制冷系统匹配基础知识
- 格式:doc
- 大小:46.00 KB
- 文档页数:7
有许多基本设计原则对于正常发挥制冷系统功能是非常重要的。
1、系统必须清洁、干燥,无任何污染。
2、压缩机必须在安全的温度、压力以及电力限制下运行。
3、系统的设计必须始终保持压缩机的正常润滑。
4、必须防止液击。
制冷压缩机是用于压缩制冷剂蒸汽的,只能允许极少量的液态制冷剂进入压缩机。
5、必须保持正常的蒸发器制冷剂供液,同时应避免制冷剂管路中产生过大的压降。
如果满足上述五个条件,系统就应该能够正常运行。
如果忽视了其中任何一个条件,则极有可能发生故障。
这些基本原则相互联系,在使用任何部件,或者考虑改变系统操作时必须牢记这些基本原则。
压缩机的选型应该根据厂商所对应的使用制冷剂的推荐意见,按照在设计工况运行时实际需要的制冷量进行压缩机的选型。
同一压缩机在使用不同的制冷剂时可能会有不同的工作范围,比如,制高温用工质R-12和低温用R-502工质。
由于在相同排量时无论采用R-22还是采用R-502的压缩机消耗功率大致相同,在某些情况下,在某一工作范围内可以同时适用与这两种制冷剂。
系统匹配当为一个给定装置选择压缩机或者冷凝机组时,为了满足冷负荷,必须有足够大的制冷量。
但是,制冷量过大对系统造成的负面影响和制冷量过小催系统造成的负面影响相当,因此我们必须仔细考虑在给定回气工况条件下压缩机和蒸发器的匹配。
制冷剂因为过高的制冷剂充注量将导致制冷剂流量控制方面的某些潜在问题,过高的制冷剂充注量还会影响压缩机的润滑,导致压缩机出现故障,所以应该在满足操作要求的前提下保持最小的制冷剂充注量。
压缩机的润滑为了确保连续的润滑,必须始终保持压缩机曲轴箱内充足的油供应。
运行过程中正常的油位应该保持在油视镜中央或者稍偏上。
系统中的油量绝不能过量,因为这将导致液击,可能会对压缩机上阀造成伤害。
系统的需油量取决于制冷剂充注量和系统设计,所以在安装现场,当系统运行在其正常工况下后,有必要加入或者放出适当的冷冻油以使其维持在正常水平。
油安全控制很大一部分的压缩机故障都可以归因于润滑问题。
空调制冷系统匹配基础知识培训提纲1.制冷循环、热泵循环的工作原理2.毛细管、注气量变化对制冷系统各点温度的影响3.风量变化对制冷系统的影响4.制冷系统中制冷剂的分布5.制冷系统设计匹配的类比法从设计机型与母本机型的差异来确定样机的方案,估计设计样机的水平。
6.空调器系统设计匹配的一般要求和对策1.制冷循环、热泵循环的工作原理(红色为高温高压区,兰色为低温低压区)2.毛细管、注气量变化对制冷系统各点温度的影响加长毛细管,吸气、排气上升、冷凝器中部上升、蒸发器出口上升;冷凝器出口下降、蒸发器进口下降。
减短毛细管,吸气、排气下降、冷凝器中部下降、蒸发器出口下降;冷凝器出口上升、蒸发器进口上升。
增加注气量,吸气、排气下降,冷凝器出口下降,蒸发器出口下降;冷凝器中部上升,蒸发器进口上升。
减少注气量,吸气、排气上升,冷凝器出口上升,蒸发器出口上升;冷凝器中部下降,蒸发器进口下降。
3.风量变化对制冷系统的影响蒸发器侧风量增加,冷量增大,功率升高,蒸发器出口,吸气、排气温度上升冷凝器侧风量增加,冷量增大,功率降低,冷凝器出口,吸气、排气温度降低4.制冷系统中制冷剂的分布典型的系统,室内换热器约为室外的一半。
制冷状态制冷剂约70%在室外换热器,室内换热器约10%,压缩机、管道15%;制热状态室内约50%,室外换热器约35%,压缩机、管道约15%5.制冷系统设计匹配的类比法从设计机型与母本机型的差异来确定样机的方案,估计设计样机的水平。
与母本机换热器的对比可以用来确定初始注气量,毛细管长度直径,变频压缩机的频率附:空调器系统设计匹配的一般要求和对策注:文中压力是针对R22制冷剂而言,对于R410A和R407C需根据制冷剂性质相应调整,温度值对其它制冷剂也适用。
这份程序书是针对一般情况而言,因为中国国内空调公司及机种的不同,对于以下数据仅做参考。
压缩机选定标准空调能力=压缩机规格能力值×90%空调功率=压缩机规格功率1.制冷冷凝器=室外热交换器蒸发器=室内热交换器吸气=压缩机的入口配管1)性能.....GB标准条件(室内:干球温度27℃,湿球温度19℃;室外:干球温度35℃,湿球温度24℃)如果能接近以下”目标”值是最好的匹配.对策中有冷媒追加的内容,但从可靠性的观点出发,此方法尽量避免(仅作为最后手段)A.排气温度目标值是[70℃-85℃]对策:高于目标值,毛细管减短,追加冷媒低于目标值,毛细管加长,放冷媒B.冷凝器中部温度是45℃-50℃,冷凝器出口温度与中部温度差-5℃--10℃左右的目标值,但因室外温度是35℃,冷凝器出口温度最低为37℃-38℃(若接近35℃,冷凝器无法进行热交换)对策:高于目标值,毛细管减短,室外风量增加,冷凝器加大低于目标值,毛细管加长,追加冷媒C.蒸发器中部温度及出口温度约为7℃-12℃为目标,但是如果中部温度与出口温度差过大(如中部=8℃,出口=15℃,蒸发器没有有效使用,能力降低)对策:高于目标值,毛细管减短,追加冷媒低于目标值,毛细管加长,室内风量增加,蒸发器加大D.吸气温度是与蒸发器出口温度相同,可相差1℃-2℃,若蒸发器出口温度过高(如出口=10℃,吸气=20℃)是排气温度上升的原因,反之蒸发器出口温度过低(如出口=10℃,吸气=5℃)是排气温度低的原因,这是因为冷媒在蒸发器中没有充分蒸发,能力不足.对策:高于目标值,毛细管减短,追加冷媒低于目标值,毛细管加长,放冷媒2) 超负荷...GB最大运行(室内:干球温度32℃,湿球温度23℃室外:干球温度43℃,湿球温度26℃)A. 定额运转电压在(50HZ,220V)±10%可以运转对策:不能运转时(IOL动作时)提高室外风量,另外冷媒增多,压缩机负荷增大,如果有可能可减少冷媒*各公司为了控制室外噪音,尽可能把风量设定低些。
制冷知识基础制冷是指将物体的温度降低到低于周围环境温度的过程。
制冷技术广泛应用于家庭、商业和工业领域,为人们提供舒适的环境和保鲜的食品。
本文将从制冷原理、制冷剂、制冷循环和制冷设备等方面介绍制冷知识的基础内容。
一、制冷原理制冷原理基于热力学的第一和第二定律。
第一定律表明能量守恒,热量会从高温物体传递到低温物体,使得高温物体温度降低,低温物体温度升高。
而第二定律则说明热量自然向低温传递的趋势,即热量不会自发地从低温物体传递到高温物体。
利用这些原理,制冷系统可以将热量从室内或食品中移除,使其温度降低。
二、制冷剂制冷剂是制冷系统中用于传递热量的介质。
常见的制冷剂有氨、氟利昂、丙烷等。
制冷剂具有低沸点和高蒸发潜热的特性,可以在低温下蒸发吸收热量,然后在高温下冷凝释放热量。
制冷剂在制冷循环中循环流动,起到传递热量的作用。
三、制冷循环制冷循环是制冷系统中的核心部分,通过循环流动的制冷剂实现热量的传递。
常见的制冷循环有蒸发冷凝循环和吸收制冷循环。
蒸发冷凝循环由压缩机、冷凝器、膨胀阀和蒸发器组成,通过制冷剂的蒸发和冷凝来实现热量的传递。
吸收制冷循环则利用制冷剂和吸收剂的吸收和析出来实现热量的传递。
四、制冷设备制冷设备是实现制冷过程的关键装置。
常见的制冷设备包括冰箱、空调和冷库等。
冰箱利用制冷循环原理,将室内的热量传递到冷凝器外,使冷藏室内温度降低。
空调则通过循环流动的制冷剂将室内的热量带走,实现室内温度的调节。
冷库则利用制冷设备将空间内的温度降低到低于周围环境温度,用于食品的储存和保鲜。
五、制冷效率制冷效率是衡量制冷设备性能的重要指标。
制冷效率通常用COP (Coefficient of Performance)来表示,即单位制冷量所需的功率。
COP越高,表示制冷设备的能效越高。
提高制冷效率可以通过优化制冷循环、选择高效制冷剂和改进设备设计等方式来实现。
六、制冷系统的应用制冷技术在日常生活中得到广泛应用。
家用制冷设备如冰箱、空调等为人们提供了舒适的居住环境和新鲜的食品。
制冷技术入门知识点总结一、基本原理1. 制冷效应制冷效应是指通过外界的助力,把热能从低温的物体或物体的低温部分转移到高温的物体或物体的高温部分的现象。
在自然界中,有几种使物体变凉的方法,如蒸汽凝结、蒸发冷却、压缩膨胀等,就是其中的一些例子。
2. 理想制冷循环制冷循环是制冷系统的核心部分,它由四个基本过程组成:蒸发、压缩、冷凝和膨胀。
这些过程按照一定的顺序循环进行,从而实现将热量从低温的物体或系统中移开的目的。
二、常见制冷设备1. 制冰机制冰机是一种常见的制冷设备,它是用来冻结水或其它液体的设备,将液体冷冻成固体状态,从而实现冷却的目的。
2. 冰箱冰箱是一种家庭电器,用于储藏食物和保鲜食物。
它通过制冷剂的循环往复运动,将室内的热量带走,从而实现室内温度的降低。
3. 空调空调是一种用于调节室内空气温度、湿度、流速等参数的设备。
它通过压缩机、冷凝器、蒸发器、膨胀阀等部件,配合制冷剂循环工作的方式,将室内的热量转移到室外,从而实现室内温度的调节。
4. 制冷舱制冷舱是一种用于运输食品、药品、化工品等易变质品的车辆或设备,它通过制冷系统的工作方式,将舱内的温度控制在一定的范围内,从而实现货物的保鲜和保质。
三、制冷剂1. 制冷剂的选择制冷剂是制冷系统中起着传递热量和吸收热量作用的物质。
常见的制冷剂有氨、氯氟烃等。
在选择制冷剂时,需要考虑其对环境的影响、安全性、可靠性以及性能等因素。
2. 制冷剂的循环制冷剂在制冷系统中循环起到传热、吸热的作用,是制冷系统能够正常工作的关键部件。
一般来说,制冷剂需要具备一定的蒸汽压、凝固点等性能参数,才能满足制冷系统的工作要求。
四、制冷系统1. 制冷系统的组成制冷系统主要由压缩机、冷凝器、蒸发器、膨胀阀等部件组成。
这些部件按照一定的顺序循环工作,通过制冷剂的循环,实现对物体或系统的制冷效果。
2. 制冷系统的工作原理制冷系统的工作原理是通过压缩机对制冷剂进行压缩,然后通过冷凝器散热,将制冷剂冷却成液体,再通过膨胀阀降压并将制冷剂喷射到蒸发器中,实现对空气或物体的制冷效果。
制冷设备入门知识点总结一、制冷设备的基本原理1. 制冷循环制冷设备通常采用制冷循环来实现制冷效果。
制冷循环一般由蒸发器、压缩机、冷凝器和节流装置组成。
工作过程分为蒸发、压缩、冷凝和膨胀四个过程。
通过不断循环这个过程,可以将热量从一个地方移动到另一个地方,从而实现制冷。
2. 制冷剂制冷设备中使用的制冷剂是实现制冷循环的关键。
常见的制冷剂包括氨、氟利昂、R134a 等。
制冷剂的选择要考虑其物理性质、化学稳定性、环保性以及安全性等因素。
3. 制冷负荷制冷设备的制冷负荷是指需要被移除的热量量。
制冷负荷的大小取决于环境温度、使用场所的受热面积、使用条件等因素。
制冷设备的制冷量必须大于等于制冷负荷。
二、制冷设备的分类1. 压缩式制冷设备压缩式制冷设备是目前应用最为广泛的制冷设备之一。
其原理是利用压缩机将低温低压的制冷剂吸入,通过压缩使其温度和压力升高,然后通过冷凝器散热,将制冷剂冷凝成液体,再通过节流装置使其膨胀成低温低压的气态制冷剂,进入蒸发器,从而达到制冷的效果。
2. 吸收式制冷设备吸收式制冷设备利用吸收剂对制冷剂进行吸收和释放热量的原理来实现制冷。
其工作过程包括吸附、升温、冷凝和解吸四个过程。
3. 吹风式制冷设备吹风式制冷设备是通过风扇驱动空气流动,利用空气流动带走热量的原理来实现制冷。
其工作原理类似风扇和空调的结合,适用于一些小型的冷藏、冷冻设备。
4. 热电制冷设备热电制冷设备是利用热电材料在电热作用下产生冷热效应的原理来实现制冷。
由于热电材料在加热或制冷时具有很高的效率和快速的响应速度,所以在一些小型制冷设备中得到了广泛应用。
5. 电子制冷设备电子制冷设备是通过半导体材料的P-N结在电场作用下产生Peltier效应来实现制冷的设备。
具有结构简单和无运动部件的特点,因此在一些需要静音和紧凑结构的场合被广泛应用。
三、制冷设备的选型及应用1. 制冷设备的选型根据制冷负荷大小、应用场所要求、环境温度等因素来选择合适的制冷设备。
制冷系统基础知识制冷系统是一种将热量从一个区域转移至另一个区域的技术。
它在现代生活中起着重要的作用,广泛应用于家庭、商业和工业领域。
本文将介绍制冷系统的基础知识,包括工作原理、主要组成部分和常见的制冷剂。
一、工作原理制冷系统的工作原理基于热力学第二定律,即热量自高温区域自发地流向低温区域。
制冷系统利用压缩机、冷凝器、膨胀阀和蒸发器等组件来实现热量的转移。
其基本工作流程可分为四个步骤:1. 蒸发器:制冷系统中的蒸发器是一个热交换器,其内部通过制冷剂的蒸发吸收外部环境的热量。
当制冷剂从液态变为气态时,吸收热量使周围温度降低。
2. 压缩机:蒸发器中的制冷剂蒸发后,通过压缩机被压缩并提升其温度和压力。
压缩机是制冷系统的“心脏”,其作用是将制冷剂压缩成高温高压气体。
3. 冷凝器:高温高压气体进入冷凝器,通过与外部环境的热交换,使制冷剂冷却并转变为液态。
冷凝器通常采用散热器或冷却水循环来散热,使制冷剂的温度降低。
4. 膨胀阀:制冷剂经过冷凝器后,进入膨胀阀,在膨胀阀的作用下,制冷剂的压力和温度降低,进入蒸发器重新循环。
二、主要组成部分制冷系统主要由以下几个组成部分构成:1. 压缩机:将低压制冷剂气体压缩为高压气体,提高其温度和压力。
2. 冷凝器:通过散热器或冷却水循环,使高温高压制冷剂气体冷却并转变为液态。
3. 膨胀阀:控制制冷剂的流量和压力,将高压液态制冷剂转变为低压液态制冷剂。
4. 蒸发器:通过制冷剂的蒸发吸收外部环境的热量,使周围温度降低。
5. 制冷剂:制冷系统中的制冷剂起着传递热量的重要作用。
常见的制冷剂包括氟利昂、氨、二氧化碳等。
三、常见的制冷剂1. 氟利昂(Freon):氟利昂是一类无色无味的气体,具有良好的制冷性能和化学稳定性。
然而,由于其对臭氧层的破坏以及对全球变暖的影响,氟利昂的使用受到了限制。
2. 氨(Ammonia):氨是一种具有优良制冷性能的制冷剂,具有高效、环保等优点。
它在工业制冷领域得到广泛应用,但由于其具有毒性和易燃性,使用时需要特殊的安全措施。
制冷专业必备的知识制冷专业是一个涉及制冷技术和制冷设备的学科领域。
在这个领域中,掌握一些必备的知识对于从事制冷工作的人员来说是非常重要的。
本文将从制冷原理、制冷循环、制冷剂以及制冷设备四个方面介绍制冷专业必备的知识。
一、制冷原理制冷原理是制冷专业的基础知识,它涉及到物质的热力学性质和热传导规律。
制冷原理的核心是利用物质的相变过程来吸收或释放热量,实现温度的降低。
常用的制冷原理有蒸发制冷、吸收制冷和压缩制冷等。
了解这些原理可以帮助制冷工程师选择合适的制冷循环和制冷设备,从而提高制冷系统的效率和性能。
二、制冷循环制冷循环是制冷系统中的核心部分,它包括蒸发器、压缩机、冷凝器和节流装置等组成。
蒸发器是制冷循环中的热交换器,通过蒸发剂与外部的低温介质进行热交换,从而吸收热量。
压缩机是制冷循环中的能量转换装置,它将低温低压的蒸发剂压缩成高温高压的气体,提高其温度和压力。
冷凝器是制冷循环中的热交换器,通过冷却剂与外部的高温介质进行热交换,从而释放热量。
节流装置是制冷循环中的控制装置,通过减小蒸发剂的流量和压力,使其进入蒸发器时呈现饱和状态,从而实现制冷效果。
三、制冷剂制冷剂是制冷系统中的工质,它起到传递热量和实现温度降低的作用。
常用的制冷剂有氨、氟利昂、丙烷等。
制冷剂的选择要考虑到其物理性质、环境影响和安全性等因素。
制冷剂的物理性质包括饱和蒸汽温度、气化热、比容等,这些性质直接影响到制冷系统的性能和效率。
制冷剂的环境影响主要涉及到其对臭氧层的破坏和温室效应,因此要选择对环境影响较小的制冷剂。
制冷剂的安全性包括其毒性、燃烧性和爆炸性等,要选择对人身安全和设备安全影响较小的制冷剂。
四、制冷设备制冷设备是制冷专业中的实体部分,它包括冷库、冷藏车、冷冻机组、空调设备等。
冷库是用于存储冷冻或冷藏食品的设备,它通过制冷循环实现温度的控制和保持。
冷藏车是一种用于运输冷藏货物的专用车辆,它通常配备有制冷机组,可以保持货物在一定的温度范围内。
制冷技术基础知识包括以下几个方面:
1.制冷原理:制冷技术的基本原理是利用制冷剂在蒸发器中吸热,通过压缩机、冷凝器、节流阀等
热力设备进行压缩、放热、节流,实现对制冷循环中制冷剂状态的变化,达到制冷或制热的目的。
2.制冷剂:制冷剂是制冷循环中的工作物质,它能够在制冷循环中不断循环流动,实现吸热和放热
的过程。
常见的制冷剂有氨、氟利昂、丙烷等。
3.制冷系统:制冷系统包括压缩机、冷凝器、蒸发器、节流阀等主要部件。
制冷剂在蒸发器中吸收
热量,经过压缩机的压缩,将热量排出到冷凝器中,再通过节流阀减小压力,使制冷剂在蒸发器中再次吸收热量,如此循环往复实现制冷效果。
4.制冷设备:制冷设备包括各种类型的空调、冰箱、冷库等。
不同类型的制冷设备适用于不同的场
合和需求,需要根据实际需求选择合适的制冷设备。
5.制冷应用:制冷技术在许多领域都有应用,如食品加工、医药、化工等。
通过制冷技术可以实现
对物质温度的调控,达到保存、加工、使用的目的。
总之,制冷技术是现代工业和生活中不可或缺的一种技术,它能够实现对物质温度的调控,满足各种不同的需求。
制冷系统基础知识
液体蒸发制冷循环必须具备以下四个基本过程:
①制冷剂液体在低压下汽化产生低压蒸气;
②将低压蒸气抽出并提高压力变成高压蒸气;
③将高压蒸气冷凝成高压液体;
④高压液体再降低压力回到初始的低压状态。
如此便完成循环。
按照实现循环所采用的方式不同,液体蒸发制冷有压缩式制冷、蒸气吸收式制冷、蒸气喷射式制冷和吸附式制冷等几种形式。
®当电偶通以直流电流时,P型半导体内载流子(空穴)和N型半导体内载流子(电子)在外电场作用下产生运动,并在金属片与半导体接头处发生能量的传递及转换
®如果将电源极性互换,则电偶对的制冷端与发热端也随之互换热电制冷器的结构和原理显然不同于液体气化制冷。
它不需要一定的工质循环来实现能量转换,没有任何运动部件。
热电制冷的效率低,半导体材料的价格又很高,而且,由于必须使用直流电源,变压和整流装置往往不可避免,从而增加了电堆以外的附加体积。
所以热电制冷不宜大规模和大冷量使用。
但由于它的灵活性强,简单方便,使用可靠,冷热切换容易,非常适宜于微型制冷领域或有特殊要求的用冷场所。
例如,为空间飞行器上的科学仪器、电子仪器、医疗器械中需要冷却的部位提供冷源等。
欢迎学习交流。
制冷系统匹配基础知识一、制冷基本原理定义制冷的基本原理及基本方法单级压缩蒸气制冷循环1、定义制冷:从低于环境的物体中吸取热量,并将其转移给环境介质的过程。
制冷机:完成制冷循环所必需的机器和设备的总称。
制冷装置:将制冷机同使用冷量的设施结合在一起的装置。
如冰箱,空调机等。
制冷剂:除半导体制冷以外,制冷机都是依靠内部循环流动的工作介质来实现制冷过程,完成这种功能的工作介质,称为制冷剂,也称制冷工质,俗称雪种。
2、制冷的基本原理由于热量只能自动地从高温物体传给低温物体,因此实现制冷必须包括消耗能量的补偿过程。
制冷机的基本原理:利用某种工质的状态变化,从较低温度的热源吸取一定的热量Q0,通过一个消耗功W的补偿过程,向较高温度的热源放出热量Qk,。
在这一过程中,由能量守恒得Qk= Q0 + W。
3、制冷的基本方法3、制冷的基本方法相变制冷:利用液体在低温下的蒸发过程或固体在低温下的熔化或升华过程向被冷却物体吸取热量。
普通空调器都是这种制冷方法。
气体膨胀制冷:高压气体经绝热膨胀后可达到较低的温度,令低压气体复热即可制冷。
气体涡流制冷:高压气体经过涡流管膨胀后即可分离为热、冷两股气流,利用冷气流的复热过程即可制冷。
热电制冷:令直流电通过半导体热电堆,即可在一端产生冷效应,在另一端产生热效应。
4、单级压缩蒸气制冷循环蒸气压缩式制冷机是目前应用最广泛的一种制冷机,有单级、多级和复叠式之分。
单级压缩蒸气制冷机是指将制冷剂经过一级压缩从蒸发压力压缩到冷凝压力的制冷机。
单级制冷机一般可用来制取-40℃以上的低温。
普通的空调器都是利用单级压缩蒸气制冷机的原理制造的。
4、单级压缩蒸气制冷循环单级压缩蒸气制冷机的由以下几个基本组成部份:压缩机冷凝器节流机构(毛细管)蒸发器制冷剂4、单级压缩蒸气制冷循环4、单级压缩蒸气制冷循环压缩机:它的作用是将蒸发器中的低温低压制冷剂蒸气吸入,并压缩到高温高压的过热蒸气,然后排到冷凝器。
常用的压缩机有活塞式、转子式、涡旋式、螺杆式和离心式等等。
压缩机有定速压缩机和变频压缩机。
现在最新的有变容量的压缩机,例如美的MDV用的谷轮“e-涡旋”压缩机可以在10%-100%之间调节输出量,运用“TS”技术可以使压缩机的能力输出实现级量调节,在控制方面比变频压缩机简单、可靠,更接近空调器的实际负荷要求。
4、单级压缩蒸气制冷循环冷凝器:它的作用是将来自压缩机的高温高压制冷剂蒸气冷凝成过冷的液体,在冷凝过程中,制冷剂蒸气放出热量,故要用水或空气来冷却。
不同制冷剂有不同的冷凝压力。
普通家用空调器冷凝器里面的制冷剂(R22)压力:标准制冷工况下一般在18 —19 bar左右,过负荷工况下一般在22—24bar左右。
4、单级压缩蒸气制冷循环节流机构:普通空调常用的是毛细管,高档的空调器用电子膨胀阀。
制冷剂经过节流机构时,压力由冷凝压力降到蒸发压力,一部份制冷剂会在节流的过程中闪发成为气体。
节流过程中制冷剂的焓值不变。
普通的家用空调器节流结束时大约有20%的制冷剂会闪发成气体。
制冷剂没有蒸发就闪发成气体降低了空调器的性能。
4、单级压缩蒸气制冷循环蒸发器:它的作用是使经节流机构后的制冷剂液体蒸发成蒸气,以吸收被冷却物体的热量。
蒸发器是对外输出冷量的设备。
普通家用空调器蒸发器里的制冷剂(R22)的蒸发压力在5.5-6.5bar左右。
系统匹配步骤:选压缩机选冷凝器选蒸发器估算制冷剂充注量匹配制冷系统不合格项目的整改二、系统匹配一般来说,新匹配一台空调器都有一个参考机型新匹配机的性能指标对压缩机、冷凝器、蒸发器的选择有很大关系。
室外机、室内机的电机转速-风量-噪音是首先要摸底搞清楚的。
1、选压缩机根据实际情况选择压缩机型式:活塞式、转子式、涡旋式及其电源规格一般来说,家用空调器中活塞式用得比较少,T3型空调器一般会选择活塞式压缩机。
目前3P以下的家用空调器大多数都是转子式压缩机。
转子压缩机又分单转子与双转子压缩机。
3P以上的家用空调器一般会使用涡旋式压缩机。
根据空调器的制冷量大小来选择压缩机的大小,一般来说按空调器的额定制冷量是压缩机的单体能力的90%来选择。
压缩机每一个排量(1cc)的能力约为175W。
2、选冷凝器长U管管径,内螺纹管还是光管在正常的范围内,管径越小,换热系数越大,耐压也越大,但流动阻力也越大。
内螺纹管比光管换热系数高,不同形式的内螺纹管换热系数也不一样小管径冷凝器及新型的内螺纹管的研究是一个重要的方向。
选择非亲水铝箔(普通铝箔)还是亲水铝箔,选择片型是平片、冲缝片还是波纹片,选择片距选择其它型式的冷凝器高效的冷凝器有全铝冷凝器、全铜冷凝器等等3、选蒸发器长U管管径,内螺纹管还是光管一般来说蒸发器的长U管径可以选择小管径的。
选择亲水铝箔一般选择冲缝片,最小片距可达1.3mm。
4、估算制冷剂充注量参考机型的制冷剂充注量一台空调正常状态下约有60%的制冷剂会在室外侧的冷凝器里,约40%的制冷剂在室内侧的蒸发器里。
以参考机型为基础,算出冷凝器和蒸发器内容积增大(或减少)的比例,估算出大概的制冷剂充注量。
比如说:参考机型充注量为1000g,内机不变,室外机冷凝器由单排变为1.5排:侧估算充注量为:1000*0.6*1.5+1000*0.4=1300(g)一般来说,估算的充注量要比最后的要稍多。
这个只能靠经验掌握。
估算的只能提供一个大概。
5、匹配制冷系统以下各点是对一般情况而言的,以下数据做一个参考。
*制冷工况匹配,以下对策中的“增加冷媒”仅作为最后的手段,此方法应该尽量避免。
在标准制冷工况下匹配的目标:1)排气温度目标值:85-90℃高于目标值,则应该减短毛细管,加大室外机风量或追加冷媒。
低于目标值,则加长毛细管,减少冷媒。
如果是特别匹配的高效制冷系统,排气温度较低,一般在70-80 ℃。
2)冷凝器中部温度目标值:45-50℃左右,过冷度目标值在5-10 ℃左右冷凝器出口最低在37-38 ℃,若过低则与环境35 ℃温差太小,换热量很少冷凝器中部温度高于目标值,则应该减短毛细管,加大室外机风量或加大冷凝器。
冷凝器中部温度低于目标值,则应该加长毛细管,追加冷媒。
3)蒸发器中部温度目标值:8-12℃左右,过热度目标值在0-1 ℃左右蒸发器中部温度值高于目标值则加长毛细管。
蒸发器中部温度值低于目标值则减短毛细管,加大室内机风量或加大蒸发器。
蒸发器过热度值高于目标值则减短毛细管,增加冷媒。
蒸发器过热度值低于目标值则加长毛细管,加大室内机风量,减少冷媒或加大蒸发器。
4)压缩机回气温度比蒸发器出口温度可高出1-2℃左右。
若回气温度高出出口温度较大,比如出口为10 ℃,而压缩机回气有20 ℃,这个是压缩机排气温度上升的原因,应该减短毛细管或增加冷媒。
若回气温度低于出口温度很多,比如出口为10 ℃,而压缩机回气有5 ℃,这个是压缩机排气温度下降的原因,这时候冷媒在蒸发器中不能充分蒸发而导致能力不足,应该加长毛细管或减少冷媒。
5)制冷过负荷工况下。
若OLP动作,则应该加大外侧风量,冷媒增多压缩机负荷加大,如果可能的话可减短毛细管,并减少冷媒,或加大冷凝器。
保证高压侧压力不超过26.5bar,26.5bar对应冷凝器中部温度65 ℃左右。
压缩机排气温度一般要在115 ℃以下,不要超过125 ℃,压缩机电机的线圈温度比排气温度高10 ℃左右,温度过高的话可能烧线圈。
排气温度过高时可减短毛细管或加大冷凝器或增加冷媒(注意减短毛细管时可能会使标准工况下能力下降)5)过载保护器OLP(Over Load Protector)动作过载保护器是由电流与温度共同控制的。
OLP曲线图有两种表示型式。
如下图,分三个区域或两个区域。
如图所示的OLP曲线,当电流为I1 时只要压缩机温度小于t1 压缩机的OLP是不会动作的。
或者,当压缩机温度是t1 时,压缩机的电流小于I1 时,OLP不会动作。
5)最小制冷工况下。
蒸发器温度不能低于0 ℃,到0 ℃以下时,蒸发器上附着的除湿水份会开始冻结,不能制冷,当冰成块掉下来的时候会打坏风轮。
空调器的防冻结功能,当检测到蒸发器的温度T2连续一段时间低于某温度值时,压缩机停止工作,等到T2上升到某温度时才开始工作。
如美的分体机:T2连续5分钟低于2 ℃则停压缩机,内风机转速不变,T2上升到8 ℃后再开压缩机。
确保压缩机壳体底部温度高于冷凝器中部温度 5 ℃以上。
若不能保证,压缩机油会被冷媒稀释,润滑油会失去机能,这样压缩机滑动部分开始磨损,最终造成不能运转。
6)匹配性能时调节毛细管和冷媒量的组合,可得出对应的出风温度选择出风温度最低的毛细管和冷媒量的组合测试能力针对测试结果作一些微调节,把空调各参数到匹配到一个最佳组合。
7)不合格项目微调与整改能力不足:压缩机是否过小?毛细管与冷媒量是否是最佳组合?室内侧与室外侧风量是否合理?两器大小是否合理?功率过高与最大制冷跳停:外侧风量是否合理?冷凝器大小是否合理?冷凝器制作是否有问题(没有胀紧、叠片、倒片、片距不对)是否冷媒过多或者毛细管过长?冷凝器流路设计不合理造成严重复热,或流路半堵,降低冷凝器性能?凝露工况不合格低风风速是否定得过低?(风速过高会造成吹水)室内机是否漏风?是否流路不均,严重偏流?冷媒是否不足,造成缺液蒸发?室外机有冷媒流动声毛细管组件用防振胶包住在两个管径变化大的地方加过渡管在过渡管处包防振胶异声或噪音超标如果是风道的异声,则要改变风轮转速、安装位置或换风轮如果是制冷系统的异声,则在固频不合格处加配重块或防振胶改变其固频在配管振动大的地方贴防振胶在压缩机排气管上加消声器压缩机包隔音棉钣金件上贴隔音棉三、影响EER、COP 的主要因素逆卡诺循环的制冷系数具有传热温差的外部不可逆卡诺循环的制冷系数循环效率(热力完善度)空调器的EER、COP影响主要因素1、逆卡诺循环的制冷系数逆向循环是一种消耗功的循环,所有的制冷机都是按逆向循环来工作的。
当高温热源与低温热源的温度不变时,具有两个可逆的等温过程和两个等熵过程的逆向循环称为逆卡诺循环。
1、逆卡诺循环的制冷系数如图所示的逆卡诺循环T-s图,制冷剂放热时的温度与高温热源的温度均为T2,制冷剂吸热时的温度与低温热源的温度均为T1。
2、不可逆卡诺循环的制冷系数如图所示的不可逆卡诺循环T-s图,制冷剂放热时的温度为Tk,高温热源的温度为T2,制冷剂吸热时的温度为T0,低温热源的温度为T1。
则制冷系数为:EER1=T0/(Tk-T0)<T1/(T2-T1)任何一个不可逆循环的制冷系数总是小于相同热源温度时的逆卡诺循环的制冷系数所有的实际的制冷循环都是不可逆循环。
3、循环效率(热力完善度)循环效率是表示实际循环的完善性接近可逆卡诺循环的程度,定义为:η=EER1 / EER0在两个热源温度不变的情况下,提高η或EER1的方法有:降低Tk温度升高T0温度同时降低Tk温度和升高T0温度3、循环效率(热力完善度)曲线图4、如何提高空调器的EER从制冷系统上说,降低冷凝温度Tk和升高蒸发温度T0都可以使EER上升采用高效的压缩机适当加大冷凝器、加大室外机的风量,使Tk下降适当加大蒸发器、加大室内机的风量,使T0上升利用高效的换热器,例如用内螺纹管代替光管、全铝换热器从整机上说采用高效的直流电机代替交流电机采用直流变频压缩机代替普通定速压缩机或交流变频压缩机冷媒充注量尽量少采用排量较大的变频压缩机代替排量较小的变频压缩机,以压缩机的额定频率来做制冷的主频加大内外机风量的同时要考虑风机功率的增加,从整机上说,不一定是风量越大EER越高制冷系统要匹配到一个最佳状态。