最佳的燃油喷射量和喷射时机,并控制喷油嘴进行喷射。
电喷系统的工作原理可以简单描述为,首先,传感器采集各种参数信息,并将其发送给控制单元;控制单元根据接收到的参数信息,计算出最佳的燃油喷射量和喷射时机;最后,控制单元通过控制喷油嘴,将计算出的燃油喷射量喷入到进气道中,与空气混合后进入燃烧室,从而完成燃烧过程。
在电喷系统中,传感器起着至关重要的作用。
进气压力传感器可以实时监测进气道的压力变化,从而帮助控制单元计算出最佳的燃油喷射量;进气温度传感器则可以监测进气道的温度变化,帮助控制单元调整燃油喷射量,以适应不同的工况;曲轴转速传感器可以监测发动机转速的变化,帮助控制单元确定最佳的喷油时机。
控制单元是电喷系统的“大脑”,它接收传感器采集的参数信息,经过内部的计算和处理,得出最佳的燃油喷射量和喷射时机,并通过控制喷油嘴实现燃油喷射。
控制单元的计算和处理能力直接影响着电喷系统的性能和稳定性。
喷油嘴是电喷系统中的关键部件,它负责将计算出的燃油喷射量喷入到进气道中。
喷油嘴的喷油量和喷油时机直接影响着引擎的工作效率和排放性能。
因此,喷油嘴的喷油精度和稳定性对于整个电喷系统的性能至关重要。
总的来说,摩托车电喷系统通过精确控制燃油喷射,实现了引擎燃烧效率的最大化,从而提高了动力性能和燃油经济性。
传感器、控制单元和喷油嘴等部件共同协作,实现了电喷系统的高精度和高稳定性。
随着科技的不断进步,电喷系统在摩托车上的应用将会更加广泛,为摩托车的性能和经济性带来更大的提升。
电喷主机工作原理
电喷主机是一种通过电子控制燃油喷射的发动机系统。
它的工作原理主要包括燃油喷射系统和电子控制单元(ECU)两个部分。
燃油喷射系统由多个零部件组成,包括燃油泵、燃油滤清器、喷油嘴等。
燃油泵负责将燃油从燃油箱送到发动机中,燃油滤清器用于净化燃油中的杂质,喷油嘴则负责将燃油雾化并喷射到气缸中。
电子控制单元(ECU)是电喷主机的核心部件,它负责监测和控制发动机的工作。
ECU通过传感器获取发动机的相关数据,如转速、负荷、氧气含量等,然后根据这些数据计算得出最佳的燃油喷射量和时机,最后输出相关信号控制喷油嘴的工作。
具体来说,当发动机启动时,ECU会根据当前工况的数据确
定所需的燃油喷射量,并发送信号给喷油嘴。
喷油嘴在接收到信号后会打开,将精确计量的燃油以高压喷射到气缸中。
同时,ECU会监测喷油嘴的工作状态,如喷油量、喷油时间等,以
便对喷油系统进行动态调整,确保喷油量的准确性和喷射时机的精准度。
电喷主机的工作原理基于精确的燃油喷射控制和即时的反馈调节,旨在提高发动机的燃烧效率和动力性能,同时降低燃油消耗和排放物的排放量。
电喷发动机的组成和工作原理(转)从1957年美国公司推出了电子控制汽油喷射系统,这就是所谓的电子喷射,简称电喷。
电喷技术为发动机,乃致整个运输事业的发展开创了一个新纪元。
起先是用的模拟电子喷射,后来发展到数字电子喷射。
它的基本原理是微电脑(ecu)根据各种传感器传来的信号,通过分析、计算、判断,从而精确地控制和选择最佳点火和喷油时刻及喷油量。
电子控制汽油喷油喷射的优点主要表现为:一是对各种工况都能根据特定的目标对燃油定量实现最精确的优化,且各工况之间能做到最佳匹配;二是可实现闭合控制,防止喷射密度的变化所带来的喷油量偏差。
在汽油机中,气缸内的可燃混合气是由电火花点燃的,在汽车发动机点火系统中,点火线圈是为点燃发动机汽缸内空气和燃油混合物提供点火能量的执行部件。
它基于电磁感应的原理,通过关断和打开点火线圈的初级回路,初级回路中的电流增加然后又突然减小,这样在次级就会感应产生点燃火花塞所需的高电压。
点火线圈可以认为是一种特殊的脉冲变压器,它将10-12v的低电压转换成25000v或更高的电压。
为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。
能够按规定的时间在火花塞电极间产生电火花的全部设备称为点火系统,点火系统通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。
对于早期的机械触点断路器(即白金点火)和通过无分布器晶体管点火的机械高压分布帽点火。
以及后来的双火花线圈。
属于微机控制点火系,主要由下列元件组成,监测发动机运行状况的传感器、处理信号、发出指令的微处理机(ecu)、响应微机指令的点火器、点火线圈等。
微机控制点火系统由于不再配置真空离心点火提前调节装置,点火提前角由微机控制,从而使发动机在各种情况下都可最佳地调整点火时刻,使点火提前到发动机刚好不发生爆震的范围。
微机控制的点火系统具有能量损失小、高速性能好、电磁干扰少及点火精度高等诸多优点,目前在中高档车上的应用越来越多。
采用无分电器点火方式同时点火,同时点火是指两个气缸合用一个点火线圈,即一个点火线圈有两个高压输出端。
电子控制燃油喷射系统的组成及工作原理一、电子控制燃油喷射系统的控制内容及功能1、电子控制燃油喷射(EFI)电子控制燃油喷射主要包括喷油量、喷射定时、燃油停供及燃油泵的控制。
1)喷油量控制ECU将发动机转速和负荷信号作为主控信号,确定基本喷油量(喷油电磁阀开启的时间长短),并根据其它有关输入信号加以修正,最后确定总喷油量。
2)喷油定时控制在电控间歇喷射系统中,当采用与发动机转动同步的顺序独立喷射方式时,ECU不仅要控制喷油量,还要根据发动机各缸的发火顺序,将喷射时间控制在一个最佳时刻。
3)减速断油及限速断油控制a. 减速断油控制汽车行驶中,驾驶员快收油门踏板时,ECU将会切断燃油喷射控制电路,停止喷油,以降低减速时HC及CO的排放量。
当发动机转速降至一定的特定转速时,又恢复供油。
b. 限速断油控制发动机加速时,发动机转速超过安全转速或汽车车速超过设定的最高车速,ECU将会在临界转速时切断燃油喷射控制电路,停止喷油,防止超速。
4)燃油泵控制当点火开关打开后,ECU将控制汽油泵工作2—3秒,以建立必须的油压。
此时若不启动发动机,ECU将切断汽油泵控制电路,汽油泵停止工作。
在发动机启动过程和运转过程中,ECU控制汽油泵保持正常运转。
2、电控点火装置(ESA)点火装置的控制主要包括点火提前角、通电时间和爆震控制等方面。
1)点火提前角控制ECU中首先存储发动机在各种工况及运行条件下最理想的提火提前角。
发动机运转时,ECU 根据发动机转速和负荷信号,确定基本点火提前角,并根据其它有关信号进行修正,最后确定点火提前角,并向电子点火控制器输出信号,以控制点火系的工作。
2)通电时间(闭角)控制与恒流控制为保证点火线圈初级电路有足够大的断开电流,以产生足够高的次级电压,同时也要防止通电时间过长线圈过热损坏,ECU可根据蓄电池电压及转速等信号,控制点火线圈初级电路的通电时间。
在高能点火装置中还增加了恒流控制电路,以使在极短时间内初级电流迅速增长到额定值,减少转速对次级电压的影响,改善点火特性。
摩托车电喷系统介绍对于汽车电喷系统,联合电子公众号的粉丝们应该都比较熟悉了;摩托车电喷系统在工作原理和系统构成上和汽车电喷系统基本类似;下图为标准配置的单缸摩托车电喷系统示意图:整套电喷系统包括:电子控制器、节气门体总成(含:节气门体,节气门位置传感器、进气压力传感器、进气温度传感器、怠速执行器等)、喷油器、点火线圈、氧传感器、转速传感器、油泵模块(含:油泵支架、油泵、调压阀、滤清器等)、发动机温度传感器、碳罐阀等。
摩托车电喷系统特点介绍虽然从系统构成上看,摩托车电喷和汽车电喷几乎没有差异,但是摩托车的特点,决定了二者存在着较大的差别;主要有以下几个方面:进气道压力波动剧烈摩托车一般为单缸机(少量为两缸机,其他缸数占比非常低);常规的汽车发动机一般为直列4缸,节气门后带有稳压腔,然后通过进气歧管分配到各个气缸;如下图所示;单缸摩托车发动机因为没有进气稳压腔,且歧管容积较小,当节气门处于中小开度时,进气道的压力波动非常剧烈;进气冲程因为活塞下行的抽吸作用,歧管压力迅速下降,当进气门关闭后,歧管的压力又逐渐回升;汽车4缸发动机由于稳压腔的作用,加上4个缸均匀分布的进气过程,实际进气道压力基本保持平稳,仅有小幅度波动;二者进气道压力波形对比见下图。
这种大幅度的进气道压力波动,对于电喷系统的相关流量参数(空气流量、燃油喷射量、怠速空气量、碳罐冲洗流量等)的准确计算带来了挑战;摩托车电喷系统需要根据单缸机的特点,量身定做控制算法。
(对于每缸均采用分立节气门体的两/多缸机也可以看作是两/多个单缸机的组合,他们的进气道压力的特征类似单缸机)两/多缸机排气管布置型式多样化摩托车的排气管是很重要的外观件,根据车辆造型风格的不同,排气管有类似汽车发动机的多缸排气歧管汇总后进入排气总管的方式(催化器和消声器布置在总管);也有每个缸的排气管(含催化器和消声器)完全独立的方式;这使得排气系统的控制复杂度增加。
发电机功率低,电瓶容量小且容易亏电在摩托车电喷化之前,供油系统用的是化油器,整车运转时主要是点火系统和灯光系统需要供电;加上有的车型配有脚踏起动装置,即使电瓶亏电,整车也可以通过脚踏而正常起动;应用电喷系统后,由于增加了高压油泵、喷油器、怠速执行器、ECU等的耗电,使得原机的供电平衡存在难题。
本田125直接安装在油箱中的电动燃油泵表1 电动燃油泵的输油性能b) 运行噪声试验。
试验前的准备工作如图3所示,噪声测试应当在静音室内进行,背景噪声必须比油泵支架总成的噪声小10 dB(A)美国德尔福T-11电动燃油泵总成外形图电动燃油泵运行噪音试验布置示意图b) 按安装方式分类可分为外置式和内置式2种。
外置式安装在燃油箱外的输油管路中,内置式安装在燃油箱内(见图2),不占用摩托车极其有限的空间,安装使用均非常方便。
目前绝多数摩托车普遍采用内置式,只有极少数老式大排量摩托车(如川崎Z1000)采用外置式燃油泵。
与外置式燃油泵相比,内置式燃油泵不易产生气阻和泄漏,有利于燃油输送和电动机的冷却,且噪声较低。
常见电动燃油泵的基本结构4、电动燃油泵的基本结构与功用图4是常见电动燃油泵的结构图,主要由永磁直流电动机、油泵、限压阀、单向阀、外壳和过滤器等6部件组成。
滚柱式电动燃油泵的结构滚柱式电动燃油泵的工作原理是利用容积变化来输送燃油当电枢旋转时,泵转子随之一同旋转,泵转子齿缺内的滚柱在离心力的作用下,就会紧压在泵体内表面上并随泵转子旋转而产生滑在2个相邻滚柱以及泵转子和泵体之间便形成一个密封的腔室。
由于泵转子偏心安装在电枢轴上,因此当泵转子旋转时,的容积就会发生变化。
在密封腔室容积增大一侧设有进油口,在容积减小一侧的泵体侧设有出油口。
这样,在泵转子旋转过程中,泵体进油口处腔室的容转子泵的工作过程图(3) 叶片式滚柱式电动燃油泵泵油压力脉动大,运转噪声大,使用寿命短。
目前,电控燃油喷射系统趋向于采用平板叶片式电动燃油泵,简称叶片泵,其结构与滚柱式电动燃油泵相似,如图8所示,主要由平板叶片转子与泵体组成。
叶片泵与滚柱泵不同的是,其转子是一块圆形平板,在平板的圆周上制有小槽,叶片上的小槽与泵体之间的空间便形成泵油腔室。
当燃油泵电动机运转时,电机轴带动油泵转子一同旋转。
由于转子转速较高,因此在叶片小槽与泵体进油口之间就会产生真空。
摩托车传统电喷系统零部件结构原理和主要参数介绍全解传统电喷系统的主要组成部分包括:传感器、电子控制器、喷油器、燃油泵、调速器和气门传动装置等。
传感器是传统电喷系统的重要组成部分,它们负责监测发动机运行状态和环境参数,将获取的数据传输给电子控制器进行处理。
常用的传感器包括氧气传感器、节气门位置传感器、曲轴位置传感器和冷却液温度传感器等。
电子控制器是传统电喷系统的核心部分,它接收传感器提供的数据,并根据预设的程序进行计算和调整,控制喷油器的喷油时间和喷油量。
电子控制器通常包括一块微处理器和一组存储器,用于存储和处理数据。
它还可以通过连线或者无线信号与其他控制系统进行通信,实现对整个发动机系统的集中控制。
喷油器是传统电喷系统中的另一个重要部件,它通过电子控制器的指令来控制燃油的喷射时间和喷射量。
喷油器通常由喷油阀、喷油嘴和控制电磁铁等部件组成。
在运行时,电子控制器会发出一个开启喷油器的信号,喷油阀打开,燃油通过喷油嘴喷射进入气缸进行燃烧。
燃油泵是传统电喷系统中的另一个重要部件,它负责将燃油从燃油箱中抽取,并提供足够的压力供给喷油器。
燃油泵通常由电机、泵体和压力调节器等部件组成。
电子控制器会根据发动机的工作负荷和运行状态来控制燃油泵的运行,保证燃油供给的稳定性。
调速器是传统电喷系统中的一个附属部件,它负责根据发动机的负荷情况和运行状态来自动调整节气门的开启角度,以控制气缸内的进气量。
调速器通常由电机、调节阀和传感器等部件组成。
通过控制节气门的开启角度,调速器可以实现对进气量的精确控制,从而提高发动机的燃烧效率和动力输出。
除了上述部件外,传统电喷系统还包括一些辅助部件,如气门传动装置等。
气门传动装置负责控制气门的开启和关闭,调节进气和排气过程。
它通常由凸轮轴、摇臂、气门弹簧和气门等部件组成。
通过电子控制器的指令,气门传动装置可以实现精确的气门控制,从而调节发动机的进气量和排气量。
总结起来,传统电喷系统的零部件结构包括传感器、电子控制器、喷油器、燃油泵、调速器和气门传动装置等。