数字信号处理知识点
- 格式:pdf
- 大小:832.85 KB
- 文档页数:3
第一章知识点考察1、写出()u n 与()n δ的关系 。
2、写出离散信号角频率ω与连续信号角频率Ω的关系 。
3、判断以下信号是否为周期信号,并写出其基本周期为多少? 1)()1cos(0.01)x n n π=; 2)()2cos(30/105)x n n π=3)()3sin(3)x n n =; 4)()5()64j n x n eππ-=4、给定信号 ()210 - 4n -16 0n 40 n x n +≤≤⎧⎪=≤≤⎨⎪⎩其他 1) 计算()()()12e x n x n x n =+-⎡⎤⎣⎦,并画出()e x n 的图形。
2)计算()()()12o x n x n x n =--⎡⎤⎣⎦,并画出()o x n 的图形。
5、给定离散时间信号()x n ,设()x n 的抽样频率为s f ,若()()M x n x Mn −−−−→倍抽取,则抽样频率变为 ;若()()/L x n x n L −−−−→倍抽取,则抽样频率变为 。
6、若某信号是能量信号,则E ,P ;若某信号是功率信号,则E ,P 。
第二章知识点考察1、一线性移不变系统,输入为()n x 时,输出为()n y ;则输入为()3x n -时,输出为 ;输入为()1x n -时,输出为 。
2、已知某线性移不变系统的单位抽样响应()h n ,判断下列系统是否是因果的、稳定的。
(1)()()0.3n h n u n =; (2)()()1h n n δ=+; (3)()()0.3--1n h n u n =; 3、用公式表示自相关函数()xy r m 与()x m 、()y m 的关系 。
4、两个序列()1x n 和()2x n ,设两序列长度分别为1N 和2N ,令()()()12=y n x n x n *,则()y n 的长度为 。
5、假如()x n 的z 变换代数表示式是下式,问()X z 可能有多少不同的收敛域,它们分别对应什么序列?()221211415311448z X z z z z -----=⎛⎫⎛⎫+++ ⎪⎪⎝⎭⎝⎭6、设数字滤波器的系统函数为1110.5()10.25z H z z --+=+,其差分方程为 。
数字信号处理知识点汇总数字信号处理是一门涉及多个领域的重要学科,在通信、音频处理、图像处理、控制系统等众多领域都有着广泛的应用。
接下来,让我们一同深入了解数字信号处理的主要知识点。
一、数字信号的基本概念数字信号是在时间和幅度上都离散的信号。
与模拟信号相比,数字信号具有更强的抗干扰能力和便于处理、存储等优点。
在数字信号中,我们需要了解采样定理。
采样定理指出,为了能够从采样后的信号中完全恢复原始的连续信号,采样频率必须至少是原始信号最高频率的两倍。
这是保证数字信号处理准确性的关键原则。
二、离散时间信号与系统离散时间信号可以通过序列来表示,常见的有单位脉冲序列、单位阶跃序列等。
离散时间系统则是对输入的离散时间信号进行运算和处理,产生输出信号。
系统的特性可以通过线性、时不变性、因果性和稳定性等方面来描述。
线性系统满足叠加原理,即多个输入的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合。
时不变系统的特性不随时间变化,输入的时移会导致输出的相同时移。
因果系统的输出只取决于当前和过去的输入,而稳定系统对于有界的输入会产生有界的输出。
三、Z 变换Z 变换是分析离散时间系统的重要工具。
它将离散时间信号从时域转换到复频域。
通过 Z 变换,可以方便地求解系统的差分方程,分析系统的频率特性和稳定性。
Z 变换的收敛域决定了其特性和应用范围。
逆 Z 变换则可以将复频域的函数转换回时域信号。
四、离散傅里叶变换(DFT)DFT 是数字信号处理中的核心算法之一。
它将有限长的离散时间信号转换到频域。
DFT 的快速算法——快速傅里叶变换(FFT)大大提高了计算效率,使得在实际应用中能够快速处理大量的数据。
通过 DFT,可以对信号进行频谱分析,了解信号的频率成分和能量分布。
五、数字滤波器数字滤波器用于对数字信号进行滤波处理,分为有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。
FIR 滤波器具有线性相位特性,稳定性好,但设计相对复杂。
数字信号处理掌握要点:1. 离散系统稳定的充要条件线性连续系统稳定的充分和必要条件是闭环传递函数所有极点均位于s 的左半平面,而线性离散系统稳定的充分和必要条件是闭环脉冲传递函数所有极点均位于z 平面的单位园内2. 连续信号采样不发生混叠的条件从采样定理中,我们可以得出以下结论:a) 如果已知信号的最高频率f H ,采样定理给出了保证完全重建信号的最低采样频率。
这一最低采样频率称为临界频率或奈奎斯特采样率,通常表示为f N 。
b) 相反,如果已知采样频率,采样定理给出了保证完全重建信号所允许的最高信号频率。
c) 以上两种情况都说明,被采样的信号必须是带限的,即信号中高于某一给定值的频率成分必须是零,或至少非常接近于零,这样在重建信号中这些频率成分的影响可忽略不计。
在第一种情况下,被采样信号的频率成分已知,比如声音信号,由人类发出的声音信号中,频率超过5 kHz 的成分通常非常小,因此以10 kHz 的频率来采样这样的音频信号就足够了。
在第二种情况下,我们得假设信号中频率高于采样频率一半的频率成分可忽略不计。
这通常是用一个低通滤波器来实现的。
如果不能满足上述采样条件,采样后信号的频率就会重叠,即高于采样频率一半的频率成分将被重建成低于采样频率一半的信号。
这种频谱的重叠导致的失真称为混叠,而重建出来的信号称为原信号的混叠替身,因为这两个信号有同样的样本值。
∙以下两种措施可避免混叠的发生:1. 提高采样频率,使之达到最高信号频率的两倍以上;2. 引入低通滤波器或提高低通滤波器的参数;该低通滤波器通常称为抗混叠滤波器3. 两段序列进行圈周卷积后的长度与两个序列长度之间的关系两序列的长度分别为N 和M ,则线性卷积后序列的长度为N+M-14. DFT 的旋转因子的对称性knN W 的对称性:*()knnkN NW W -=5. 若序列()n x 的DFT 记为()k X ,()0X 与()n x 之间的关系1100(0)()|()N N nk Nk n n X x n Wx n --=====∑∑6. 若FIR 数字滤波器的单位响应()n h 的长度N 与信号)(n x 通过滤波器后的时延T 之间的关系7. 设序列()n x 和()n h 的长度分别为M 和N ,在何种条件下()n x 和()n h 的卷积等于其圆周卷积? 圆周卷积长度N1≥M+N-1时8. 离散傅里叶氏变换隐含有周期性: X(k)的隐含周期性有X(N)=X(0)9. 离散时间序列()n x 的傅氏变换在频域上表示为()ωj e X 也是离散值,故又称离散傅利叶变换10. 周期分别为1N ,2N 的两离散序列,在进行周期卷积后,其结果也是周期序列 11. 了解IIR 巴特沃斯数字低通滤波器的设计步骤p ω:通带截止频率s ω:阻带截止频率 p δ:通带波动s δ:阻带波动221()1(/)Nc H j ωωω=+N: 滤波器阶数1)|H (j0)|=1,|H (j¥)|=0,-20log10|H ( jwc)|≈3db ,w c: 3db 截频,当w c =1时,称其为 归一化的BWF2)幅度响应单调下降3) |H (j w )|2在w=0点1到2N -1阶导数零。
数字信号处理知识点归纳整理第一章时域离散随机信号的分析1.1. 引言实际信号的四种形式:连续随机信号、时域离散随机信号、幅度离散随机信号和离散随机序列。
本书讨论的是离散随机序列()X n ,即幅度和时域都是离散的情况。
随机信号相比随机变量多了时间因素,时间固定即为随机变量。
随机序列就是随时间n 变化的随机变量序列。
1.2. 时域离散随机信号的统计描述 1.2.1概率描述1. 概率分布函数(离散情况)随机变量n X ,概率分布函数: ()()n X n n n F x ,n P X x =≤(1)2. 概率密度函数(连续情况)若n X 连续,概率密度函数: ()()n n X X n nF x,n p x ,n x ∂=∂ (2)注意,以上两个表达式都是在固定时刻n 讨论,因此对于随机序列而言,其概率分布函数和概率密度函数都是关于n 的函数。
当讨论随机序列时,应当用二维及多维统计特性。
()()()()121212,,,121122,,,12,,,1212,1,,2,,,,,,,1,,2,,,,1,,2,,,NNNx XX N N N N x XX N x XX N NF x x x N P X x X x X x F x x x N p x x x N x x x =≤≤≤∂=∂∂∂1.2.2 数字特征1. 数学期望 ()()()()n xx n n m n E x n x n p x ,n dx ∞-∞==⎡⎤⎣⎦⎰ (3)2. 均方值与方差均方值: ()()22n n x n n E X x n p x ,n dx ∞-∞⎡⎤=⎣⎦⎰ (4)方差: ()()()2222xn x n x n E X m n E X m n σ⎡⎤⎡⎤=-=-⎣⎦⎣⎦(5)3. 相关函数和协方差函数自相关函数:()()nm**n m n m X ,X n m n m r n,m E X X x x p x ,n,x ,m dx dx ∞∞-∞-∞⎡⎤==⎣⎦⎰⎰ (6)自协方差函数:()()()()**cov ,,n m nmn m n X mX xx XXX X E X m Xm r n m m m ⎡⎤=--⎢⎥⎣⎦=- (7)由此可进一步推出互相关函数和互协方差函数。
数字信号处理基础数字信号处理(Digital Signal Processing, DSP)是指通过数字技术对模拟信号进行采样、量化和编码,然后利用数字计算机进行信号处理的技术。
它广泛应用于通信、音视频处理、图像处理等领域。
本文将介绍数字信号处理的基础知识和常用算法。
一、数字信号处理的基础概念1.1 信号的采样与量化在数字信号处理中,信号的采样是指对模拟信号进行时间上的离散,将连续时间信号转化为离散时间信号。
采样定理(奈奎斯特定理)规定,当信号的最高频率不超过采样频率一半时,信号可以完全恢复。
采样频率过低会导致混叠现象,采样频率过高则浪费存储和计算资源。
信号的量化是指将连续幅度的信号转化为离散幅度的信号。
量化过程中,信号的幅度根据一定的精度进行划分,并用一个有限的比特数来表示每个划分区间的取值。
量化误差会引入信号的失真,因此需要在精度和存储空间之间进行权衡。
1.2 Z变换和离散时间信号的频域表示Z变换是一种用于离散时间信号的频域表示的数学工具。
它将离散信号的时间域表达式转化为Z域中的复数函数,其中Z是一个复数变量。
通过对Z变换结果的分析,可以获得信号的频率响应、系统的稳定性等信息。
有限长离散时间信号可以通过离散时间傅里叶变换(Discrete Fourier Transform, DFT)转化为频率域表示。
DFT是Z变换在单位圆上的离散采样。
通过DFT计算,可以得到信号在不同频率下的幅度和相位。
二、数字信号处理常用算法2.1 快速傅里叶变换(Fast Fourier Transform, FFT)FFT是一种高效的计算DFT的算法,它通过将长度N的DFT分解为多个长度为N/2的DFT相加,从而大大减少了计算复杂度。
FFT广泛应用于频谱分析、滤波、信号重建等领域。
2.2 滤波器设计滤波器是数字信号处理中常用的模块,用于对信号进行频率的选择性衰减或增强。
滤波器的设计可以采用时域方法和频域方法。
时域方法包括有限脉冲响应(Finite Impulse Response, FIR)和无限脉冲响应(Infinite Impulse Response, IIR)滤波器设计,频域方法主要是基于窗函数的设计方法。
z 实信号具有双边频谱的特性,复信号则具有单边频谱的特性。
z 列出三种关于数字信号处理的实现方法通用计算机软件实现、特殊专用集成电路ASIC实现以及可编程器件如FPGA 硬件实现和通用DSP 器件实现等。
z 设系统用差分方程y(n)=x(n)sin(wn)描述,x(n)与y(n)分别表示系统的输入和输出,则这个系统是线性且时变。
z 由于IIR 数字滤波器的冲激响应无限长,故不能采用时域卷积(或频域卷积)的方法实现,只能通过差分方程的形式来实现。
z 第二类线性相位FIR 数字滤波器的相频特点是具有-90o 初相,因此常被用作移相器等非选频特性之应用。
z FIR 数字滤波器常采用窗函数法、频率采样法和最佳等纹波逼近法等直接数字域设计方法,不能采用模拟滤波器的经典设计理论。
z 实信号具有双边频谱的特性,复信号则具有单边频谱的特性。
z 当采用基于DFT 的方法(可使用FFT 算法)对模拟实信号进行谱分析时,会存在四种主要的、无法避免的、或难以减轻的误差,它们是:时域采样时产生的频谱混叠现象,DFT(频率采样)造成的栅栏效应,信号截断(有限长度)导致的频谱(或频率)泄漏和谱间干扰。
z 设系统用差分方程y(n)=x(n)+2x(n-1)+3x(n-2)描述,x(n)与y(n)分别表示系统的输入和输出,则这个系统是线性且时不变。
(注:从线性和时变性回答)z 数字滤波器均可通过差分方程的形式来实现。
对于FIR 数字滤波器,由于冲激响应有限长,故也可用时域卷积(或频域卷积)的方法实现。
z 第一类线性相位FIR 数字滤波器的相频特点是初相为0。
z IIR 数字滤波器设计常采用模拟滤波器设计的经典理论,从模拟滤波器到数字滤波器的过渡通常采用脉冲响应不变法或双线性变换法。
z 模拟信号和数字信号的描述与分析域分别采用s 域与z 域。
z 如果一个数字因果系统是不稳定的,输出幅度随时间呈发散状,那么它的极点至少有一个在z 平面的单位圆外。
《《数字信号处理》》一、数字信号处理的基础知识1. 数字信号处理的概念数字信号由一系列离散的数值组成,数字信号处理就是对这些数值进行采样、量化、编码等操作,使其成为计算机能够处理的数字信号。
具体来说,数字信号处理是对数字信号进行数学分析、滤波、变换和算法处理等操作的一种技术手段。
2. 数字信号处理的方法数字信号处理采用数字技术对信号进行处理,包括采样、量化、编码、滤波、变换和算法等。
数字技术的优势在于其能够快速、精确、稳定地处理信号,并且可在计算机、数字信号处理器等平台上进行。
3. 数字信号处理的流程数字信号处理的流程包括采样、量化、编码、滤波、变换和算法等过程。
其中,采样是将连续的信号转换为离散的信号;量化是将连续的模拟信号转换为离散的数字信号;编码是将数字信号转换为二进制信号;滤波是对数字信号进行低通、高通、带通滤波等处理;变换是对数字信号进行时域变换、频域变换等处理;算法是通过各种算法对数字信号进行加、减、乘、除、求最大值、最小值等计算操作。
二、数字信号处理的应用领域1. 通信领域数字信号处理在通信领域起着重要的作用。
通信领域中的数字信号处理包括数字调制、信道编码、信道估计、信道均衡、信号检测和解调等方面。
数字信号处理技术可以提高通信信号的质量和可靠性,并且可以提高通信系统的效率和容量。
2. 图像处理领域数字信号处理在图像处理领域也有广泛的应用。
图像处理领域中的数字信号处理包括图像压缩、图像增强、图像分割、图像恢复和图像识别等方面。
数字信号处理技术可以提高图像的清晰度、减少噪声干扰,并且可以实现图像的压缩和传输。
3. 音频处理领域数字信号处理在音频处理领域中也有重要的应用。
音频处理领域中的数字信号处理包括音频降噪、音频增强、音频编解码、音频合成和音频识别等方面。
数字信号处理技术可以提高音频的质量和清晰度,并且可以实现音频的压缩和传输。
4. 控制系统领域数字信号处理在控制系统领域中也有广泛的应用。
数字信号处理第0章绪论1.数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。
2.DSP系统构成输入抗混叠滤波A/DDSP芯片D/A平滑滤波输出输入信号首先进行带限滤波和抽样,然后进行A/D(Analog to Digital)变换将信号变换成数字比特流。
根据奈奎斯特抽样定理,为保证信息不丢失,抽样频率至少必须是输入带限信号最高频率的2倍。
DSP芯片的输入是A/D变换后得到的以抽样形式表示的数字信号。
3.信号的形式(1)连续信号在连续的时间范围内有定义的信号。
连续--时间连续。
(2)离散信号在一些离散的瞬间才有定义的信号。
离散--时间离散。
4.数字信号处理主要包括如下几个部分(1)离散时间信号与系统的基本理论、信号的频谱分析(2)离散傅立叶变换、快速傅立叶变换(3)数字滤波器的设计第一章离散时间信号一、典型离散信号定义1.离散时间信号与数字信号时间为离散变量的信号称作离散时间信号;而时间和幅值都离散化的信号称作为数字信号。
2.序列离散时间信号-时间上不连续上的一个序列。
通常定义为一个序列值的集合{x(n)},n 为整型数,x(n)表示序列中第n 个样值,{·}表示全部样本值的集合。
离散时间信号可以是通过采样得到的采样序列x(n)=x a (nT),也可以不是采样信号得到。
二.常用离散信号1.单位抽样序列(也称单位冲激序列))(n δ⎩⎨⎧≠==0,00,1)(n n n δδ(n):在n=0时取值为12.单位阶跃序列)(n u ,⎩⎨⎧<≥=0,00,1)(n n n u 3.矩形序列,⎩⎨⎧=-≤≤=其它n N n n R N ,010,1)(4.实指数序列,)()(n u a n x n =,a 为实数5.正弦型序列)sin()(φω+=n A n x 式中,ω为数字域频率,单位为弧度。
15On 1-10()0sin nω()t 0sin Ω16.复指数序列nj e n x )(0)(ωσ+=7.周期序列如果对所有n 存在一个最小的正整数N ,使下面等式成立:)()(N n x n x +=,则称x(n)为周期序列,最小周期为N 。
数字信号处理知识点1、混叠是怎样产生的?答:采样信号的频率太低,低于被检测信号频率的二倍系统就会发生混叠。
2、如何判定线性时不变系统的因果性和稳定性?答:因果性:响应不出现在激励之前稳定性:1)、激励有界,响应有界2)、连续系统,h(t)绝对可积;系统频域函数的收敛域包含虚轴(极点全在左半平面)3)、离散系统,h(n)绝对可和;系统频域函数的收敛域包含单位圆(极点全在单位圆内)3、时域采样在频域产生什么效应?答:1)对连续信号进行等间隔采样形成的采样信号,其频谱是原模拟信号的频谱以采样频率为周期进行周期延拓形成的2)如果连续信号是带限信号,当采样角频率大于最高截止频率,让采样信号通过理想低通滤波器时,可以唯一地恢复出原连续信号。
否则,会造成采样信号中的频谱混叠现象,不能无失真地恢复原连续信号。
4、用离散傅里叶变换进行谱分析时,提高频域分辨率有哪些措施?答:增加采样点数5、何谓全通滤波器?其零极点分布有何特点?答:全通滤波器:幅度特性在整个频带[0,2π]上均为常数的滤波器零点和极点互成倒易关系,均以共轭对形势出现。
6、何谓最小相位系统?如何判断系统是最小相位系统与否?答:最小相位系统:全部零点位于单位圆内的因果稳定系统7、如何将模拟滤波器 H (s)转换为数字滤波器 H(z)脉冲响应不变法或双线性变换法答:优点:数字频率与模拟频率成线性关系 w=nT;缺点:会产生频率混叠现象,只适合低通和带通滤波器的设计。
8、补零和增加信号长度对谱分析有何影响?是否都可以提高频谱分辨率?答:时域补零和增加信号长度,可以使频谱谱线加密,但不能提高频谱分辨率。
9、什么是吉布斯现象?旁瓣峰值衰减和阻带最小衰减各指什么?有什么区别和联系?答:增加窗口长度 N 只能相应地减小过渡带宽度,而不能改变肩峰值。
例如,在矩形窗地情况下,最大肩峰值为 8.95%;当 N 增加时,只能使起伏振荡变密,而最大肩峰值总是 8.95%,这种现象称为吉布斯效应。