数字信号处理复习知识点(第一章到第四章)
- 格式:ppt
- 大小:1.16 MB
- 文档页数:33
绪论:本章介绍数字信号处理课程的基本概念。
0.1信号、系统与信号处理1.信号及其分类信号是信息的载体,以某种函数的形式传递信息。
这个函数可以是时间域、频率域或其它域,但最基础的域是时域。
分类:周期信号/非周期信号确定信号/随机信号能量信号/功率信号连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类:2.系统系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。
3.信号处理信号处理即是用系统对信号进行某种加工。
包括:滤波、分析、变换、综合、压缩、估计、识别等等。
所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。
0.2 数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理。
不仅应用于数字化信号的处理,而且也可应用于模拟信号的处理。
以下讨论模拟信号数字化处理系统框图。
(1)前置滤波器将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。
(2)A/D变换器在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。
在A/D 变换器中的保持电路中进一步变换为若干位码。
(3)数字信号处理器(DSP)(4)D/A变换器按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。
由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。
(5)模拟滤波器把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。
0.3 数字信号处理的特点(1)灵活性。
(2)高精度和高稳定性。
(3)便于大规模集成。
(4)对数字信号可以存储、运算、系统可以获得高性能指标。
0.4 数字信号处理基本学科分支数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。
第一章知识点考察1、写出()u n 与()n δ的关系 。
2、写出离散信号角频率ω与连续信号角频率Ω的关系 。
3、判断以下信号是否为周期信号,并写出其基本周期为多少? 1)()1cos(0.01)x n n π=; 2)()2cos(30/105)x n n π=3)()3sin(3)x n n =; 4)()5()64j n x n eππ-=4、给定信号 ()210 - 4n -16 0n 40 n x n +≤≤⎧⎪=≤≤⎨⎪⎩其他 1) 计算()()()12e x n x n x n =+-⎡⎤⎣⎦,并画出()e x n 的图形。
2)计算()()()12o x n x n x n =--⎡⎤⎣⎦,并画出()o x n 的图形。
5、给定离散时间信号()x n ,设()x n 的抽样频率为s f ,若()()M x n x Mn −−−−→倍抽取,则抽样频率变为 ;若()()/L x n x n L −−−−→倍抽取,则抽样频率变为 。
6、若某信号是能量信号,则E ,P ;若某信号是功率信号,则E ,P 。
第二章知识点考察1、一线性移不变系统,输入为()n x 时,输出为()n y ;则输入为()3x n -时,输出为 ;输入为()1x n -时,输出为 。
2、已知某线性移不变系统的单位抽样响应()h n ,判断下列系统是否是因果的、稳定的。
(1)()()0.3n h n u n =; (2)()()1h n n δ=+; (3)()()0.3--1n h n u n =; 3、用公式表示自相关函数()xy r m 与()x m 、()y m 的关系 。
4、两个序列()1x n 和()2x n ,设两序列长度分别为1N 和2N ,令()()()12=y n x n x n *,则()y n 的长度为 。
5、假如()x n 的z 变换代数表示式是下式,问()X z 可能有多少不同的收敛域,它们分别对应什么序列?()221211415311448z X z z z z -----=⎛⎫⎛⎫+++ ⎪⎪⎝⎭⎝⎭6、设数字滤波器的系统函数为1110.5()10.25z H z z --+=+,其差分方程为 。
数字信号处理知识点归纳整理第一章时域离散随机信号的分析1.1. 引言实际信号的四种形式:连续随机信号、时域离散随机信号、幅度离散随机信号和离散随机序列。
本书讨论的是离散随机序列()X n ,即幅度和时域都是离散的情况。
随机信号相比随机变量多了时间因素,时间固定即为随机变量。
随机序列就是随时间n 变化的随机变量序列。
1.2. 时域离散随机信号的统计描述 1.2.1概率描述1. 概率分布函数(离散情况)随机变量n X ,概率分布函数: ()()n X n n n F x ,n P X x =≤(1)2. 概率密度函数(连续情况)若n X 连续,概率密度函数: ()()n n X X n nF x,n p x ,n x ∂=∂ (2)注意,以上两个表达式都是在固定时刻n 讨论,因此对于随机序列而言,其概率分布函数和概率密度函数都是关于n 的函数。
当讨论随机序列时,应当用二维及多维统计特性。
()()()()121212,,,121122,,,12,,,1212,1,,2,,,,,,,1,,2,,,,1,,2,,,NNNx XX N N N N x XX N x XX N NF x x x N P X x X x X x F x x x N p x x x N x x x =≤≤≤∂=∂∂∂1.2.2 数字特征1. 数学期望 ()()()()n xx n n m n E x n x n p x ,n dx ∞-∞==⎡⎤⎣⎦⎰ (3)2. 均方值与方差均方值: ()()22n n x n n E X x n p x ,n dx ∞-∞⎡⎤=⎣⎦⎰ (4)方差: ()()()2222xn x n x n E X m n E X m n σ⎡⎤⎡⎤=-=-⎣⎦⎣⎦(5)3. 相关函数和协方差函数自相关函数:()()nm**n m n m X ,X n m n m r n,m E X X x x p x ,n,x ,m dx dx ∞∞-∞-∞⎡⎤==⎣⎦⎰⎰ (6)自协方差函数:()()()()**cov ,,n m nmn m n X mX xx XXX X E X m Xm r n m m m ⎡⎤=--⎢⎥⎣⎦=- (7)由此可进一步推出互相关函数和互协方差函数。
1. 傅里叶变换有限长序列 可看成周期序列的一个周期; 把 看成 的以N 为周期的周期延拓。
有限长序列的离散傅里叶变换(DFT ):① 长度为N 的有限长序列 x(n) ,其离散傅里叶变换 X(k) 仍是一个长度为N 的有限长序列;② x(n)与X(k)是一个有限长序列离散傅里叶变换对,已知x(n) 就能唯一地确定 X(k);同样已知X(k)也就唯一地确定x(n)。
实际上x(n)与 X(k) 都是长度为 N 的序列(复序列)都有N 个独立值,因而具有等量的信息; ③ 有限长序列隐含着周期性。
)(n x )(n x )(~n x )(~n x ⎩⎨⎧===)())(()()(~)())(()(~n R n x n R n x n x n x n x N N N N ⎪⎪⎩⎪⎪⎨⎧====∑∑-=--=101)(1)]([)()()]([)(N k nk NN n nk NW k X N k X IDFT n x W n x n x DFT k X2.循环卷积(有可能会让画出卷积过程或结果)循环卷积过程为:最后结果为:3.(见课本)课本3、线性卷积(有可能会让画出卷积过程或结果)以下为PPT上的相关题目:4.计算分段卷积:重叠相加法和重叠保留法(一定会考一种)重叠相加法解题基本步骤:将长序列均匀分段,每段长度为M;基于DFT快速卷积法,通过循环卷积求每一段的线性卷积;依次将相邻两段的卷积的N-1个重叠点相加,得到最终的卷积结果。
4.级联、并联、直接形(画图) 以下为课后作业相关题目:1. 已知系统用下面差分方程描述:)1(31)()2(81)1(43)(-+--n x n x n y n y n y +-=试分别画出系统的直接型、 级联型和并联型结构。
式中x (n )和y (n )分别表示系统的输入和输出信号。
解: 将原式移项得)1(31)()2(81)1(43)(-+=-+--n x n x n y n y n y将上式进行Z 变换, 得到121)(31)()(81)(43)(---+=+-zz X z X z z Y z z Y z Y21181431311)(---+-+=z z z z H(1) 按照系统函数H(z), 根据Masson 公式, 画出直接型结构如题1解图(一)所示。
《数字信号处理》辅导一、离散时间信号与系统得时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息得函数也就是独立变量得函数,这个变量可以就是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:就是连续信号得特例。
时间与幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间与幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩ 2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞则称()x n 为周期序列,记为()x n %,N 为其周期。
注意正弦周期序列周期性得判定(课本第10页)2)周期序列得表示方法:a 、主值区间表示法b 、模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n %,即()()i x n x n iL ∞=-∞=-∑%当L N ≥时,()()()N x n xn R n =% 当L N <时,()()()N x n x n R n ≠% (4)序列得分解序列共轭对称分解定理:对于任意给定得整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称得序列()e x n 与共轭反对称得序列()o x n 之与,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+- 1()[()()]2o x n x n x M n *=--(4)序列得运算 1)基本运算将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求与——翻转、移位、相乘、求与定义式: 1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积得计算:A 、图解 B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求与(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3、22进行练习(5)序列得功率与能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑ (6)相关函数——与随机信号得定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统得输入分别为1()x n 与2()x n ,输出分别为1()y n 与2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统得输对于任意给定得常数a 、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
数字信号处理总复习要点考试题型第一题填空题(28/30分)第二题判断题(选择题)(10/15分)第三题简答题、证明题(10分)第四题计算题(40-50分)总复习要点绪论1、数字信号处理的基本概念2、数字信号处理实现的方法:硬件实现、软件实现、软硬件结合实现3、数字信号处理系统的方框图,前后两个低通的作用4、数字信号处理的优缺点第一章离散时间信号与系统1、正弦序列的周期性2、折叠频率3、抗混叠滤波器4、原连续信号的谱,对应的采样信号的谱第二章离散时间傅立叶变换(DTFT )1、 z 变换的定义,2、 DTFT 、IDTFT 的定义(作业)3、序列的频谱(幅度谱、相位谱)4、序列谱的特点:时域离散、频谱连续,以2π为周期。
5、 DTFT 的性质,见P78表2-3时移性质、频移性质、指数加权、线性加权、卷积定理对称性1、对称性2 (共轭对称、共轭反对称)()[()]()j j nn X e DTFT x n x n eωω∞==∑1()[()]()2j j j nx n IDTFT X e X e e d πωωωπωπ-==6、序列的傅立叶变换和模拟信号傅立叶变换之间的关系(指Xa(j Ω)、Xa(j Ω)、和X(e j ω)三者之间的关系)模拟频率fs 对应数字频率2π,折叠频率fs/2对应数字频率π。
7、周期序列的离散傅立叶级数(DFS )8、周期序列的傅立叶变换9、离散时间系统的差分方程、H(z),H(e jw),h(n)。
第三章离散傅立叶变换(DFT )1、周期序列离散傅立叶级数(DFS)的性质2、离散傅立叶变换的定义(N ≥M )1?()()a a s k Xj X j jk T∞=-∞Ω=Ω-Ω∑()()|j TX eXaωΩ==Ω12()()j a k X eX jjk TTTωωπ∞=-∞=-∑211()[()]()N jknNk x n ID FS X k X k e Nπ-===∑21[()]()N j knNn D FS x n xn e π--===∑ ()X k 22()()k X k k Nππδω∞=-∞=-∑[()]DTFT xn 11()[()]()N knNk x n ID FT X k X k W N--===∑1()[()]()N knNn X k DFT x n x n W -===∑3、DFT 的特点:时域离散、频域离散。
数字信号处理知识点1. 引言数字信号处理(Digital Signal Processing,DSP)是应用数字计算技术来过滤、压缩、存储、生成、识别和其他方式处理信号的科学领域。
本文旨在概述数字信号处理的核心技术和知识点,为学习和应用DSP提供明确的指导。
2. 信号的基本概念2.1 模拟信号与数字信号2.2 信号的时域和频域特性2.3 采样定理(奈奎斯特定理)2.4 量化和编码2.5 信号重构3. 离散时间信号与系统3.1 离散时间信号的定义3.2 线性时不变(LTI)系统3.3 卷积和系统响应3.4 Z变换及其应用3.5 差分方程4. 傅里叶分析4.1 傅里叶级数4.2 傅里叶变换4.3 快速傅里叶变换(FFT)4.4 频谱分析5. 滤波器设计5.1 滤波器的基本概念5.2 理想滤波器5.3 窗函数法5.4 IIR滤波器设计5.5 FIR滤波器设计6. 信号的检测与估计6.1 信号检测理论6.2 最小二乘估计6.3 卡尔曼滤波6.4 信号的自适应滤波7. 语音与图像处理7.1 语音信号的特性7.2 语音编码技术7.3 图像信号的基本概念7.4 图像压缩技术7.5 图像增强技术8. 实时数字信号处理系统8.1 DSP芯片的特性8.2 实时操作系统8.3 硬件与软件协同设计8.4 系统性能评估9. 应用实例9.1 通信系统中的DSP应用9.2 生物医学信号处理9.3 音频和视频处理9.4 雷达和声纳系统10. 结论数字信号处理是一个多学科交叉的领域,涉及信号理论、数学、计算机科学和电子工程。
掌握DSP的基础知识对于理解和设计现代通信系统、音频和视频处理系统以及其他相关应用至关重要。
请注意,本文仅为数字信号处理知识点的概述,每个部分都需要深入学习才能完全理解和应用。
读者应参考相关教材、课程和实践项目,以获得更全面和深入的知识。
绪论一、信号、系统和信号处理二、数字信号处理系统的基本组成图Ⅰ数字信号处理系统的简单方框图2数字信号处理教程(第三版)图Ⅱ数字信号处理过程的波形图(a) 输入模拟信号波形;(b) 抽样信号;(c) 数字码;(d) 量化后的输入信号序列;(e) 输出信号序列;(f) 输出模拟信号三、数字信号处理的学科概貌数字信号处理教程(第三版) 3 四、数字信号处理的特点图Ⅲ时分多路复用数字信号处理系统的方框图五、数字信号处理的应用六、数字信号处理的发展方向第一章离散时间信号与系统1.1离散时间信号——序列图1.1离散时间信号的图形表示一、序列的运算4数字信号处理教程(第三版)图1.2序列x(n)及超前序列x(n+1)图1.3序列x(n)及翻褶后的序列x(-n)数字信号处理教程(第三版) 5图1.4两序列相加图1.5序列x(n)及其累加序列y(n)6数字信号处理教程(第三版)图1.6 x(n)、前向差分Δx(n)及后向差分Δx(n)图1.7(a)序列x(n);(b)抽取序列xd(n),(D=2);(c)插值序列xe(n),(I=2)图1.8x(n)和h(n)的卷积和图解二、几种常用序列图1.9单位抽样序列数字信号处理教程(第三版) 7图1.10单位阶跃序列图1.11矩形序列图1.12 0<a<1时的实指数序列三、序列的周期性图1.13当=0,ω0=2π10,A=1时的正弦序列(周期性序列,周期N=10)图1.14当=0, ω0=314×2π, A=1时的正弦序列四、用单位抽样序列来表示任意序列8数字信号处理教程(第三版)图1.15用单位抽样序列表示任意序列x(n)(a) x(n)序列;(b) 将x(n)表示成单位抽样序列的移位加权和;(c) 将x(n)表示成x(n)和δ(n)五、序列的能量1.2线性移不变系统图1.16离散时间系统一、线性系统图1.17一种增量线性系统,y0(n)是系统的零输入响应二、移不变系统数字信号处理教程(第三版) 9图1.18 y(n)=x(2n)系统(a) 输入x1(n);(b) 对应于x1(n)的输出y1(n);(c) 输入x2(n)=x1(n-2)(d) 对应于x2(n)的输出y2(n);(e) 移位信号y1(n-2)三、单位抽样响应(单位冲激响应)与卷积和图1.19线性移不变系统四、线性移不变系统的性质图1.20卷积和服从交换律图1.21具有相同单位抽样响应的三个系统10数字信号处理教程(第三版)图1.22线性移不变系统的并联组合图1.23级联系统的例子五、因果系统六、稳定系统图1.24 h(n)=anu(n)的图形(a实数,a>1)图1.25 h(n)=-anu(-n-1)的图形(a>1)1.3常系数线性差分方程图1.26一阶差分方程的运算结构1.4连续时间信号的抽样图1.27连续时间信号的抽样(a) 抽样器的原理;(b) 实际抽样;(c) 理想抽样一、理想抽样的抽样定理图1.28周期冲激序列δT(t)与它的傅里叶变换ΔT(jΩ)图1.29抽样后,频谱的周期延拓二、信号的重建(抽样的恢复)图1.30理想低通滤波器特性图1.31抽样的恢复图1.32内插函数图1.33抽样的内插恢复三、实际抽样图1.34实际抽样时,频谱包络的变化四、正弦信号的抽样习题。
数字信号处理知识点归纳整理第一章时域离散随机信号的分析1.1. 引言实际信号的四种形式:连续随机信号、时域离散随机信号、幅度离散随机信号和离散随机序列。
本书讨论的是离散随机序列()X n ,即幅度和时域都是离散的情况。
随机信号相比随机变量多了时间因素,时间固定即为随机变量。
随机序列就是随时间n 变化的随机变量序列。
1.2. 时域离散随机信号的统计描述 1.2.1概率描述1. 概率分布函数(离散情况)随机变量n X ,概率分布函数: ()()n X n n n F x ,n P X x =≤(1)2. 概率密度函数(连续情况)若n X 连续,概率密度函数: ()()n n X X n nF x,n p x ,n x ∂=∂ (2)注意,以上两个表达式都是在固定时刻n 讨论,因此对于随机序列而言,其概率分布函数和概率密度函数都是关于n 的函数。
当讨论随机序列时,应当用二维及多维统计特性。
()()()()121212,,,121122,,,12,,,1212,1,,2,,,,,,,1,,2,,,,1,,2,,,NNNx XX N N N N x XX N x XX N NF x x x N P X x X x X x F x x x N p x x x N x x x =≤≤≤∂=∂∂∂1.2.2 数字特征1. 数学期望 ()()()()n xx n n m n E x n x n p x ,n dx ∞-∞==⎡⎤⎣⎦⎰ (3)2. 均方值与方差均方值: ()()22n n x n n E X x n p x ,n dx ∞-∞⎡⎤=⎣⎦⎰ (4)方差: ()()()2222xn x n x n E X m n E X m n σ⎡⎤⎡⎤=-=-⎣⎦⎣⎦(5)3. 相关函数和协方差函数自相关函数:()()nm**n m n m X ,X n m n m r n,m E X X x x p x ,n,x ,m dx dx ∞∞-∞-∞⎡⎤==⎣⎦⎰⎰ (6)自协方差函数:()()()()**cov ,,n m nmn m n X mX xx XXX X E X m Xm r n m m m ⎡⎤=--⎢⎥⎣⎦=- (7)由此可进一步推出互相关函数和互协方差函数。
吴镇扬《数字信号处理》重点章节和内容重点章节第一章离散时间信号和系统1.1离散时间信号1.2 采样(概念)1.3离散时间信号的傅氏变换DTFT1.3.1 DTFT 记表1.2①④⑤1.3.2 Z变换例一当公式用1.3.3反z变换一阶H(z)的反z1.3.4 z变换的性质表1.3③④⑤⑥⑧⑨1.3.5 z变换与DTFT的关系(1.31)(1.32)1.3.6 Parseval定理(略)1.4*离散时间系统:线性、移不变、因果、稳定性、差分方程1.5*系统的频率响应和系统函数第二章:离散傅氏变换DFT 及其快速算法2.1* 离散傅氏级数(概念),DFT与DFS关系,DFT定义(2.21)(2.22)和运算,DFT性质(线性、时移、三种卷积、奇偶对称性、选频性、能量守恒(2.50)2.2利用DFT做连续信号的频谱分析(概念),各变换域之间的关系。
2.3快速傅氏变换FFT 基2 DIT FFT2.4快速傅氏变换FFT的应用: 实序列FFT及快速卷积的步骤第三章IIR数字滤波器设计方法数字滤波器的概念及分类,IIR DF的设计步骤3.1冲激响应不变法,双线性变换法计算(3阶以内,预畸)3.2设计模拟低通常用的三种方法的主要特点3.3(略),3.4(略),3.5(略)第四章FIR数字滤波器设计方法4.1线性相位的条件,四类FIR DF的特点和用途。
四零点组特点。
4.2 窗口设计法:窗口大小、位置、形状的选择,吉布斯效应,阻带最小衰耗、旁瓣峰值衰耗、过渡带宽的定义、与窗的关系窗口法设计步骤4.3(略),4.4(略) 4.5 FIR与IIR DF的比较第五章数字信号处理系统的实现5.1 数字网络的信号流图,IIR和FIR数字滤波器的结构(频率采样型略)。
H(z) 流图5.2量化误差的基本概念主要的习题类型1.1,1.2,1.3,卷积计算,1.7,1.10,1.13,1.16,1.21,1.22,2.6,差分方程、系统函数、冲激响应、频响之间关系,幅频特性的几何法估计2.19,2.21,2.24,3.1,3.4,3.7,3.9,4.12,5.3,5.5,线性相位型。
数字信号处理第⼀章知识总结数字信号处理第⼀章总结1.1 引⾔ (3)1.2 时域离散信号 (3)1)离散信号: (3)2)常⽤序列: .................................................................... 错误!未定义书签。
3)正弦序列: (3)4)周期序列: (4)1.3 时域离散系统 (4)1.3.1 线性系统 (4)1.3.2 时不变系统 (5)1.3.3 线性时不变系统输⼊与输出之间的关系 (5)1.3.4 系统的因果性和稳定性 (5)1.4 时域离散系统的输⼊输出描述法——线性常系数差分⽅程 (6)1.4.1线性常系数差分⽅程: (6)1.4.2线性常系数差分⽅程的求解 (6)1.5 模拟信号数字处理⽅法 (7)摘要:信号通常是⼀个⾃变量或⼏个⾃变量的函数。
如果仅有⼀个⾃变量,则称为以维信号;如果有两个以上的⾃变量,则称为多维信号。
通常把信号看做时间的函数。
实际中遇到的信号⼀般是模拟信号,对它进⾏等间隔采样便可以得到时域离散信号。
关键词:模拟信号;等间隔采样;时域离散信号1.1 引⾔信号分为三类:1)模拟信号:⾃变量和函数值都是连续的。
2)时域离散信号:⾃变量离散,函数值连续。
它来源于对数字信号的采样。
3)数字信号:⾃变量和函数值都是离散的。
它是幅度化的时域离散信号。
1.2 时域离散信号离散信号:模拟信号(时域连续)经过“采样”变成时域离散信号,公式是:x(n)=x a (nT),-∞<n <∞这⾥,x(n)称为时域离散信号,式中的n 取整数,显然,x (n )是⼀串有序的数字的集合,因此时域离散信号也可以称为序列。
时域离散信号有三种表⽰⽅法:(1)⽤集合符号表⽰序列(2)⽤图形表⽰序列(3)⽤公式表⽰序列常⽤典型序列(时域离散信号):1)单位采样信号:0001n ≠==n n )(δ 2)单位阶跃信号:0001n u <≥?=n n )(3)(n R N =u )(n -u )(N n -:(N 是矩形序列的长度)实指数序列:a n x =)(n )(n u ,a 为实数。
数字信号处理及其应用第一章:引言数字信号处理(Digital Signal Processing,DSP)是指利用数字信号处理技术来处理信号的方法,主要就是针对时间上的连续变化的模拟信号进行数字化处理,在数字领域进行算法求解和数字信号输出。
数字信号处理技术主要应用于通信、音频、图像、视频等多种领域。
第二章:数字信号的基本原理数字信号是由一系列离散点所组成的信号,离散点的值可以用数字形式呈现。
数字信号来源于模拟信号,其数字化过程主要包括:采样、量化和编码。
其中,采样是指用固定的时间间隔对模拟信号进行取样,得到离散的信号点;量化是指将采样得到的连续信号点映射成有限个数值,称为量化值,该过程可以理解为数字信号的离散化过程,通常按照等间距离断线方式实现。
量化过程中引入的误差称为量化误差;编码是指将采样和量化得到的数字信号用二进制的形式表示,以便于存储和传输。
第三章:数字信号的处理方法数字信号处理包括时域处理和频域处理两种方法。
1. 时域处理:时域处理是指对信号的时间变化进行处理,如差分、滤波、卷积、变换等。
时域处理方法主要应用于时域相关信号,如音频信号、生物信号等。
2. 频域处理:频域处理是指对信号的频率成分进行处理,如傅里叶变换、小波变换等。
频域处理的主要应用场景是图像处理、视频处理等。
第四章:数字信号处理的应用数字信号处理应用于多个领域,包括通过数字信号处理进行音频信号处理、图像处理等。
1. 音频信号处理:数字信号处理技术可以应用于音频编码、语音识别、语音合成、数字音频播放等多个方面,包括对声音进行去噪、降噪、声音增强等。
2. 图像处理:数字信号处理技术可以应用于图像处理、视频处理等多个方面,包括对图像进行分析、重构、压缩等。
第五章:数字信号处理的未来发展趋势数字信号处理技术的未来发展可以从多个方面展开。
一方面,随着通信技术的发展,数字信号处理技术将更加深入地应用于通信领域,例如通过数字信号处理实现高速网络、信息安全等。
第1章 时域离散信号和时域离散系统1.常用典型序列间的关系:(1)单位采样序列)(n δ可用单位阶跃序列)(n u 表示,即)(n δ=)1()(--n u n u 。
(2)单位阶跃序列)(n u 可用单位采样序列)(n δ表示,即)(n u =∑∑-∞=∞==-nm k m k n )()(0δδ。
(3)矩形序列)(n R N 可用单位阶跃序列)(n u 表示,即=)(n R N )()(N n u n u --。
(4)对任意序列)(n x ,可用单位采样序列)(n δ表示,即)(n x =∑∞-∞=-m m n m x )()(δ。
2.正弦序列和复指数序列周期性的判定(1)关于序列)(n x =cos(n 73π-8π)的周期性的判定,以下说法正确的是( C )。
A. )(n x 是周期序列,周期为3 B. )(n x 是周期序列,周期为7 C. )(n x 是周期序列,周期为14D. )(n x 不是周期序列(2) 关于序列)53sin()(ππ-=n n x 的周期性的判定,以下说法正确的是( C )。
A. )(n x 是周期序列,周期为3 B. )(n x 是周期序列,周期为5 C. )(n x 是周期序列,周期为10D. )(n x 不是周期序列(3)关于序列)81()(π-=n j e n x 的周期性的判定,以下说法正确的是( D )A. )(n x 是周期序列,周期为1B. )(n x 是周期序列,周期为8C. )(n x 是周期序列,周期为1/8D. )(n x 不是周期序列3.序列运算给定信号⎪⎩⎪⎨⎧≤≤-≤≤-+=其它 03031332)(n n n n x (1)画出)(n x 及)1(2-n x 的波形图; (2)画出)(n x 及)1(2+n x 的波形图;(3) 画出)(n x 及)1(2n x -的波形图; (4) 画出)(n x 及)2/(2n x 的波形图; (5) 画出)(n x 及)2(2n x 的波形图。