一种同步整流Buck_flyback拓扑的研究_周岩
- 格式:pdf
- 大小:476.09 KB
- 文档页数:3
Design Considerations and Performance Evaluations of Synchronous Rectification in Flyback Converters Michael T.Zhang,Member,IEEE,Milan M.Jovanovi´c,Senior Member,IEEE,and Fred C.Y.Lee,Fellow,IEEEAbstract—Design tradeoffs and performance comparisons of various implementations of theflyback converter with a synchronous rectifier(SR)are presented.Specifically,the merits and limitations of the constant-frequency(CF)continuous-conduction mode(CCM),CF discontinuous-conduction mode (DCM),variable-frequency(VF)DCM,and zero-voltage-switched(ZVS)DCMflyback converters with SR’s are discussed.The theoretical efficiency improvements of the discussed synchronous rectification approaches relative to Schottky diode implementations are derived.Finally,theoretical results are verified on an experimental universal-input off-line 15-V/36-Wflyback prototype.Index Terms—Efficiency,flyback converter,synchronous rec-tification.I.I NTRODUCTIONG ENERALLY,in low-output-voltage power supplies,theconduction loss of the diode rectifier(DR)due to its forward voltage drop is the dominant loss component.In power supplies with the output voltage not too many times higher than the rectifier forward voltage drop,the DR loss accounts for more than50%of the total power loss.The rectification loss can be reduced by replacing the DR with a synchronous rectifier(SR),i.e.,with a low-on-resistance MOSFET[1],[2]. Synchronous rectification is most often applied to the buck and buck-derived isolated topologies,which are suitable for step-down low-output-voltage applications[2].Generally,in the isolated buck-derived topologies,such as the forward,bridge-type,and push–pull converters,synchronous rectification can be implemented by a direct replacement of the DR’s with low-voltage MOSFET’s[3],[4].Namely,in these self-driven SR implementations,the secondary voltage of the transformer is used to directly drive the SR’s,thus reducing the circuit complexity and cost without sacrificing the efficiency.A number of applications of the SR in theflyback converter have also been reported[5]–[7].However,in all of these applications,the main purpose of the SR was to provide the postregulation of the output voltage and not to maximize the conversion efficiency.Specifically,in[5]–[7],the SR is used Manuscript received January7,1997;revised July28,1997.This work was supported by Delta Electronics,Inc.,Taiwan.Recommended by Associate Editor,R.Steigerwald.M.T.Zhang is with the Platform Architecture Laboratory,Intel Corpora-tion,Hillsboro,OR97124-5916USA.M.M.Jovanovi´c is with the Delta Power Electronics Laboratory,Inc., Blacksburg,V A24060USA.F. C.Y.Lee is with the Virginia Power Electronics Center,Bradley Department of Electrical Engineering,Virginia Polytechnic Institute and State University,Blacksburg,V A24061-0111USA.Publisher Item Identifier S0885-8993(98)03343-2.Fig.1.Flyback converter with SR.as a voltage-controlled resistor in a control loop which adjusts the SR’s resistance so that the output voltage is maintained within the regulation range.Generally,the regulation range of these postregulation approaches is limited to the forward voltage drop of the SR body diode,i.e.,Generally,the circuit sown in Fig.1can work in CCM or DCM either with a constant or variable switching frequency pulse-width-modulation(PWM)control.Design considera-tions and SR loss estimates for various modes of operation and different control approaches are given next.A.Constant-Frequency CCMThe key waveforms of theflyback converter with the SR operating in CCM are given in Fig.2.As can be seen fromFig.2,during delaytimesnot onlyincreases the conduction loss,but also introduces a reverse recovery loss when primary switch SW is turned on.The total conduction loss of the SR is given by the sum of the channel-resistance loss(unshadedis the SR onresistance,is theduty ratio of the primaryswitch,is the turns ratio of the transformer,ing(1),the total conduction loss of the SR can be calculatedas,currents).whereand losses,the CF CCM converterin Fig.1exhibits a loss each time the SR is turned off(i.e.,each time the SW is turned on)because of a parasitic resonancebetween)must be terminated at themomentstarts resonating,as shown in Fig.3.For a converter with aregulated output,the duration of resonantintervalFig.3.Key waveforms of CF DCMflyback converter with SR.Body diode of SR conducts in shaded area(C.Variable-Frequency DCMCapacitive switchinglosscan be eliminated if the primary switch SW is turned on at themoment,which isequal to one half of the parasitic-resonance period,i.e.,).and full load,and it increases as the line increases and/or loaddecreases.The conversion efficiency at low line of the VF DCMconverter can be always made higher than the efficiencyof the corresponding CF counterpart.In addition,the high-line efficiency of the VF DCM converter can also be higherthan that of the CF DCM implementation if the power-losssavings due to elimination of the parasitic oscillations andthe minimization of the turn-onvoltage.Therefore,forTABLE IP OWER L OSS C OMPARISONSOFF LYBACK C ONVERTERSWITHDRANDSRFig.5.Key waveforms of VF ZVS DCM operation.Therefore,to build up thenecessary,rectifier switchinglosses,(11)where is the loss other than the conduction and switching losses of the rectifier and the capacitive turn-on switching loss of the primary switch.Specifically,includes the transformer,input [electromagnetic interference (EMI)]filter,output filter,and control circuit losses,i.e.,the losses which are virtually the same for both the SR and rectifier diode implementations of the converter.Similarly,the efficiency of the flyback converter with the SR can be writtenasfrom (11)and (12),the efficiencydifference between the SR and the DR implementations canFig.6.Theoretical efficiency estimates. be calculatedas(13)whereA)because the switching turn-onloss of the primary switch contributes significantly to the totalloss in the other implementations.For the same range of theoutput power,the CF CCM implementation exhibits the lowestefficiency due to the dominant effect of the turn-on switchingloss of the primary switch and the turn-off switching loss ofthe SR.For example,at A(which corresponds to thefull-load current of the experimental converter presented in thenext section),the efficiency of the ZVS DCM implementationwith the SR is approximately3%higher than the efficiency ofthe corresponding circuit with the Schottky rectifier.However,at A,the efficiency of the CCM implementation withthe SRat A is1%lower than the efficiency of thesame circuit with the Schottky rectifier.At higher power levels,the conduction losses of the primaryswitch and the SR start dominating the total loss.As a result,the CF CCM implementation exhibits the highest efficiencyat.IV.E V ALUATION R ESULTSThe discussed SR implementations were experimentallyevaluated on a15-V/2.4-Aflyback converter designed to oper-ate in the100–370-Vdc input-voltage range.The diode-versionpower stages were implemented with Motorola MTP6N60(C,andpFpFV)Schottky diodes in parallel for the secondary rectifiers.Inimplementations of the power stages with SR’s,the Schottkydiodes were replaced with IXYS IXFK100N10(V)MOSFET’s.The turns ratio of thetransformer for the CCM implementationwaskHz[9].The transformer used for allother implementations(CF DCM,VF DCM,and ZVS DCM)had a turns ratioofcircuit which is connected to the output of thezero-crossing detector comparator.ResistorsFig.7.Control and drive circuit for VF DCM flyback converter with SR.The thick lines belong to the powerstage.Fig.8.Measured efficiencies of CF CCM implementation with SR and Schottkies rectifier at full power.A.Constant-Frequency CCMFig.8shows the measured efficiencies of the CF CCM experimental converters with the Schottky diode and the SR.Because the SR body diode conducts current during delaytimes,causes large superimposed capacitor charging andbody reverse recovery currents.To suppress these currents,a saturable core was connected in series with the SR to slow down the rateofpF),causing a highercapacitor charging loss according to (5).Therefore,at 36-W power level the CCM converter with the Schottky rectifier exhibits higher efficiency than that with the SR.B.Constant-Frequency DCMFig.10shows an oscillogram with the key waveform of the CF DCM converter with the SR.During the resonantintervalresonance can be clearly seen inbothand.Toachieve the switch turn on with minimumvoltageispF,and since at themaximum inputvoltagein the experimentalconverterispF(a)(b)Fig.9.SR turn-off waveforms of CF CCM converter with SR:(a)without saturable core and (b)with saturablecore.Fig.10.Measured waveforms of CF DCM converter with SR at V in =250Vdc,V o =15V,and I o =2:4A.Fig.11.Measured efficiency of CF DCM implementation with SR and Schottky at full power.It should be notedthatis a function of inputvoltageonin the entire input-voltage range from 100to 370V is less than 20%.Therefore,Fig.12.Measured waveforms of VF DCM implementation with SR at V in =250Vdc,V o =15V,and I o =2:4A.Fig.13.Measured waveforms of ZVS DCM implementation at V in =250Vdc,V o =15V,and I o =2:4A.a simple low-cost drive circuit with a constant delay can be used in the implementations of the VF converters in Figs.12and 13without significantly affecting their performance.By eliminating the parasitic resonance duringtheFig.14.Measured efficiencies of VF DCM implementations with SR and Schottky and ZVS DCM implementation at fullpower.Fig.15.Switching frequency comparison of VF DCM implementations with SR and Schottky and ZVS DCM implementation.the efficiency comparisons in Fig.14shows that VF DCM implementation with the SR has a relatively constant 2.5%–4%efficiency improvement over VF DCM implementation with the Schottky,as has been predicted.However,in the VF DCM implementation,only partial ZVS can be achieved,since inthis design,input voltage(–Arequired toobtain[9]L.Huber and M.M.Jovanovi´c,“Evaluation offlyback topologiesfor notebook ac/dc adapter/charger applications,”in High Freq.Power Conversion Conf.Proc.,1995,pp.284–294.[10] B.Andreycak,“Power factor correction using the UC3852controlledon-time zero-current switching techniques,”Unitrode Product&Appli-cations Handbook1995–1996,Application Note U-132,pp.10-269–10-283.[11]J.G.Kassakian,M.F.Schelcht,and G.C.Verghese,Principle of PowerElectronics.Reading,MA:Addison-Wesley,1991.Michael T.Zhang(S’95–M’97)was born in Shang-hai,China,in1966.He received the B.S.degree inphysics from Fudan University,Shanghai,in1989and the M.S.degree in physics and Ph.D.degreein electrical engineering,both from Virginia Poly-technic Institute and State University,Blacksburg,in1992and1997,respectively.He joined Intel’s Platform Architecture Labora-tory(PAL),Hillsboro,OR,in1997as a SeniorDesign Engineer.His research interests include theanalysis and design of high-frequency computer power supplies and the techniques of computer EMI an M.Jovanovi´c(S’86–M’89–SM’89),for a photograph and biography, see this issue,p.486.Fred C.Y.Lee(S’72–M’74–SM’87–F’90),for a photograph and biography, see this issue,p.521.。
单端反激有源钳位和同步整流技术研究桑泉;涂俊杰;许育林【摘要】The active clamp techniques is usually used in the forwad topology of DC/DC power supply. Study of active clamp and synchronous rectifying techniques in single out of flyback topology is introduced. By means of principle,de-signing of active clamp and synchronous rectifying techniques apply to single out of flyback topology, mixed assembling techniques of thick flim and modules to achieve the purpose of high efficiency and high power density. By the 5 V/20 W power sample machining and simulation testing,power density of the power sample is 50.8 W/inch3, power efficiency of the power sample is 89.2%,nose ripple of the power sample is 43 mV. The power sample proves that this techniques is efficient apptoaches to increase the power density of isolation DC/DC power supply.%有源钳位技术通常只在正激DC/DC功率电源拓扑结构中。
Dynamical Systems and Control 动力系统与控制, 2023, 12(2), 98-104 Published Online April 2023 in Hans. https:///journal/dsc https:///10.12677/dsc.2023.122010基于多端Flyback 拓扑的功率变换系统研究杜吉飞1,2,穆云飞1,李小滨2,赵凌志3,缪永丽3,王 丽3,孙 强3*1天津大学电气自动化与信息工程学院,天津2珠海泰坦电力电子集团有限公司,广东 珠海3天津农学院工程技术学院,天津收稿日期:2023年3月24日;录用日期:2023年4月18日;发布日期:2023年4月25日摘要 反激式功率变换器结构简单,转换效率高,损耗小,能提供多路直流输出,因而得以广泛应用。
本文首先分析了当前功率变换器的研究现状与发展趋势,明确了设计与改进的方向。
其次,分析了单端Flyback 型功率变换器的工作原理,并对一些重要模块进行了详细的研究。
对于变换器功率因数不高的问题、谐波治理的问题,提出了改进思路,进行了电路拓扑结构优化。
仿真实验结果表明,本文所设计的基于反激式拓扑的功率变换系统具有电路结构简单、效率高、电路稳定性高、电路损耗小等特点,能实现单相输入交流电压转变为多路隔离输出的直流电压,具有很高的应用价值。
关键词功率变换器,反激式拓扑,多路输出The Study on Power Converter System Based on Multi-End Flyback TopologyJifei Du 1,2, Yunfei Mu 1, Xiaobin Li 2, Lingzhi Zhao 3, Yongli Miao 3, Li Wang 3, Qiang Sun 3* 1School of Electrical and Information Engineering, Tianjin University, Tianjin 2Zhuhai Titans Power Electronics Group Co., Ltd., Zhuhai Guangdong 3College of Engineering and Technology, Tianjin Agricultural University, Tianjin Received: Mar. 24th , 2023; accepted: Apr. 18th , 2023; published: Apr. 25th , 2023AbstractAs an important type of power converter, flyback switching power supply has simple circuit struc-ture, high conversion efficiency, small loss, and it can provide multi-channel AC output, so it is widely *通讯作者。
多功能、多种拓朴高频PWM控制器TPS43000TPS43000是一款高频电压型同步PWM控制器,它能用于BUCK、BOOST、SEPIC 或flyback拓朴的控制。
该款高度柔性,全新特色的控制器设计成可驱动一对外部功率MOSFET(一个为N沟,一个为P沟)的结构,因而具有很宽范围的输出电压和功率水平,还有自动的PFM模式工作,关断电流小于1μA,休息模式工作电流小于100μA,在1MHz时整个工作电流小于2mA,因而是一个高效率多用途的DC/DC控制器。
TPS43000输入电压范围从1.8V~9.0V,给分布式系统供电,可以由镍镉电池供电,也可以由锂电池供电,产生0.8V~8V的各输出电压(还可更高),用户可调节其PWM频率最高达2MHz,也可令其进入PFM模式,在此时若电感电流进入断续,则IC进入休息模式,在输出电压降下2%时再工作,在此工作模式,在很宽的负载电流时都有非常高的效率,器件还可以同步到外时钟频率。
TPS43000可选择两个水平的限流电路,它检测主功率MOSFET的压降,用户可选择逐个脉冲式限流,或打呃式过流保护。
TPS43000可以在低功耗模式下工作,有欠压锁定,软起动等功能,最高工作频率达2MHz。
IC的内部等效电路如图1所示。
其16PIN功能描述如下:1 PIN SYNC/SC此功能端用于外同步及关断控制,要求外脉冲从0V~2V,占空比不限,但脉宽必须大于100ns。
保持此端高于2V,或保持此电压达35μS,IC 即关断。
2 PIN CCS限流端子,可逐个脉冲电流限制及打呃式限制,将此端接于VIN,为逐个脉冲限流,接此端到GND,进入打呃式过流保护。
3 PIN RT外接电阻到GND设置工作频率。
4 PIN CCM无论输入端检测有没有信号,I ZERO比较器都允许断续型工作,将此端电平拉高,可忽视I ZERO比较器的输出,强制连续导通模式工作,将其接地,即使能I ZERO,允许断续导通模式工作。
dcdc降压电路案例DC/DC降压电路是一种常见的电路设计,用于将高电压转换为低电压。
这种电路通常由多个元件和电子器件组成,通过控制电流和电压来实现对输入电压的降压。
以下是10个DC/DC降压电路案例的介绍。
1. Buck降压电路Buck降压电路是最常见的DC/DC降压电路之一。
它通过开关管(如MOSFET)和电感来控制电流和电压,从而将输入电压降低到所需的输出电压。
这种电路具有高效率和较低的成本,适用于各种应用领域。
2. Boost降压电路Boost降压电路是另一种常见的DC/DC降压电路。
它通过开关管和电感来将输入电压升高到所需的输出电压。
Boost降压电路通常用于需要较高输出电压的应用,例如LED驱动器和太阳能电池充电器。
3. Buck-Boost降压电路Buck-Boost降压电路是一种可以将输入电压降低或升高到所需输出电压的DC/DC降压电路。
它结合了Buck和Boost电路的特点,适用于需要输入和输出电压具有相对独立性的应用,例如锂电池充电器。
4. Cuk降压电路Cuk降压电路是一种特殊的DC/DC降压电路,它使用电感和电容来实现电压降低。
相比于传统的Buck或Boost电路,Cuk降压电路具有更高的输出电流和更低的输入电流纹波。
5. Flyback降压电路Flyback降压电路是一种常用的DC/DC降压电路,它使用变压器来实现电压转换。
这种电路具有简单的结构和低成本,广泛应用于电源适配器和开关电源等领域。
6. SEPIC降压电路SEPIC降压电路是一种特殊的DC/DC降压电路,它可以将输入电压降低或升高到所需的输出电压。
SEPIC电路适用于需要输入电压具有相对独立性的应用,例如电动汽车充电器和太阳能逆变器。
7. Zeta降压电路Zeta降压电路是一种变换器拓扑,它可以将输入电压降低到所需的输出电压。
Zeta电路与Buck电路类似,但具有更高的输入电压范围和更低的纹波。
8. Ćuk降压电路Ćuk降压电路是一种特殊的DC/DC降压电路,它使用电容和电感来实现电压转换。
开关电源中常见变换器主电路拓扑1.1 Buck变换器Buck变换器又称降压变换器,Buck型电路拓扑由有源开关(功率MOSFET)、续流二极管D(或由同步整流开关代替)、储能电感L、滤波电容C组成。
其电路如图1-1所示。
电感和输出电容组成一个低通滤波器,滤波后电压以很小的纹波呈现在输出端。
图1-1 Buck变换器拓扑结构1.2 Boost变换器Boost变器又称升压变换器,其电路如图1-2所示。
改变降压变换器中元件的位置就可把它变成升压变换器。
在升压变换器中,开关管导通时在电感中有斜波电流流过。
当开关管断开时,电感中的电流必须保持流动,电感上的电压改变极性,使二极管正向偏置,并释放能量到输出端和输出电容器。
图1-2 Boost变换器拓扑结构1.3 反激变换器反激变换器又称Flyback式变换器,其电路如图1-3所示。
由于反激变换器的电路拓扑结构简单,能提供多组直流输出和升降范围宽,因此广泛应用于中小功率变换场合。
其结构相当于在Boost变换器中,用一个变压器代替升压电感,即构成了反激式变换器。
图1-3 反激电路原理图V1213T111423131211109867451516R12C1R14VZ112R11C5C6VZ212R9R1C10R18R13C8VD312R15VD112R7C3N1MC33262VFB1Comp2Multi3CS 4Z c d5G N D6Dri 7Vcc 8R10R19VD212C7R6VCC Vpfc,inVpfc,out 当开关晶体管VS 被驱动脉冲激励而导通时,Vin 加在开关变压器T 的初级绕组L1上,此时次级绕组L2的极性使VD 处于反偏而截止,因此L2上没有电流流过,此时电感能量储存在L1中,当VS 截止时,L2上电压极性颠倒使VD 处于正偏,L2上有电流流过,在VS 导通期间储存在L1中的能量此时通过VD 向负载释放。
反激式变换器工作波形见图 1-4。
图1-4 反激式变换器工作波形2.PFC 电路PFC 的英文全称为Power Factor Correction ,意思是功率因数校正。
利用参考电压注入的Buck变换器电感电容估计彭程;陈晨;姜东升;闵闰;童乔凌【期刊名称】《哈尔滨工业大学学报》【年(卷),期】2024(56)5【摘要】电路的元件参数,尤其是电感和电容值,严重影响着Buck变换器的控制性能。
提出了一种参考电压脉冲注入法用于电感和电容的在线估计。
为了提高Buck 变换器中电感和电容值的估计精度,利用原稳态和新稳态构建满秩状态方程,在线推导算法所需寄生参数和负载电阻。
研究基于电感伏秒特性和电容电荷平衡特性的精确离散时间变换器模型,为元件参数估计奠定了基础。
通过给参考电压注入短脉冲信号,并使用PID控制器对电路中的电感电流和输出电压进行调节,建立了用于参数估计的瞬态和新稳态。
利用瞬态中采样的电压和电感电流估计电感和电容值,避免了稳态时的收敛问题。
基于提出的平均电感电流估计算法,电流采样频率降低至开关频率。
最后,在Matlab/Simulink平台上进行了仿真验证,结果表明:即使在考虑实际噪声的情况下,电感和电容值的最大估计误差分别小于2%和4.2%;相较于其他参数估计算法,参考电压脉冲注入方法的引入有效提高了参数辨识的估计精度,有助于Buck变换器系统控制性能的提升。
【总页数】7页(P114-120)【作者】彭程;陈晨;姜东升;闵闰;童乔凌【作者单位】武汉科技大学信息科学与工程学院;北京空间飞行器总体设计部;华中科技大学光学与电子信息学院【正文语种】中文【中图分类】TM46【相关文献】1.基于耦合电感的零电压零电流软开关Buck变换器2.考虑电感电阻的Buck变换器电容参数提取方法3.基于耦合电感的零电压开关同步Buck变换器4.BUCK-BOOST变换器的输出能量分析及电感电容优化设计5.单电感双输出Buck变换器的供能模式及输出纹波电压分析因版权原因,仅展示原文概要,查看原文内容请购买。
了解各种电源拓扑的优缺点电源拓扑是电力系统中的关键概念,它描述了电力传输的方式和架构。
不同的电源拓扑具有各自的优缺点,本文将对几种常见的电源拓扑进行介绍,以帮助读者更好地了解它们。
1.单端正激变换器单端正激变换器(Flyback Converter)是一种常见的离线电源拓扑,具有简单、成本低廉的优点。
它使用变压器将输入电压转换为所需的输出电压。
然而,由于变压器的存在,单端正激变换器的功率密度相对较低,适用于低功率应用。
2.反激变换器反激变换器(Forward Converter)是另一种常用的离线电源拓扑,也使用变压器将输入电压转换为输出电压。
相比于单端正激变换器,反激变换器具有更高的功率密度和效率。
然而,反激变换器的控制较为复杂,不适用于一些特定应用。
3.电容耦合器电容耦合器(Capacitive Coupling)是一种简单的直流电源拓扑,常用于低功率和低成本的环境。
它通过电容器将输入电压耦合到负载上。
然而,电容耦合器的输出电压受电容器的质量和电容值的影响,因此其稳定性和可靠性相对较低。
4.同步整流器同步整流器(Synchronous Rectifier)是一种在开关转换电源中广泛使用的技术。
它通过同步开关管代替二极管实现电能转换。
同步整流器具有较低的导通压降和损耗,因此可以提高整体效率。
然而,同步整流器的设计和控制需要更高的技术要求和成本。
5.无刷直流电机驱动器无刷直流电机驱动器(Brushless DC Motor Driver)是一种用于控制无刷直流电机的电源拓扑。
它采用功率半导体器件来实现对无刷直流电机的控制。
无刷直流电机驱动器具有高效率、高精度的优点,适用于各种工业和家电应用。
然而,无刷直流电机驱动器的设计和调试相对复杂,需要较高的技术水平。
通过对这些不同的电源拓扑进行了解,我们可以选择适合特定应用的电源设计方案。
每种电源拓扑都具有其独特的优点和限制,我们可以根据实际需求和成本效益进行选择。
基于Sepic和Flyback混合拓扑的辅助电源设计
崔庆林;李永
【期刊名称】《微电子学》
【年(卷),期】2024(54)1
【摘要】分析了Sepic和Flyback拓扑结构,根据DC/DC模块电源对辅助电源的需求,提出了Sepic和Flyback混合拓扑的辅助电源,能够输出多路不同幅值电压,并且可以实现各路输出电压之间的隔离。
利用状态空间平均法建立了Sepic拓扑的小信号模型,设计了电压和电流双环控制的补偿器,并用Matlab仿真软件进行了分析。
该辅助电源应用于一款非隔离的宽范围输入且输出可调的DC/DC模块电源,实现了三路互相隔离的12 V输出电压,一路非隔离的6 V输出电压,输出电压波形稳定,能够满足隔离悬浮供电,也能满足不同芯片对电压范围的要求。
【总页数】6页(P104-109)
【作者】崔庆林;李永
【作者单位】中国电子科技集团公司第二十四研究所
【正文语种】中文
【中图分类】TN86
【相关文献】
1.基于SEPIC变换器的高功率因数LED照明电源设计
2.基于Sepic与Flyback集成的LED驱动器设计
3.基于Sepic电路的工业照明设备节能电源设计
4.基于
SSL4101T的Boost-Flyback电源设计5.采样移相全桥拓扑的舰载辅助电源的设计
因版权原因,仅展示原文概要,查看原文内容请购买。
反激拓扑(flyback)浅析施鑫淼 2010年11月目录1、反激变换器的适用范围 (2)2、反激变换器的基本工作原理 (2)3、DCM(discontinuous current mode)&CCM(continuous current mode) (3)4、反激拓扑的优缺点 (4)5、DCM反激变换器设计实例:变换器要求 (4)6、总体拓扑 (5)7、变压器设计 (6)7.1确定输入整流滤波电容和DC输入范围 (6)7.2确定占空比 (7)7.3确定匝数比和开关管最大耐压 (7)7.4初选磁芯 (9)7.5计算输入电流峰值和原边电感值 (9)7.6计算初级匝数和线径 (10)7.7计算次级匝数和线径 (11)7.8集肤效应的考虑 (11)7.9计算绕组系数 (12)7.10变压器的绕制 (13)8、主要元器件的确定 (13)8.1输入滤波电容 (13)8.2开关mos管 (13)8.3输出二极管 (14)8.4输出电容 (14)8.5启动电阻 (15)9、Snubber设计 (15)9.1输入开关管RCD钳位设计 (15)9.2输出二极管钳位设计 (16)9.3两种钳位方式比较 (17)10、反馈电路设计 (17)11、3843周边线路 (19)12、一些相关问题 (20)12.1漏感的影响 (20)12.2气息的作用 (20)12.3噪音 (21)13、EMI分析 (21)Notice (21)1、反激变换器的适用范围由于不需要接输出滤波电感,使得反激变换器的成本较低、体积较小,所以这种拓扑在输出功率为5-150W的电源中广泛应用。
适用于高电压、低功率场合。
主要应用于小型仪器、仪表,家用电器等电源,自动化设备中的控制电源。
除了功率以外,一般在选择用反激拓扑时还应考虑以下限制:若输出电流很大,且输出电压纹波要求较高时不适宜用反激拓扑,因为输出滤波电容将会很难选择;若输出多于三组或四组时,最好不要用反激拓扑,因为次级能量输出时是按漏感的大小来进行分配的,如果绕组间漏感不匹配,就会影响到输出调整率,没有直接取反馈的那路的电压容易随负载变化而剧烈变化。
张恒浩(1989—),男,高级工程师,主要从事开关电源研究。
宋浩谊(1977—),男,高级工程师,主要从事开关电源研究。
黄 超(1985—),男,高级工程师,主要从事开关电源研究。
一种反激变换器自驱同步整流设计张恒浩, 宋浩谊, 黄 超(中国电子科技集团公司第二十四研究所,重庆 400060)摘 要:在小功率开关电源中反激变换器应用广泛,同步整流技术的引入使反激变换器的工作效率得到显著提升。
基于自驱同步整流技术原理,提出一种改进的反激变换器电压自驱同步整流线路。
功率开关具备自动开通和定时关断功能,实现了宽输入电压范围的高可靠同步整流,最后实验验证了设计方案。
关键词:反激变换器;同步整流;自驱;功率开关中图分类号:TM46 文献标志码:A 文章编号:2095 8188(2021)11 0080 05DOI:10.16628/j.cnki.2095 8188.2021.11.012DesignofSelf drivenSynchronousRectificationforFlybackConverterZHANGHenghao, SONGHaoyi, HUANGChao(SichuanInstituteofSolidStateCircuits,ChinaElectronicsTechnologyGroupCorporation,Chongqing400060,China)Abstract:Flybackconverteriswidelyusedaslowpowerswitchingpowersupply.Theefficiencyofflybackconverterisgreatlyimprovedwiththeintroductionofsynchronousrectificationtechnology.Basedontheprincipleofself drivensynchronousrectificationtechnology,animprovedvoltageself drivensynchronousrectificationcircuitofflybackconverterispresented.Thedesignschemeisverifiedbyexperiments.Keywords:flybackconverter;synchronousrectification;self driven;powerswitch0 引 言直流稳压电源主要分为线性电源和开关电源两种,线性电源存在体积大、效率低、质量大等缺点,因此应用受到限制[1]。