电子电路设计单相桥式半控整流电路
- 格式:pptx
- 大小:568.96 KB
- 文档页数:26
仲恺农业工程学院实验报告自动化(院、系)自动化专业121 班组电力电子实验课学号201210344105 姓名彭森荣日期2014年11月20日教师评定实验一:单相桥式半控整流电路仿真一、实验目的:1.通过实验了解单项桥式半控整流电路的工作原理;2.通过仿真发现在没有续流二极管时发生失控的波形图,并分析;3.初步熟悉multisim 13软件的使用。
二、实验器材:实验PC机、multisim 13电路仿真软件等。
三、实验原理:单项桥式半控整流电路中,假设负载的电感很大,且电路已工作在稳态的时候。
在输入交流正弦电压u2,晶闸管在α处的上升沿进行触发,两个不同的触发信号使得两个晶闸管在不同时刻触发。
在u2的正半周,触发信号给VD1进行触发,此时VD2关断,与D4形成通路,构成正向导通桥式电路,这个阶段,若忽略器件的通态电压,那么输出的电压变为0,不会出现负数的情况;同样,当在u2的负半周时,当触发信号到达的时候,VD2被触发而开通,VD1关断,与D3形成通路,构成反向导通桥式电路,这个阶段中,同样假设忽略器件的通态,那么当U2过零边正时,输出电压又变为零。
两次触发使得电流大方向并不发生改变,从而使得输出的电流和电压都是在坐标轴的上方,即数值均不为负数,因此达到了整流的效果。
本实验在进行仿真的时候,没有用到续流二极管(其作用是防止在实际运用的1 / 52 / 5 时候发生失控)进行续流,而是用开关对晶闸管VD2进行间接控制,以便看到失控时的仿真效果。
四、 实验步骤与内容:1. 按照原理的实验图在multisim 中进行操作,如图(1)所示;2. 对脉冲信号源V2,V3进行数据的修改,其中V2修改如图(2)所示,V (3)的修改如图(3)所示;3. 修改电感L 的数据和电阻R 的阻值,不断测试数据是否合适仿真,并把电流器和电压器的阻值分别改为11.246Ω和113.82M Ω;4. 把输入的信号源的相角值由0改为36°,以观察此时的波形图;5. 电子元件的数据修改完成后,点击开始仿真,并打图(1) 图(2)图(3)3 / 5开示波器观察示波的波形,适当时候把开关打开,再观察波形;6. 形成报告,分析结果。
实验一单相桥式半控整流电路实验一.实验目的1.研究单相桥式半控整流电路在电阻负载,电阻—电感性负载时的工作。
2.熟悉NMCL—05E组件锯齿波触发电路的工作。
3.进一步掌握双踪示波器在电力电子线路实验中的使用特点与方法。
二.实验线路及原理实验原理图如图1。
晶闸管VT1、VT3和二极管VD4、VD6组成单相桥式半控整流电路。
电源电压为线电压U UV,VT1、VT3分别获取触发单元1和触发单元3输出的控制脉冲。
2触发单元的同步信号均取自U UV,所以脉冲相位相同。
通过调节给定单元的直流给定电压可以调节控制角。
VD2图1 实验原理图实际接线图如图2。
1-2 单相桥式半控整流电路图2 实际接线图三.实验内容1.单相桥式半控整流电路供电给电阻性负载。
2.单相桥式半控整流电路供电给电阻—电感性负载(带续流二极管)。
4.单相桥式半控整流电路供电给电阻—电感性负载(断开续流二极管)。
四.实验设备及仪器1.教学实验台主控制屏2.NMCL—33组件3.NMCL—05E组件4.NMEL —03/4组件 5.NMCL —31A 组件 6.双踪示波器(自备) 7.万用表(自备)五.注意事项1.实验前必须先了解晶闸管的电流额定值(本装置为5A ),并根据额定值与整流电路形式计算出负载电阻的最小允许值。
2.为保护整流元件不受损坏,晶闸管整流电路的正确操作步骤 (1)在主电路不接通电源时,调试触发电路,使之正常工作。
(2)在控制电压U ct =0时,接通主电源。
然后逐渐增大U ct ,使整流电路投入工作。
(3)断开整流电路时,应先把U ct 降到零,使整流电路无输出,然后切断总电源。
3.注意示波器的使用。
4.NMCL —33的内部脉冲需断开。
六.实验方法1.将NMCL —05E 面板左上角的同步电压输入接MEL —002T 的U 、V 输出端。
三相调压器逆时针调到底,合上主电路电源开关,调节主控制屏输出电压U uv =220v 。
单相桥式半控整流电路是一种常见的电子电路,用于将交流电转换为直流电。
在许多电力电子应用中,这种电路被广泛应用。
在这篇文章中,我们将重点讨论单相桥式半控整流电路在阻感负载移相范围内的应用和特性。
1. 半控整流电路的基本原理单相桥式半控整流电路由四个功率晶闸管和四个二极管组成,其基本原理是通过控制晶闸管的导通角度来控制整流电路的输出电压和电流。
在半控整流电路中,晶闸管在每个交流周期内只进行一次导通,通过改变晶闸管的导通角,可以实现电压和电流的控制。
2. 阻感负载移相范围在实际应用中,半控整流电路通常用于驱动感性负载,如电感、变压器等。
在这种情况下,负载的电流和电压波形将出现移相现象,这是由于感性负载的特性所导致的。
在移相范围内,整流电路的性能和稳定性会发生改变,需要进行合适的设计和控制。
3. 移相现象的原因当桥式半控整流电路驱动感性负载时,感性负载将导致电流和电压波形的移相现象。
这是由于感性负载的特性,即在感性元件中通过的电流滞后于电压。
在整流电路中,感性负载的移相现象将导致输出电流的波形发生变化,对电路的稳定性和性能产生影响。
4. 整流电路的适应性在阻感负载移相范围内,整流电路需要具有良好的适应性,能够稳定地驱动感性负载并保持整流电流的稳定性。
这需要对整流电路进行合理的设计和参数选择,以确保在移相范围内仍能保持较好的性能和稳定性。
5. 控制策略在阻感负载移相范围内,需要采取合适的控制策略来实现整流电路对感性负载的稳定驱动。
常见的控制策略包括改变晶闸管的触发脉冲相位、调整晶闸管的触发角度等。
通过合理的控制策略,可以实现整流电路在移相范围内的稳定运行。
6. 参数设计在设计阻感负载移相范围内的半控整流电路时,需要进行合理的参数设计。
这包括选择合适的晶闸管类型和参数、确定适当的触发脉冲相位、优化感性负载参数等。
合理的参数设计可以提高整流电路的性能和稳定性。
7. 应用案例针对阻感负载移相范围内的半控整流电路,在实际应用中存在着大量的案例和经验。
电力电子课程设计单相半波可控整流目录1. .......................................................................................................................... 绪论 (2)2. 单相半控桥式整流电路电路设计 (2)2.1电路原理图 (2)2.2单相桥式半控整流电路的计算公式 (3)2.3带阻感负载时的工作情况 (3)3. MATLUB仿真 (4)3.1 MATLUB仿真图 (4)3.2 元器件参数设置 (4)3.2.1设置晶闸管参数 (4)3.2.2设置交流电源参数 (5)3.2.3设置负载参数 (5)3.2.4设置脉冲参数 (6)3.3 仿真结果展示 (7)4. 结论 (8)参考文献 (9)1. 绪论电力电子技术是以电力、电能为研究对象的电子技术,又称电力电子学(Power Electronics)。
它主要研究各种电力电子半导体器件,以及由这些电力电子器件所构成的各式各样的电路或设置,以完成对电能的变换和控制。
电力电子学是横跨“电子”“电力”“控制”三个领域的一个新兴工程技术学科。
由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能的变换和控制,而构成的一门完整的学科。
故其学习方法与电子技术和控制技术有很多的相似之处。
单相桥式整流电路是一种相对重要的整流电路,把交流电能转换成直流电能的一种桥式整流电路。
它可以应用到很多的地方,在许多的元器件中都有用到,范围广泛。
本课程设计内容是设计一个单相桥式半控整流电路为PL负载提供直流电源。
本文需要研究的是设计一个主电路、控制电路组成的总电路,以及要进行MATLAB仿真实验。
其中主电路是要设计一个单相半控桥式整流电路,控制电路是要同步信号为锯齿波的触发电路。
2. 单相半控桥式整流电路电路设计单相半控桥式整流电路总体设计框图如图所示2.1 电路原理图实验电路如图所示。
电力电子技术实验总结报告姓名:学号:专业与班级:电气20 - 班实验名称: 实验二单相桥式半控整流电路实验成绩:日期:20 - -实验二单相桥式半控整流电路实验一、实验目的(1)加深对单相桥式半控整流电路带电阻性、电阻电感性负载时各工作情况的理解。
(2)了解续流二极管在单相桥式半控整流电路中的作用,学会对实验中出现的问题加以分析和解决。
三、实验线路及原理本实验线路如图3-1所示,两组锯齿波同步移相触发电路均在DJK03-1挂件上,它们由同一个同步变压器保持与输入的电压同步,触发信号加到共阴极的两个晶闸管,图中的R用D42三相可调电阻,将两个 900Ω接成并联形式,二极管VD1、VD2、VD3及开关S1均在DJK06挂件上,电感L d在DJK02面板上,有100mH、200mH、700mH三档可供选择,本实验用700mH,直流电压表、电流表从DJK02挂件获得。
图2-1 单相桥式半控整流电路实验线路图四、实验内容(1)单相桥式半控整流电路带电阻性负载。
(2)单相桥式半控整流电路带电阻电感性负载。
五、预习要求(1)阅读电力电子技术教材中有关单相桥式半控整流电路的有关内容。
(2)了解续流二极管在单相桥式半控整流电路中的作用。
六、思考题(1)单相桥式半控整流电路在什么情况下会发生失控现象?答:当a突然增大至180度或触发脉冲丢失是,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使Ud成为正弦波,即半周期Ud为正弦,另外半周期Ud为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,称为失控。
在感性负载下发生失控现象。
需在负载前加并续流电容。
(2)在加续流二极管前后,单相桥式半控整流电路中晶闸管两端的电压波形如何?七、试验数据及波形(1)单相桥式半控整流电路带电阻性负载:记录于下表中。
计算公式: U d = 0.9U2(1+cosα)/2描绘α=600、900时Ud、Uvt的波形。
α=600α=900(2)单相桥式半控整流电路带电阻电感性负载不接续流二极管VD3时,描绘α=600、900时Ud、Uvt的波形α=600 α=900③接上续流二极管VD3,接通主电路,观察不同控制角α时U d 的波形,八、实验报告(1)画出①电阻性负载,②电阻电感性负载时U d/U2=f(α)的曲线。
4单相桥式半控整流电路—电阻性负载单相桥式半控整流电路是一种常用的电力电子变流器,可以实现直流
电压输出变换,同时实现对交流电的可控整流。
本文将重点介绍单相桥式
半控整流电路在电阻性负载下的工作原理和特性。
控制晶闸管桥由四个晶闸管(T1、T2、T3、T4)和四个反并联的二极
管(D1、D2、D3、D4)组成。
负载电阻用Rl表示。
控制晶闸管桥的工作
由上、下两个半桥分别负责,通过控制晶闸管的导通和关断时间,实现对
负载电压的控制。
单相桥式半控整流电路的工作原理如下:
通过控制晶闸管的导通和关断时间,可以实现对负载电压的控制。
当
控制晶闸管的触发角增大,则导通时间减小,反之,导通时间增加。
因此,在整个工作周期内,控制晶闸管的导通时间决定了负载电压的大小。
此外,单相桥式半控整流电路在电阻性负载下具有以下特性:
1.输出电压的纹波较大,因为晶闸管导通时存在固定的电压降和导通
电流的快速变化。
2.整流效率较低,因为晶闸管的导通和关断需要耗费一定的功率。
3.控制范围相对较小,由于晶闸管的导通时间决定了输出电压的大小,因此控制范围有限。
4.当负载电流较小时,存在较大的功率损耗,因为晶闸管的导通电流
与负载电流一致。
综上所述,单相桥式半控整流电路在电阻性负载下是一种简单且常用
的电力电子变流器,通过控制晶闸管的导通时间,可以实现对输出电压的
控制。
然而,由于存在电压纹波较大、整流效率较低和控制范围有限等问题,需要根据具体应用场景进行设计和选择。