数字信号处理复习知识点(第一章到第四章)
- 格式:ppt
- 大小:1.16 MB
- 文档页数:33
绪论:本章介绍数字信号处理课程的基本概念。
0.1信号、系统与信号处理1.信号及其分类信号是信息的载体,以某种函数的形式传递信息。
这个函数可以是时间域、频率域或其它域,但最基础的域是时域。
分类:周期信号/非周期信号确定信号/随机信号能量信号/功率信号连续时间信号/离散时间信号/数字信号按自变量与函数值的取值形式不同分类:2.系统系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。
3.信号处理信号处理即是用系统对信号进行某种加工。
包括:滤波、分析、变换、综合、压缩、估计、识别等等。
所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。
0.2 数字信号处理系统的基本组成数字信号处理就是用数值计算的方法对信号进行变换和处理。
不仅应用于数字化信号的处理,而且也可应用于模拟信号的处理。
以下讨论模拟信号数字化处理系统框图。
(1)前置滤波器将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。
(2)A/D变换器在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。
在A/D 变换器中的保持电路中进一步变换为若干位码。
(3)数字信号处理器(DSP)(4)D/A变换器按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。
由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。
(5)模拟滤波器把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。
0.3 数字信号处理的特点(1)灵活性。
(2)高精度和高稳定性。
(3)便于大规模集成。
(4)对数字信号可以存储、运算、系统可以获得高性能指标。
0.4 数字信号处理基本学科分支数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。
第一章知识点考察1、写出()u n 与()n δ的关系 。
2、写出离散信号角频率ω与连续信号角频率Ω的关系 。
3、判断以下信号是否为周期信号,并写出其基本周期为多少? 1)()1cos(0.01)x n n π=; 2)()2cos(30/105)x n n π=3)()3sin(3)x n n =; 4)()5()64j n x n eππ-=4、给定信号 ()210 - 4n -16 0n 40 n x n +≤≤⎧⎪=≤≤⎨⎪⎩其他 1) 计算()()()12e x n x n x n =+-⎡⎤⎣⎦,并画出()e x n 的图形。
2)计算()()()12o x n x n x n =--⎡⎤⎣⎦,并画出()o x n 的图形。
5、给定离散时间信号()x n ,设()x n 的抽样频率为s f ,若()()M x n x Mn −−−−→倍抽取,则抽样频率变为 ;若()()/L x n x n L −−−−→倍抽取,则抽样频率变为 。
6、若某信号是能量信号,则E ,P ;若某信号是功率信号,则E ,P 。
第二章知识点考察1、一线性移不变系统,输入为()n x 时,输出为()n y ;则输入为()3x n -时,输出为 ;输入为()1x n -时,输出为 。
2、已知某线性移不变系统的单位抽样响应()h n ,判断下列系统是否是因果的、稳定的。
(1)()()0.3n h n u n =; (2)()()1h n n δ=+; (3)()()0.3--1n h n u n =; 3、用公式表示自相关函数()xy r m 与()x m 、()y m 的关系 。
4、两个序列()1x n 和()2x n ,设两序列长度分别为1N 和2N ,令()()()12=y n x n x n *,则()y n 的长度为 。
5、假如()x n 的z 变换代数表示式是下式,问()X z 可能有多少不同的收敛域,它们分别对应什么序列?()221211415311448z X z z z z -----=⎛⎫⎛⎫+++ ⎪⎪⎝⎭⎝⎭6、设数字滤波器的系统函数为1110.5()10.25z H z z --+=+,其差分方程为 。
数字信号处理知识点归纳整理第一章时域离散随机信号的分析1.1. 引言实际信号的四种形式:连续随机信号、时域离散随机信号、幅度离散随机信号和离散随机序列。
本书讨论的是离散随机序列()X n ,即幅度和时域都是离散的情况。
随机信号相比随机变量多了时间因素,时间固定即为随机变量。
随机序列就是随时间n 变化的随机变量序列。
1.2. 时域离散随机信号的统计描述 1.2.1概率描述1. 概率分布函数(离散情况)随机变量n X ,概率分布函数: ()()n X n n n F x ,n P X x =≤(1)2. 概率密度函数(连续情况)若n X 连续,概率密度函数: ()()n n X X n nF x,n p x ,n x ∂=∂ (2)注意,以上两个表达式都是在固定时刻n 讨论,因此对于随机序列而言,其概率分布函数和概率密度函数都是关于n 的函数。
当讨论随机序列时,应当用二维及多维统计特性。
()()()()121212,,,121122,,,12,,,1212,1,,2,,,,,,,1,,2,,,,1,,2,,,NNNx XX N N N N x XX N x XX N NF x x x N P X x X x X x F x x x N p x x x N x x x =≤≤≤∂=∂∂∂1.2.2 数字特征1. 数学期望 ()()()()n xx n n m n E x n x n p x ,n dx ∞-∞==⎡⎤⎣⎦⎰ (3)2. 均方值与方差均方值: ()()22n n x n n E X x n p x ,n dx ∞-∞⎡⎤=⎣⎦⎰ (4)方差: ()()()2222xn x n x n E X m n E X m n σ⎡⎤⎡⎤=-=-⎣⎦⎣⎦(5)3. 相关函数和协方差函数自相关函数:()()nm**n m n m X ,X n m n m r n,m E X X x x p x ,n,x ,m dx dx ∞∞-∞-∞⎡⎤==⎣⎦⎰⎰ (6)自协方差函数:()()()()**cov ,,n m nmn m n X mX xx XXX X E X m Xm r n m m m ⎡⎤=--⎢⎥⎣⎦=- (7)由此可进一步推出互相关函数和互协方差函数。
1. 傅里叶变换有限长序列 可看成周期序列的一个周期; 把 看成 的以N 为周期的周期延拓。
有限长序列的离散傅里叶变换(DFT ):① 长度为N 的有限长序列 x(n) ,其离散傅里叶变换 X(k) 仍是一个长度为N 的有限长序列;② x(n)与X(k)是一个有限长序列离散傅里叶变换对,已知x(n) 就能唯一地确定 X(k);同样已知X(k)也就唯一地确定x(n)。
实际上x(n)与 X(k) 都是长度为 N 的序列(复序列)都有N 个独立值,因而具有等量的信息; ③ 有限长序列隐含着周期性。
)(n x )(n x )(~n x )(~n x ⎩⎨⎧===)())(()()(~)())(()(~n R n x n R n x n x n x n x N N N N ⎪⎪⎩⎪⎪⎨⎧====∑∑-=--=101)(1)]([)()()]([)(N k nk NN n nk NW k X N k X IDFT n x W n x n x DFT k X2.循环卷积(有可能会让画出卷积过程或结果)循环卷积过程为:最后结果为:3.(见课本)课本3、线性卷积(有可能会让画出卷积过程或结果)以下为PPT上的相关题目:4.计算分段卷积:重叠相加法和重叠保留法(一定会考一种)重叠相加法解题基本步骤:将长序列均匀分段,每段长度为M;基于DFT快速卷积法,通过循环卷积求每一段的线性卷积;依次将相邻两段的卷积的N-1个重叠点相加,得到最终的卷积结果。
4.级联、并联、直接形(画图) 以下为课后作业相关题目:1. 已知系统用下面差分方程描述:)1(31)()2(81)1(43)(-+--n x n x n y n y n y +-=试分别画出系统的直接型、 级联型和并联型结构。
式中x (n )和y (n )分别表示系统的输入和输出信号。
解: 将原式移项得)1(31)()2(81)1(43)(-+=-+--n x n x n y n y n y将上式进行Z 变换, 得到121)(31)()(81)(43)(---+=+-zz X z X z z Y z z Y z Y21181431311)(---+-+=z z z z H(1) 按照系统函数H(z), 根据Masson 公式, 画出直接型结构如题1解图(一)所示。
《数字信号处理》辅导一、离散时间信号与系统得时域分析 (一) 离散时间信号(1)基本概念信号:信号传递信息得函数也就是独立变量得函数,这个变量可以就是时间、空间位置等。
连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。
模拟信号:就是连续信号得特例。
时间与幅度均连续。
离散信号:时间上不连续,幅度连续。
常见离散信号——序列。
数字信号:幅度量化,时间与幅度均不连续。
(2)基本序列(课本第7——10页)1)单位脉冲序列 1,0()0,0n n n δ=⎧=⎨≠⎩ 2)单位阶跃序列 1,0()0,0n u n n ≥⎧=⎨≤⎩3)矩形序列 1,01()0,0,N n N R n n n N ≤≤-⎧=⎨<≥⎩ 4)实指数序列 ()n a u n5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞则称()x n 为周期序列,记为()x n %,N 为其周期。
注意正弦周期序列周期性得判定(课本第10页)2)周期序列得表示方法:a 、主值区间表示法b 、模N 表示法 3)周期延拓设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n %,即()()i x n x n iL ∞=-∞=-∑%当L N ≥时,()()()N x n xn R n =% 当L N <时,()()()N x n x n R n ≠% (4)序列得分解序列共轭对称分解定理:对于任意给定得整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称得序列()e x n 与共轭反对称得序列()o x n 之与,即()()(),e o x n x n x n n =+-∞<<∞并且1()[()()]2e x n x n x M n *=+- 1()[()()]2o x n x n x M n *=--(4)序列得运算 1)基本运算将序列()x n 以y 轴为中心做翻转,然后做m 点移位,最后与()x n 对应点相乘求与——翻转、移位、相乘、求与定义式: 1212()()()()()m y n x m x n m x n x n ∞=-∞=-=*∑线性卷积得计算:A 、图解 B 、解析法C 、不进位乘法(必须掌握)3)单位复指数序列求与(必须掌握)/2/2/2/2/2/21/2/2/2/2/2/2(1)/21()()/(2)1()()/(2)sin(/2)sin(/2)j N j N j N j N j N j N j N N j nj j j j j j j n j N e e e e e e e j ee e e e e e e j N e ωωωωωωωωωωωωωωωωωω------------=-----===---=∑如果2/k N ωπ=,那么根据洛比达法则有sin(/2)(0)(0)(()())sin(/2)N N k N N k N ωδδω===或可以结合作业题3、22进行练习(5)序列得功率与能量能量:2|()|n E x n ∞=-∞=∑功率:21lim |()|21NN n NP x n N →∞=-=+∑ (6)相关函数——与随机信号得定义运算相同(二) 离散时间系统1.系统性质 (1)线性性质定义:设系统得输入分别为1()x n 与2()x n ,输出分别为1()y n 与2()y n ,即1122()[()],()[()]y n T x n y n T x n ==统得输对于任意给定得常数a 、b ,下式成立1212()[()()]()()y n T ax n bx n a y n by n =+=+则该系统服从线性叠加原理,为线性系统,否则为非线性系统。
数字信号处理总复习要点考试题型第一题填空题(28/30分)第二题判断题(选择题)(10/15分)第三题简答题、证明题(10分)第四题计算题(40-50分)总复习要点绪论1、数字信号处理的基本概念2、数字信号处理实现的方法:硬件实现、软件实现、软硬件结合实现3、数字信号处理系统的方框图,前后两个低通的作用4、数字信号处理的优缺点第一章离散时间信号与系统1、正弦序列的周期性2、折叠频率3、抗混叠滤波器4、原连续信号的谱,对应的采样信号的谱第二章离散时间傅立叶变换(DTFT )1、 z 变换的定义,2、 DTFT 、IDTFT 的定义(作业)3、序列的频谱(幅度谱、相位谱)4、序列谱的特点:时域离散、频谱连续,以2π为周期。
5、 DTFT 的性质,见P78表2-3时移性质、频移性质、指数加权、线性加权、卷积定理对称性1、对称性2 (共轭对称、共轭反对称)()[()]()j j nn X e DTFT x n x n eωω∞==∑1()[()]()2j j j nx n IDTFT X e X e e d πωωωπωπ-==6、序列的傅立叶变换和模拟信号傅立叶变换之间的关系(指Xa(j Ω)、Xa(j Ω)、和X(e j ω)三者之间的关系)模拟频率fs 对应数字频率2π,折叠频率fs/2对应数字频率π。
7、周期序列的离散傅立叶级数(DFS )8、周期序列的傅立叶变换9、离散时间系统的差分方程、H(z),H(e jw),h(n)。
第三章离散傅立叶变换(DFT )1、周期序列离散傅立叶级数(DFS)的性质2、离散傅立叶变换的定义(N ≥M )1?()()a a s k Xj X j jk T∞=-∞Ω=Ω-Ω∑()()|j TX eXaωΩ==Ω12()()j a k X eX jjk TTTωωπ∞=-∞=-∑211()[()]()N jknNk x n ID FS X k X k e Nπ-===∑21[()]()N j knNn D FS x n xn e π--===∑ ()X k 22()()k X k k Nππδω∞=-∞=-∑[()]DTFT xn 11()[()]()N knNk x n ID FT X k X k W N--===∑1()[()]()N knNn X k DFT x n x n W -===∑3、DFT 的特点:时域离散、频域离散。