手把手教你CATIA绘制模型飞机(doc66页)
- 格式:docx
- 大小:3.37 MB
- 文档页数:77
飞机catia课程设计一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握飞机catia设计的基本原理和方法;技能目标要求学生能够运用catia 软件进行飞机设计,并具备一定的创新设计能力;情感态度价值观目标要求学生在学习过程中培养对飞机设计的热爱和敬业精神。
通过分析课程性质、学生特点和教学要求,我们将目标分解为具体的学习成果。
课程目标旨在培养学生的飞机设计能力,使他们在学习过程中掌握相关知识,提高技能,并树立正确的情感态度价值观。
二、教学内容根据课程目标,我们选择和了以下教学内容:1.飞机catia设计基本原理:介绍飞机设计的基本概念、方法和流程。
2.catia软件操作:教授学生如何使用catia软件进行飞机设计,包括建模、装配、渲染等。
3.飞机设计实例分析:分析实际飞机设计案例,使学生了解飞机设计的过程和技巧。
4.创新设计能力培养:引导学生进行飞机设计创新,培养他们的创新思维和能力。
教学内容将按照教材的章节进行安排和进度,确保内容的科学性和系统性。
三、教学方法为了激发学生的学习兴趣和主动性,我们将采用多种教学方法:1.讲授法:讲解飞机catia设计的基本原理和方法。
2.讨论法:学生进行讨论,培养他们的思维能力和团队合作精神。
3.案例分析法:分析实际飞机设计案例,使学生更好地理解飞机设计的过程和技巧。
4.实验法:引导学生动手操作catia软件,提高他们的实践能力。
通过多样化的教学方法,我们将激发学生的学习兴趣,培养他们的主动性和创新能力。
四、教学资源为了支持教学内容和教学方法的实施,我们将选择和准备以下教学资源:1.教材:选用合适的教材,为学生提供系统性的学习资料。
2.参考书:提供相关参考书籍,丰富学生的知识储备。
3.多媒体资料:制作多媒体课件,生动形象地展示飞机设计的过程和技巧。
4.实验设备:准备计算机和catia软件,为学生提供实践操作的机会。
教学资源将丰富学生的学习体验,帮助他们更好地理解和掌握飞机catia设计知识。
CATIA作业工程说明摘要我做的是一架苏-27飞机,其中的尺寸关系大多是在网上找到的,还有些是照着杂志上的尺寸定的,其中主要用到了CATIA的曲线和曲面模块,零件设计模块以及装配设计模块。
由于工程较大,所以我先用曲线和曲面模块将飞机的整体外形做出来也就是DOS shell.CATPart这个文件,然后需要详细制作哪个部分便以DOS shell.CATPart的轴系为参考,分步做出。
这样装配起来就不需要添加约束了。
工程结构:目录一.零件设计 (4)1.空速管: (4)2.雷达罩: (4)3.机身: (5)4.机舱,平尾,垂尾,发动机外壳 (5)5.导弹挂架 (8)6.轮胎 (9)二.装配设计 (12)1.复制,特殊黏贴 (12)2.除去命令 (13)3.装配约束 (14)三.心得体会: (15)参考文献 (16)一.零件设计1.空速管:对空速管草图(图1-1)用旋转体命令再对其进行倒圆角得到空速管实体(图1-2)(图1-1)(图1-2)2.雷达罩:利用旋转命令得到雷达罩外壳(图1-3)(图1-3)3.机身:首先进行平面便宜,得到各个不同心圆的平面,然后在平面上做圆的草图,得到7个不同心圆的草图,然后进行多截曲面命令得到下图机身(图1-4):(图1-4)4.机舱,平尾,垂尾,发动机外壳与机身同样的方法利用多截曲面命令可得到机舱(图1-5):图1-5同样方法可以得到机翼(图1-6):图1-6平尾(图1-7):图1-7垂尾(图1-8):图1-8发动机外壳图(图1-9):图1-9然后将机舱,平尾,垂尾,发动机外壳分别对YZ平面做对称,得到下图简单的飞机外形(图1-10):图1-10由于机身和机翼是连接的,所以再做个多截曲面使其与机身和机翼相连:5.导弹挂架利用填充器命令即可得到:6.轮胎图(1-13)轮胎我单独对其进行装配,这样外胎和内胎就可以被任意调用。
对外胎草图(图1-10)用填充器操作(图1-11),而轮胎上的纹路是对轮胎进行开槽操作(图1-12),然后外胎选用Rubber材料,内胎用铝材料得到图(1-13)。
CATIA参数化建模实例CATIA(Computer-Aided Three-Dimensional Interactive Application)是一种基于三维交互式设计的软件套件,广泛用于制造业中的产品设计和工程分析。
参数化建模是CATIA的一个重要功能,它允许用户通过定义和修改参数来创建模型,从而实现快速的设计和修改过程。
本文将通过一个实例,介绍CATIA参数化建模的基本原理和操作步骤。
实例背景假设我们需要设计一个简单的螺旋桨模型,该模型具有可调整的叶片数量和半径。
我们将使用CATIA的参数化建模功能来完成这个任务。
步骤一:创建基础结构首先,我们需要创建一个基础结构,包括一个中心轴和一个用于构建叶片的曲面。
在CATIA中,我们可以使用多种方法创建这些几何元素,例如直接绘图、绘制线条然后旋转等。
在本例中,我们将使用绘制曲线的方法来完成。
步骤二:添加参数接下来,我们需要为模型添加参数。
在CATIA中,参数可以是数字、长度、角度、比例等等。
通过定义参数,我们可以轻松地调整模型的尺寸和形状。
在本例中,我们将添加两个参数:叶片数量和半径。
步骤三:创建叶片有了基础结构和参数,我们可以开始创建叶片了。
通过在曲面上绘制轮廓曲线,然后沿着曲线拉伸,我们可以创建出一个叶片。
使用参数化建模的优势是,我们可以通过修改参数的值来调整叶片的数量和半径,而无需手动重新设计每个叶片。
步骤四:模型调整和优化在创建叶片后,我们可以根据需要进行模型的调整和优化。
通过修改参数的值,我们可以快速地对叶片数量和半径进行调整,以实现不同的设计要求。
我们还可以添加其他参数,例如叶片的倾角和旋转角度等,以进一步丰富模型的功能。
步骤五:导出和应用完成模型的设计后,我们可以将其导出为其他格式,例如STL或IGES,以进行后续的分析和制造。
CATIA提供了丰富的导出选项,可以满足不同需求的要求。
同时,我们还可以将该模型应用于其他设计中,例如飞机、船舶或风力发电机等。
CATIA设计飞机模型的设计方法哎呀,今天咱们聊聊CATIA设计飞机模型的设计方法吧!这可是个高大上的技术活,不过别担心,我会让你们轻松上手的。
咱们得了解什么是CATIA,它是一款非常强大的三维CAD软件,可以用来设计各种复杂的物体,包括飞机模型。
那咱们怎么用CATIA来设计飞机模型呢?接下来,我就给大家细细道来。
咱们要打开CATIA软件,这时候你会看到一个界面,上面有很多工具栏和菜单栏。
别急着去点这些按钮,咱们先来学习一下如何创建一个新的飞机模型。
在CATIA的菜单栏里,有一个叫做“新建”的选项,点击它,然后选择“零件”,再选择“飞机”。
这样,一个全新的飞机模型就诞生了!接下来,咱们要对这个飞机模型进行一些基本的设计。
在CATIA的工具栏里,有一个叫做“编辑几何体”的工具,点击它,就可以对飞机模型进行编辑。
比如,你可以改变飞机的形状、大小、位置等。
这些操作都是可以逆向进行的,如果你觉得不满意,可以随时撤销操作。
在CATIA中,还有很多其他的工具可以帮助我们设计飞机模型。
比如,有一个叫做“拉伸”的工具,可以让我们在飞机模型上添加各种部件。
还有一个叫做“旋转”的工具,可以让我们在飞机模型上旋转部件,以便于观察和设计。
还有一个叫做“阵列”的工具,可以让我们在飞机模型上排列大量的部件。
除了基本的设计工具之外,CATIA还有很多高级功能可以帮助我们设计飞机模型。
比如,有一个叫做“布尔运算”的功能,可以让我们在飞机模型上组合不同的部件。
还有一个叫做“干涉检测”的功能,可以帮助我们检查飞机模型在某些特定条件下是否会出现问题。
还有一个叫做“装配”的功能,可以让我们在飞机模型上安装各种部件。
在设计飞机模型的过程中,我们还需要注意一些细节问题。
比如,我们需要考虑飞机的重量分布、空气动力学特性、结构强度等问题。
这些问题可能比较复杂,但是CATIA都可以帮助我们解决。
在CATIA中,有一个叫做“分析”的功能,可以让我们在飞机模型上进行各种分析。
飞机catia造型与结构设计一、序二、发动机与车轮罩1、零件的作用和结构分析2、飞机零件的三维设计3、飞机零件的二维工程制图设计三.侧风窗1、零件的作用和结构分析2、飞机零件的三维设计3、飞机零件的二维工程制图设计四.后风窗1、零件的作用和结构分析2、飞机零件的三维设计3、飞机零件的二维工程制图设计五.小节六.参考文献序言“飞机造型与结构设计”课程设计是在完成“飞机造型与结构设计”课程学习和实验以及在参观实习之后的下一教学环节。
它一方面要求学生通过设计获得综合运用过去所学的全部课程进行飞机结构设计的基本能力。
另外,也是为以后作好毕业设计进行一次综合训练和准备。
学生通过“飞机造型与结构设计”课程设计,应在下述各方面得到锻炼:(1)能熟练运用飞机造型与结构设计课程中的基本理论以及在生产实习中学到的实践知识,正确地进行飞机零部件的设计。
(2)能熟练掌握运用三维工程设计软件进行飞机零部件三维数字化设计能力。
(3)学会运用手册及图表资料。
掌握与本设计有关的各种资料的名称、出处,能够做到熟练运用。
二、发动机与车轮罩1、读要求,在XZ平面内画草图。
注意翻转X轴。
保持草图坐标方向跟草图窗口坐标方向相同。
2、画出g线并作出边界平面。
再做出车轮罩的边界线及扫掠线扫掠出的图形如图3、做由分别在1200x和600x处的两个平面内两条直线确定的平面。
注意保持坐标方向的一致性。
4、平面分割如图画出修建车轮罩的面及修剪图5、裁剪整理修饰。
期间主要运用了分割命令。
发动机罩前部通过平移曲线形成的孔。
6、进行可变圆角倒圆角。
7、进行镜像隐藏不必要曲面曲线。
整录过程树。
3、侧风窗1、零件的作用和结构分析2、飞机零件的三维设计A、理解图纸的各个元素及其含义;找出图中的关键点、线、面,并分析图形的主要特征;分析各元素之间的相互关系;B、建立线框模型1)在ZX平面中建立工作基准面,绘制关键点A、B、C、D、E,并连接成直线AB、BC、CD、DE线段,使用R=250的圆弧将BC和CD线段倒圆角,形成一条折线b;2)在x=1300的平面上,过点(-643,500)绘制出一条与Z轴负向成20度直线;3) 在z=500的平面上,过点(1300,-643)绘制出一条与Z轴负向成20度直线,并过这条直线和步骤2中的直线构成以平面;4)将折线B投影到该平面上,形成折线b;5)创建垂直于折线b的平面,在该平面上绘制草图1,形成窗框的真实截面形状,b折线所在的平面为所有截面线段的最外边界也即窗框截面应该向内部布置:6)以草图1为截面沿折线b扫略,参考曲面为投影平面,形成扫略曲面;C、建立基本曲面模型1)将折线b向内偏置15mm,形成折线5;2)在ZX平面中建立草图2,绘制所给图中的虚线部分,并找出两个中心点;3)将第三步中的所有元素投影到投影平面中;4)将折线5和投影线相互修剪,形成一个整体,并填充成曲面;D、建立玻璃的实体模型1)进入实体设计空间,将填充曲面加厚成为实体,偏置距离1为6,偏置距离2为-11;2)用两个中心点的投影点,在实体上打两个D=10的孔;3)将窗框的棱边倒圆角R=3mm;E、保存文件,并命名;F、生成工程制图,打坐标网格线;并进行尺寸标注。
CA TIA的优点除了我们之前谈到的参数化设计外,强大的曲面设计功能使其能够适应包括航空航天在内的各种工业产品建模要求。
通过下面机身的外形设计过程,可以从中感受到CA TIA在曲面建模方面的独特魅力。
下面,开始机身部分的建模工作。
首先需要进行的工作是把CA D下的俯视图和侧视图导入,作为机身建模的参考。
通过菜单“文件>打开”找到之前在C A D下面完成的三面图。
按下鼠标拖动矩形选框,选择飞机的侧视图。
选中后,线条会以高亮度显示。
单击右键选择复制。
(105)利用“窗口”菜单回到建模中的CATIA文件。
参照之前绘制机翼时的步骤,以Part为父对象创建几何图形集,将其命名为机身。
选择“ZX平面”并点击草图工具进入草图绘制模式。
选择菜单“编辑>粘贴”或直接按Ct rl+V将飞机的侧视图粘贴过来。
这时如果找不到粘贴结果,可以工具栏上的“适合全部”(106)图标。
按下鼠标左键,利用矩形选择框选择粘贴过来的侧视图后,在图上任意一点按下左键可以对其位置进行拖动。
参考现有机翼的位置将其拖动到位。
这个步骤只用来作为下面建模时候的参考,因此不用追求位置的绝对准确。
(107)按照同样的方法,以“XY平面”为基准绘制草图,将飞机的俯视图也复制过来。
再次以“XY平面”为基准绘制草图,参照刚才复制过来的俯视图完成准确的机身俯视草图绘制。
尺寸的设置可以参考108。
在绘制机身俯视草图的过程中,需要使用样条线工具。
图108中的粗线均为样条线,细线为直线。
设置样条线与直线之间平滑过渡的方法可以参考前面翼尖的绘制过程。
接下来参考从A UTOCA D复制过来的侧视图,以ZX平面为基准绘制草图,将其作为飞机的侧视图。
在侧视图的绘制过程中,注意要将上一步俯视图中飞机最前端一点和最后端一点分别通过投影工具投影到当前草图中。
下面,选择工具栏上的“样条线”图标,在扑捉到前缘端点后,间隔一定距离依次扑捉曲线上各点绘制翼型上表面曲线。
由于前缘部分曲率变化较大,因此需要适当将点的数量增加。
越靠近后缘,翼型表面曲线越发接近直线,曲率变化较小需要的控制点数也就越少。
因为我们制作的是一个尺寸较小的航模,在绘制翼型表面曲线的过程中,不需要将曲线的控制点取得太密,这样既节省时间,又可以提高软件运行的速度。
另外需要注意的是,在样条线绘制过程中不能进行“构造/标准元素”的转化。
(025)在连接后缘点的时候,有两个方法:最简单的是直接利用捕捉,将鼠标端点移动至后缘处翼型曲线与绘制的竖直线相交点处,当图标显示捕捉信号,并且翼型曲线和直线都变为橙色时,点击鼠标左键就可以捕捉到合适的坐标点。
然后连续两次按下键盘ESC键完成曲线绘制(026)。
另一种方法是,将鼠标移动至任意一点,双击鼠标完成曲线绘制。
之后,单击选择曲线最后生成的端点,在按住键盘Ctrl键同时选择我们画的那条竖直线。
接下来点击约束定义图标,在弹出的对话框中选择“相合”并单击确定。
这时我们会发现,刚才选择的点自动移动到了直线上。
同时,其旁边出现了一个“○”表示与另一元素具有相合约束。
接下来,再次选择这一点和上一层投影下来的翼型曲线,创建一个相合约束。
两种方法效果完全一样,在完成约束创建后可以发现,端点变成了绿色,表示该元素被完全约束了。
(027)按照上面方法同理可以完成翼型下表面曲线的绘制。
只有一点需要注意的是,CATIA 里面认为,如果一个点在某条线段的延长线上,即使该点没有落在线段内部,仍然认为改点与线段“相交”。
也就是说,绘制下表面后缘点时,没必要再绘制一条向下的参考竖直线。
只需利用之前那条即可。
最后,利用一条直线连接上下曲线在后缘处的端点,单击退出草图图标,完成整个翼型的绘制。
(028)上面步骤完成后,我们可以看到描点得到的新翼型草图。
为了后面使用过程中不至于搞混,我们将原始翼型草图隐藏起来。
Catia软件背景与发展开发商与历史版本更新与迭代Catia软件不断更新迭代,逐渐增加了新的功能和模块,提高了软件的性能和稳定性。
航空航天领域Catia软件在航空航天领域应用广泛,可用于飞机、火箭、卫星等复杂产品的设计和制造。
汽车工业领域Catia软件是汽车工业领域的重要工具,可用于汽车车身、发动机、底盘等部件的设计和优化。
机械制造领域Catia软件也适用于机械制造领域,可进行各种复杂机械零件的设计和加工。
Catia软件应用领域Catia软件特点与优势强大的建模能力高效的协同设计A B C D精确的工程分析丰富的定制功能界面布局及功能区域划分标准界面布局功能区域划分自定义界面布局工具栏工具栏是菜单栏的快捷访问方式,用户可以将常用的命令添加到工具栏中,方便快速调用。
右键菜单在Catia 软件中,右键点击图形区或结构树中的对象,可以弹出相应的右键菜单,进行快速操作。
菜单栏令,用户可以通过菜单栏快速访问所需的功能。
菜单栏与工具栏使用技巧Catia 软件提供了多种视图控制工具,如平移、旋转、缩放等,方便用户观察和设计模型。
视图控制用户可以通过显示设置调整模型的显示显示设置Catia 软件提供了多种视图模板,用户视图模板010203视图控制与显示设置方法进入草图绘制环境设置草图参数选择草图工具030201草图绘制环境设置方法1 2 3直线绘制圆和圆弧绘制矩形和多边形绘制基本图形元素绘制技巧尺寸约束和几何约束应用尺寸约束01几何约束02约束管理03三维建模环境设置方法选择工作空间根据实际需求选择合适的工作空间,如“零件设计”、“装配设计”等。
设置显示模式调整模型的显示模式,如线框模式、着色模式等,以便更好地观察模型。
定制工具栏根据个人习惯定制工具栏,将常用的命令添加到工具栏中,提高操作效率。
基本体素创建和编辑技巧创建基本体素编辑基本体素应用草图布尔运算和特征变换应用布尔运算特征变换应用实例装配设计环境设置方法进入装配设计模块设置工作环境加载零部件零部件装配约束类型及技巧约束类型约束技巧装配体爆炸视图生成方法进入爆炸视图模式01设置爆炸参数02生成爆炸视图03工程图绘制环境设置方法进入工程图绘制环境设置图纸大小和比例设置图层和线型视图创建和编辑技巧创建基本视图编辑视图创建剖视图和局部放大图尺寸标注和技术要求添加方法尺寸标注添加技术要求编辑尺寸标注和技术要求包括绘制线条、圆弧、圆等基本图形,以及进行尺寸标注和约束设置。
CATIA产品制作说明书一.产品说明本产品为F-22“猛禽”战斗机的外形的三维模型(按比例缩小),机身数据取自F-22的激光剖切图。
二.制作过程及截图1.画机身剖面草图。
在草图界面中用样条线画出剖面的左半部轮廓,另一侧镜像而成,第一个截面如图2.1.1;所有机身剖面画完的结果如图2.1.2示。
图2.1.1图2.1.22.做机身。
由于机身的某些剖面间的差异很大,无法一次成型,所以,机身分成五段生成,生成方法均为“多截面曲面”。
以下为制作这五部分时的预览截图。
机头图2.2.1机身第二段图2.2.2机身第三段图2.2..3机身第四段图2.2.4机身第五段图2.2.53.做发动机发动机是由实体做成的,主要应用了凸台,凹槽以及多截面实体的方法。
以下示主要步骤的截图。
发动机及机身外形草图图2.3.1图2.3.2图2.3.3图2.3.4图2.3.5图2.3.6图2.3.7图2.3.84.做机翼机翼包括主翼,副翼,襟翼,前缘襟翼四部分,由多截面曲面做出主翼面,副翼,襟翼以及前缘襟翼均在主翼上切割而成。
主要制作过程截图如下:主翼翼根草图通过缩放生成翼尖草图图2.4.2将草图平移到相应的位置图2.4.3多截面曲面生成主翼外形图2.4.2切出襟翼图2.4.3切出副翼图2.4.4切出前缘襟翼图2.4.5对称生成另一侧的机翼图2.4.5切襟翼副翼与边条翼之前现将上下翼面割开,襟翼,前缘襟翼与副翼做完之后在将主翼缝合,襟翼,前缘襟翼与副翼的赏析翼面也要用曲面结合。
5.平尾F-22的平尾形状比较特别,类似切角的平行四边形。
主要制作过程如下:平尾翼型草图图2.5.1图2.5.2切出平尾的轮廓图2.5.4将翼面缝合后,对称出另一侧的平尾图2.5.56.垂尾垂尾的做法与机翼的做法大致相同,因F-22的垂尾有大约三十度的外张,故需要对草图旋转。
制作主要过程截图如下:垂尾翼型草图图2.6.2旋转草图图2.6.3缩放后将翼尖草图平移到翼尖位置图2.6.4多截面曲面生成垂尾轮廓图2.6.5切出控制舵面图2.6.6对称出另一边垂尾图2.6.6。
CATIA参数化建模教程CATIA是由法国达索系统公司开发的一款3D参数化建模软件。
它是一款功能强大的软件,主要用于机械设计、航空航天、汽车工业等领域的产品设计和制造。
它具有强大的参数化建模功能,可以方便地进行模型的调整和修改。
下面将为大家介绍一些CATIA参数化建模的基本知识和操作方法。
一、参数化建模的概念参数化建模是指在设计模型时,可以设置各种参数,通过改变参数的数值来改变模型的形状和尺寸。
这样,在设计过程中,只需要修改参数的数值,就可以快速地生成新的模型。
参数化建模大大提高了设计的灵活性和效率。
二、参数的定义和使用在CATIA中,可以通过参数定义对模型进行参数化。
参数可以是数字、文字或者几何尺寸等。
在进行建模时,可以通过选择参数来控制模型的形状和尺寸。
例如,可以定义一个直径为d的圆柱体,然后将d的数值设置为变量,在设计过程中可以随时修改d的数值来改变圆柱体的尺寸。
三、关系的定义和使用关系是指不同参数之间的数学关系。
在CATIA中,可以通过关系来定义参数之间的约束关系。
例如,可以定义两个尺寸之间的等于、大于、小于等关系,或者定义两个尺寸之间的比例关系。
这样,在设计过程中,当一个参数的数值改变时,与之相关联的其他参数的数值也会自动调整。
四、参数和关系的使用示例下面以设计一个简单的零件为例,介绍参数化建模的基本操作方法。
首先,定义一个数字参数A和B,分别表示零件的长度和宽度。
然后,定义一个关系,将A和B相乘得到零件的面积。
接下来,定义一个尺寸参数C,表示零件的厚度。
最后,通过关系将面积和厚度相乘得到零件的体积。
这样,当A、B或C的数值改变时,零件的尺寸和体积都会自动调整。
五、参数化建模的优点和应用参数化建模具有很多优点。
首先,它可以提高设计的灵活性和效率。
通过参数化建模,可以方便地进行模型的调整和修改,极大地节省了设计时间和成本。
此外,参数化建模还可以提高设计的准确性和一致性,保证了模型的质量和稳定性。
下面进入机翼外段结构的绘制过程。
为了避免绘图结构的混乱,在绘制外翼结构之前同样需要新生成一个几何图形集。
选择菜单“插入>有序的几何图形集”。
在弹出窗口中将名称修改为“外段结构”,父对象设置为PartXX(如Part1)。
接下来需要从之前绘制的图形中借一些来用用。
按住Ctrl键分别选中之前在“零部件几何体”下面绘制的“内翼外侧平面”、“外翼基准翼型”、和为绘制内外翼上反关系而创建的极值点。
(064)单击右键选择复制,再在特征树上的“外段结构”上单击右键,选择“特殊粘贴”,在弹出的窗口中选择“作为使用链接的结果”,单击确定。
用这个方法复制的特征,只相当于一个“链接”。
表示链接特征的图标其左下方会有一个箭头。
为了后面好描述,我们可以通过属性窗口将链接的那个点命名为“上反基准点”。
对于链接特征而言,如果其引用的特征,比如用来生成“外翼基准翼型”的旋转特征角度发生变化的时候,链接特征也会自动改变。
再具体一点来说,就是如果飞机试飞后我们发现上反角不够时,只要修改一下与定义上反角有关的特征属性后,链接特征及以它为基准的所有特征都会发生变化。
以上说法或许有些抽象,当整个机翼绘制完成后,我们可以通过实际操作来详细理解一下它的意思。
由于下面进行的绘图操作与之前生成的几何图形集没有关系,为了绘图清晰,点击工具条上的“仅当前几何体”按钮,隐藏“零部件几何体”和“内翼结构”里面的特征。
(065)接下来开始绘制用于将外翼段各零件进行定位的参考平面图。
以“平行通过点”方法,生成YZ平面通过“上反基准点”的平行平面,将这个平面命名为“参考面A”,并以其为基准开始做草图。
点击“构造/标准元素”按钮,将绘图状态设置为“构造元素”。
投影“上反基准点”,然后通过该点作一条水平直线。
再将绘图状态转为“标准元素”,通过投影点绘制一条任意角度的直线,这条直线和水平构造线之间生成一个“角度约束”。
双击角度约束,在“值”后面的文字框中单击右键,选择“编辑公式”。
手把手教你CATIA绘制模型飞机(doc 66页)手把手教你CATIA绘制模型飞机说起CATIA的名字,对于很多模友来讲可能有些陌生。
但如果提起法国达索公司,所有爱好飞机的人一定会觉得如雷贯耳。
达索公司不仅因为其“幻影”系列战斗机和“隼”系列公务机在航空业界叱咤风云,其开发的CATIA工业设计软件更是成为目前风靡世界飞机设计软件领域的绝对老大。
从波音新一代737(A01)到洛克希德马丁的F-35,以及中国国产的歼10、枭龙,都是在其平台上完成的图纸绘制工作。
与传统CAD软件相比,其具有参数化设计功能,设计人员的每一步操作都会被记录下来。
当对设计产品的某一个尺寸进行改动时,可以直接通过修改设计过程中的参数而得到。
不需要再将所有步骤推倒重来。
与其他三维设计软件相比,CATIA绝对领先的曲面设计功能,在一个熟练的设计人员手里,能够绘制出任何“你能想象得到”的曲面外形。
不同于3DMAX 等美术软件的曲面功能,CATIA能够绘制出完全解析的外形曲面——也就是说,CATIA生成的曲面可以经过无数倍的放大,而仍然保持表面的绝对光滑。
CATIA已经成为世界飞机设计领域的通用技术标准,此外在汽车制造、造船及其他机械设计领域也得到了更加广泛的应用。
对于航模设计而言,虽然没有真实飞机设计中许多复杂繁琐的要求,可能3DMAX就能基本满足一般用户的需要。
但是,CATIA能够大大节省绘图的时间,特别是在模型细节修改调整中显著降低劳动量。
因此,学习一下CATIA对于每一个喜欢航模设计的人来说,绝对是大有意义的。
相对于传统学习CATIA的书来说,我们这里更强调实用性,忽略掉一些在航模设计中很难遇到的东西,也不再一条一条学习软件中的每个命令。
在绘制模型的每一个步骤中,我们用到哪儿学到哪儿。
由简入繁,我们先从设计一个兼具一点向真机性质的上单翼练习机开始做起。
螽斯A的设计在弹出的翼型库窗口中,找到“Filter By Name”按钮和其右侧的文本框,在文本框中输入“CLARK”,软件将自动过滤出名称中包含“CLARK”的所有翼型。
外文文献的中文翻译,祝君成功。
第一节---创建三个拉伸曲面,分别相对X、Y、Z平面进行偏移---给平面附上参考图片---为每一个截面创建草图之后,将它们重新放置在相对应的位置第二节---创建3D曲线,之后创建自由曲面---首先创建机身,之后创建机翼,最后创建尾翼---将所有的曲面按照一个参考平面作对称,创建一个对称模型请牢记:这些章节只是用来陈述通过CATIA进行设计的方法,而不单是CATIA那些命令本CATIA中鼠标的一些操作不多说了首先要获得p51正视图、右视图、俯视图(读者自行获取),图像是正方形的1000*1000像素的,可以通过以下网址获得HTTP://.hk/~mmdsham/images/p51/-p51-front.jpg-p51-right.jpg-p51-top.jpg打开CATIA,一个空的product被创建,可以把它关掉开始->形状->创成式外形设计将启用混合图形集点掉,点击OK于是我们就在创成式外形设计环境下创建了一个空的Part插入几何图形集点击“插入”->“几何图形集”用“reference”(参考平面)作为图形集的名字点击OK创建一个草图点击“草图”,选择“yz”平面作为参考作一个垂直的直线,长度120mm,位置为距离坐标原点100mm (在点击第二个点之前,看一下“草图工具”中的L值)点击退出草图创建一个拉伸曲面选择刚刚绘制的草图作为轮廓,“yz”平面作为方向点击reverse direction“翻转方向”用鼠标拖动“limit1”(绿色箭头),拖到显示为285mm点击OK点击“应用材料”(对刚刚的“拉伸曲面”赋予材料)点击刚刚做的拉伸曲面点击OK结束为了能看到赋予材料的效果,选择“渲染方式”为“带材料作色”用图像替换材料纹理双击树状控件“B&W Tiling”(将树状控件里的“拉伸曲面”上的“+”号点开,双击“B&W Tiling”)点击“渲染”点击“结构”在“类型”下拉条中选择“图像”点击右侧的“…..”图标选择“p51-right.gpj右视图”打开图像导进来后,选择“立方体映射”同时把“U V”方向上“重复”都点掉(单选框中黄色)点击完成创建另一个草图以“zx”平面为参考做草图作一条垂直线(线的一端捕捉到X轴)点击“标注”图标,选择线修改长度为25.4mm点击退出调整参考图片的大小和位置点击“快速查看”中“右视”视角再次双击树状图中的“B&W Tiling”选择“渲染”调整“缩放”和“定位”中的“UV”值,直到“1-2”(图中红圈中)的距离和“草图2”的高度值相同保持大小不变,调整UV位置,使飞机图像的尖端和坐标原点重合点击OK选定“草图2”右键“删除”点击“OK”完成调整曲面的大小使之与图像的大小一致双击树状控件中的“拉伸曲面”拖拽“限制1”使曲面的接触到图像的中飞机的尾部最后(如果无法对齐,点击“微调按钮”,每次增量为1mm,此时可以“右击”“限制1”的“尺寸”文本框,在弹出的菜单项中选择“更改步骤”->“新的值”,输入值的大小0.1mm)点击OK结束现在,大小,位置和右视图的图像大小都是正确的单击“草图”图标,选择“yz”平面作为参考画一条水平线如图所示(长度为200mm,位置为距离坐标原点100mm处)退出“草图”创建一个“拉伸曲面”选择“草图3”作为外形,“yz”平面为参考方向点击“翻转方向”保持尺寸不变(应该和拉伸1一样)点击OK结束对曲面应用材料点击“应用材料”图标点击“拉伸曲面2”点击“确定”用图片替换原来的纹理和上面操作一样在树状控件中双击“B&W Tiling”选择“渲染”选择“结构”在“类型”右侧的下拉菜单中选择“图像”点击图像名右侧的“……”选择文件“p51-top.jpg”点击“打开”点掉U,V方向的重复点击“快速查看”中的“俯视图”调整UV值的大小直到图像中飞机的尾部尖端以及头部尖端与图像的边缘接触保持UV大小不变,调整UV的位置,使飞机对称轴与坐标系原点对其点击“确定”结束创建一个“草图”点击“草图”图标同时选择“zx”平面创建一条“垂直线”创建两条水平轴线作为参考,然后将“垂直线”的两个端点(最大最小位置)分别与两条水平轴线接触退出“草图”创建一个拉伸曲面点击“拉伸曲面”图标选择“草图4”作为轮廓,“zx”平面作为方向点击“翻转方向”拖拽“限制2”使两个方向上的长度相等点击“确定”对曲面应用“纹理材料”(就是B&W Tiling)点击“应用材料”图标选择“纹理材料”点击“拉伸曲面3”点击“确定”用图片替代“纹理”(同上)在树状图上双击“B&W Tiling”选择“渲染”选择“结构”选择右侧的下拉列表框,选择“图像”点击“…….”图标选择图片选择“p51-front.jpg”点击“打开”(现在,曲面上的图像显示的不正确)选择“立方体映射”点掉U,V方向的重复点击“主视图”图标调整UV方向上的大小,直到图像上的上下极限分别接触到拉伸曲面的上下边界保持UV方向上大小不变,把图像中心线调整到与坐标原点重合点击“确定”结束(现在,所有三个视图都布置好了)隐藏“草图1”,“草图3”,“草图4”设置“几何图形属性”为不可选定右击树形控件中的“reference”几何图形集(就是一开始插入的“几何图形集”)选择“属性”点掉“可拾取”单选框(现在在“reference”图形集中的元素都是不可选定的)插入几何图形集选择“插入”->“几何图形集”点击“确定”创建参考平面点击“平面”图标选择“yz”平面点击“右视图”图标,把鼠标移到“偏移”上,拖拽“箭头”到图像的“截面B处”点击“确定”重复上面的步骤,分别做出图像上的“截面D,G,H,I”(和上面介绍的一样,如果“拖拽的增量”为1mm,可以“右击文本框”,选择“更改步骤”,选择“新值”输入数值为0.1mm,单击进行微调)创建参考平面(沿着飞机展向)点击“平面”图标选择“zx”平面点击“俯视图”图标,同上面一样,把鼠标放到偏移上进行拖动,拖到截面所在位置点击“确定”,共三个平面,操作相同由于飞机机翼截面在右侧机翼(沿着飞机飞行方向),所以作如下操作双击“平面6”单击“翻转方向reverse direction”图标点击OK确认对“平面7”和“平面8”作同样的操作(我们将要做右半边的模型,所以把三个平面方向翻转)创建一个3D样条线(空间曲线)选择“开始/形状/Freestyle”(进入自由曲面设计截面)右击“罗盘”上的“红点”,弹出菜单栏,选择“将优先平面方向锁定为与屏幕平行”点击“右视图”图标点击“3D曲线”基于图片,画一条有“4个控制点”的“3D”点击“确定”点击“俯视图”点击“3D”曲线图标基于图片,画一条有四个控制点的曲线点击“确定”结束在“截面D”上做“草图”(截面D是图像上的“截面D”)选择“开始/形状/创成式外形设计”,进入创成式外形设计界面点击“草图”图标,选择“zx”平面作为参考在截面D绘制一条垂直轴线,通过它的“十字中心”绘制两条“水平线”,分别通过截面D的最高和最低点绘制一条“样条线”(三个控制点),用连接线分别将“样条线”的两个端点与之前那两条“水平线”连接重新定位“截面D”的“草图”右击“草图5”选择“草图5对象”点击“更改草图基准..”(就是更改草图支持面)选择“平面2”(作为“截面D”的基准面)“类型”选择“已定位”点击“确定”来确认双击“草图5”对其进行编辑在“草图5”中将“3D曲线1”“3D曲线2”“3D曲线3”选定点击“使三维元素相交”,于是就获得了“三个交点”选定草图中所有的“曲线”和“轴线”点击“平移”图标点掉“复制方式”选择“截面的画“星星”的点”,将其平移到上面所做的“交点”处(该步骤主要是为了定位截面)同时,给“外形”(平移的)添加“三个约束”使这个外形接触到“上面所做的三个交点”点击“退出草图”结束在截面G上创建一个草图点击“草图”图标,以“xz”平面作为参照在“截面G上”创建一条“垂直轴线”通过中心在“截面G”上创建另外一条水平轴线创建一条“样条线”(双击“样条线”,改变在端点处的“切线方向”)调整“样条线”的“控制点”,使之和图像重合点击退出结束重置“截面G草图”的位置右击“草图6”选择“更改草图基准/更改草图支持面”选择“平面3”(作为截面G的支持面)选择“类型”为“已定位”点击“OK”确认双击“草图6”,对其进行编辑将“3D曲线1”“3D曲线2”“3D曲线3”都选定点击“使三维元素相交”(同上)就获得“3D曲线”与“草图所在平面的交点”选择“所有的曲线和轴线”点击“平移”点掉“复制方式”点击截面上带“星星的点”(如图)然后点击带“三角形”的点(如图)分别对“截面”的“上下端点”和“刚刚作的交点”加“约束”(使之“相合”)点击“草图”图标,选择“zx”平面作为参考在截面H上绘制一条“垂直轴线”,通过“中心”在截面H上绘制另外两条“水平轴线”创建一条“样条线”(三个控制点)创建两条连接线(同上,双击样条线,改变“样条线端点的切线方向”)调整控制点位置,使曲线与图像重合点击“退出”结束右击“草图7”选择“草图7对象/更改草图基准/”选择“平面4”(截面H的支持面)选择“类型”为“已定位”点击“OK”确认双击“草图7”,对其进行编辑将“3D曲线1”“3D曲线2”“3D曲线3”都选定点击“使三维元素相交”图标,于是就获得了平面与3D曲线的交点(同上)选择所有的“曲线和轴线”点击“平移”图标点掉“复制方式”点击带“星星”的点(如图所示)之后点击带“三角形”的点同上,对端点和“相交点”添加“约束”,使之重合点击“草图”图标,选择“zx”平面作为参考在截面I上绘制一条“垂直轴线”,通过“中心”在截面I上绘制另外两条“水平轴线”创建一条“样条线”(三个控制点)创建两条连接线(同上,双击样条线,改变“样条线端点的切线方向”)调整控制点位置,使曲线与图像重合点击“退出”结束右击“草图8”选择“草图8对象/更改草图基准/”选择“平面5”(截面H的支持面)选择“类型”为“已定位”点击“OK”确认双击“草图8”,对其进行编辑将“3D曲线1”“3D曲线2”“3D曲线3”都选定点击“使三维元素相交”图标,于是就获得了平面与3D曲线的交点(同上)选择所有的“曲线和轴线”点击“平移”图标点掉“复制方式”点击带“星星”的点(如图所示)之后点击带“三角形”的点同上,对端点和“相交点”添加“约束”,使之重合点击“草图”图标,选择“zx”平面作为参考在截面B上绘制一条“垂直轴线”,通过“中心”在截面B上绘制另外两条“水平轴线”创建一条“样条线”(三个控制点)创建两条连接线(同上,双击样条线,改变“样条线端点的切线方向”)调整控制点位置,使曲线与图像重合点击“退出”结束调整“截面B”的“草图”位置右击“草图9”选择“草图9对象/更改草图基准/”选择“平面1”(截面H的支持面)选择“类型”为“已定位”点击“OK”确认双击“草图9”,对其进行编辑将“3D曲线1”“3D曲线2”“3D曲线3”都选定点击“使三维元素相交”图标,于是就获得了平面与3D曲线的交点(同上)选择所有的“曲线和轴线”点击“平移”图标点掉“复制方式”点击带“星星”的点(如图所示)之后点击带“三角形”的点同上,对端点和“相交点”添加“约束”,使之重合(所有的截面都做完了)创建两个“拉伸曲面”选择“开始/形状/Freestyle”(进入“Freestyle”界面)点击“拉伸曲面”图标选择“3D曲线1”选择“曲线的法线方向”拖拽在视图上“双向的箭头”,拖出20mm左右点击“OK”完成同样,以“3D曲线2”为准作拉伸曲面隐藏“3D曲线1”和“3D曲线2”单击“Net Surface”图标按住键盘上的“Ctrl”键,把“草图5”“草图6”“草图7”“草图8”都选定,作为“引导线”单击命令窗口中的“轮廓”(图中用“五角星”标记)按住键盘上的“Ctrl”键,把刚做的“拉伸曲面”的边界(用四角星标记)“”“3D曲线1”“3D曲线2”“3D曲线3”以及另外一个“拉伸曲面”的边界(用三角形标记)调整“拉伸曲面”的边界上的“连续性”为“切线”连续单击“OK”结束点击“Disassemble”图标选择刚刚所做的“Net Surface1”选择所有元素点击“确定”结束将刚刚打散的“三个曲面”合并为“一个曲面”点击“Concatenate”图标选择“自动更新公差”将“曲面3”和“曲面4”都选定,点击“应用”,点击“确定”结束点击“Concatenate”图标选择“自动更新公差”将“曲面5”和“曲面6”都选定,点击“应用”,点击“确定”结束创建第二个“Net Surface”隐藏“草图5”,“草图6”,“草图7”和“草图8”点击“Net Surface”图标按住键盘上的“Ctrl”键,选择“曲面”的“边界”(用“菱形”标记)和“草图9”作为“引导线”(注意:曲面的边界必须首先选定,因为它的外形比“草图9”更重要)将“曲面边界”的连续性更改为“曲率”连续点击命令窗口上的文本“轮廓”(用“五角星”标记)按住键盘上的“Ctrl”键,复选曲面边界(用“四角星”标记)、“3D曲线3”和另一个曲面边界(用“三角形”标记)作为“轮廓”将两条曲面边界处的连续性改为“切线”连续先单击“应用”预览一下通过预览,接近“草图9”的部分不光滑,因此将“曲率连续”改为“点连续”点击“确定”结束(上面的操作将导致在Net surface和与它连接的曲面间产生尖锐的边缘,一会我们再修复它)(“Net Surface2”应该是一个曲面,因为它是通过两个曲面的边界创建的)隐藏“曲面1”和“曲面2”(两个“拉伸曲面”)隐藏“3D曲线3”和“草图9”缩短曲面点击“Extend”图标点击“Net Surface2”(一个新的曲面就被创建了,点击“确定”接受)拖动“绿色的豆点”缩短曲面的长度到大约13mm 点击“确定”接受删除“Net Surface2”(或者隐藏之)同样,缩短“曲面7”长度到13mm左右创建一个“Freestyle Blend Surface”桥接曲面点击“Freestyle Blend Surface”选择两个曲面的边界将两条线的连续性改为“曲率”连续点击“确定”结束创建一条“3D样条线”右击“罗盘”,检查是不是“将优先平面方向锁定为与屏幕平行”点击“右视图”图标点击“3D曲线”图标画一条有“3个控制点”的曲线(如图所示),右击在坐标原点处的“控制点”,选择“编辑”将“x”,“y”,“z”值设置为“0mm”选择“关闭”再次右击“控制点”,然后点击“加强曲率”再次右击“控制点”,然后选择“编辑”将“x”“y”设置为“0mm”,将“z”设置为“1mm”调整其它的控制点,使之与图像重合点击“确定”完成创建“旋转曲面”点击“Revolve”图标选择“3D曲线4”作为“轮廓”右击“旋转轴”右侧的“文本框”选择“X轴”在“角度1”中输入“0”在“角度2”中输入“180”点击“OK”完成隐藏“3D曲线4”创建一个“Blend Surface”(桥接曲面)单击“FreeStyle Blend Surface”图标(同上)选择两条曲线的“边界”将“连续性”改为“曲率”连续点击“确定”完成检查曲面点击“右视图”,曲面应该和图像重合点击“俯视图”,也应该和图像重合(因为大部分的控制线都是参照这两个视图做的)点击“正视图”图标如果没对齐,调整“图像”位置使曲面透明度变高右击“曲面7”选择“属性”,调整透明度为“50”点击“确定”确认创建“3D曲线”点击“右视图”图标点击“3D曲线”图标“将集合图形设置为不可选定”(我们不选取在“现有曲面”上的“点”)创建一条有5个控制点的“”3D曲线(如图所示)点击“确定”结束用“曲线”切割“曲面”(不是在曲面上)点击“Break Surface or Curve”图标“中断类型”选择“中断曲面”选择“罗盘方向”作为方向选择“曲面7”作为“元素”选择“3D曲线5”作为“限制”点击“应用”点击“要移除的部分”点击“确定”结束隐藏“3D曲线5”点击“右视图”图标(如果现在视角不是“右视图”)点击“3D曲线”图标创建一条有“4个控制点的3D曲线”(如图所示)(为了能捕捉到现有的点(定位最后一个点),我们需要把模型旋转一点)点击“确定”完成创建一个“拉伸”曲面点击“Extrude Surface”图标选择“3D曲线6”选择“曲线的法线方向”作为“方向”拖动在预览曲面上的两个“箭头”,向左拖15mm左右点击“确定”完成重置“曲面的图形属性”右击“曲面7”选择“曲面.7对象”/“重置属性”选择“应用于子类”点击“确定”完成(图形属性被重置)创建一个“桥接曲面”点击“Freestyle Blend surface”图标选择两个曲面的边界点掉“投影终点”(单选框)将连续性设置为“如图所示”拖动点(用星星标记)使之与“图像”重合点击“正视图”图标调整使之“与图像重合”点击“确定”完成隐藏“3D曲线”和曲面11创建一条“3D”曲线捕捉已存在的端点(图中用“五角星标记”)(当端点被捕捉到时,一个红色的虚线圈出现)点击“正视图”图标将“图形捕捉”取消选定右侧的“点”右击第一个点,选择“编辑”复制“Z值”右击第二个点,选择“编辑”,将刚刚复制的“Z值”赋给现在的“Z”点击“OK”结束创建另一条“3D曲线”将“模型”旋转到如图所示点击“3D曲线”图标拾取两个“端点”点击“插入一个点”图标点击线的中间一点(之间的点就被创建)点击“右视图”图标拖拽“中间的点”使之与图像重合点击“确定”完成创建一个“Freestyle Blend Curve”点击“Freestyle Blend Curve”图标选择两条“3D曲线”将“连续性”改为“切向”连续拖拽“端点”改变方向,直到Freestyle Blend Curve和图像重合点击“OK”完成用一个“曲线”切割另一个“曲面”点击“Break Surface or Curve”图标选择“curve by curve”作为分割类型选择“3D曲线7”作为“元素”选择“3D曲线1”作为“限制”点击“应用”完成同样,移除“3D曲线8”上的部分将“3条曲线”合并为“1条”点击“Concatenate”图标(图中用“五角星”标记)将“3条曲线”选定点击应用,点击“OK”完成创建一条桥接曲面点击“Freestyle Blend Surface”图标选择曲线(图中用“五角星”标记)选择“曲面”边界Blend Type设置为“自动”点击“弹出的窗口”选择“投影中点”选择“点”连续拖动“绿色的点”到“限制边界”(拖到不能拖位置)点击“OK”确定隐藏“曲线4”创建一条“3D曲线”点击“俯视图”图标点击“3D曲线”图标绘制一条“有两个控制点的”曲线点击“正视图”图标拖动“控制点”使曲线与图像重合点击“OK”完成类似的,创建另外两条“3D曲线”(如图所示3D曲线10,11)在截面3上创建“草图”选择“开始/形状/创成式外形设计”点击“草图”图标,选择“xy”平面在截面3上创建一条有“四个控制点”的“样条线”在截面3上创建一条有“三个控制点”的“样条线”创建一条“连接线”(双击连接线,点击“箭头”改变“切线方向”)调节“张度”使之与图像重合点击退出完成重置“截面3”的“草图”的位置右击“草图10”选择“草图10对象/更改草图基准”选择“平面8”(作为草图支持面)选择“定位类型”为“已定位”选择“反转H”(下面的单选框)点击“OK”确认双击“草图10”对其进行编辑选择“3D曲线10”和“3D曲线9”点击“使三维元素相较”图标就获得两个交点选择所有的曲线点击“平移”图标点掉“复制方式”点击图中“用五角星标记的点”之后点击“用三角形标记的点”调整外形使之能与3D曲线9接触点击“退出”完成在截面2上创建草图点击“草图”图标,选择“xy”平面在截面3上创建一条有“四个控制点”的“样条线”在截面3上创建一条有“三个控制点”的“样条线”创建一条“连接线”(双击连接线,点击“箭头”改变“切线方向”)调节“张度”使之与图像重合点击退出完成重置“截面2”的“草图”的位置右击“草图11”选择“草图11对象/更改草图基准”选择“平面7”(作为草图支持面)选择“定位类型”为“已定位”选择“反转H”(下面的单选框)点击“OK”确认双击“草图11”对其进行编辑选择“3D曲线10”和“3D曲线11”点击“使三维元素相较”图标就获得两个交点选择所有的曲线点击“平移”图标点掉“复制方式”点击图中“用五角星标记的点”之后点击“用三角形标记的点”调整外形使之能与3D曲线11接触点击“退出”完成。
手把手教你CATIA绘制模型飞机(doc 66 页)手把手教你CATIA绘制模型飞机说起CATIA的名字,对于很多模友来讲可能有些陌生。
但如果提起法国达索公司,所有爱好飞机的人一定会觉得如雷贯耳。
达索公司不仅因为其“幻影” 系列战斗机和“隼”系列公务机在航空业界叱咤风云,其开发的CATIA工业设计软件更是成为目前风靡世界飞机设计软件领域的绝对老大。
从波音新一代737 (A01)到洛克希德马丁的F-35,以及中国国产的歼10.枭龙,都是在其平台上完成的图纸绘制工作。
与传统CAD软件相比,其具有参数化设计功能,设计人员的每一步操作都会被记录下来。
当对设计产品的某一个尺寸进行改动时,可以直接通过修改设计过程中的参数而得到。
不需要再将所有步骤推倒重来。
与其他三维设计软件相比,CATIA绝对领先的曲面设计功能,在一个熟练的设计人员手里,能够绘制出任何“你能想象得到”的曲面外形。
不同于3DMAX 等美术软件的曲面功能,CATIA能够绘制出完全解析的外形曲面一一也就是说, CATIA生成的曲面可以经过无数倍的放大,而仍然保持表面的绝对光滑。
CATIA已经成为世界飞机设计领域的通用技术标准,此外在汽车制造、造船及其他机械设计领域也得到了更加广泛的应用。
对于航模设计而言,虽然没有真实飞机设计中许多复杂繁琐的要求,可能3DMAX就能基本满足一般用户的需要。
但是,CATIA能够大大节省绘图的时间,特别是在模型细节修改调整中显著降低劳动量。
因此,学习一下CATIA对于每一个喜欢航模设计的人来说, 绝对是大有意义的。
相对于传统学习CATIA的书来说,我们这里更强调实用性,忽略掉一些在航模设计中很难遇到的东西,也不再一条一条学习软件中的每个命令。
在绘制模型的每一个步骤中,我们用到哪儿学到哪儿。
由简入繁,我们先从设计一个兼具一点向真机性质的上单翼练习机开始做起。
鉞斯A的设计蠡斯,又名“姻姻”,是一种善于鸣叫的昆虫。
我们这架飞机起名为“蠡斯”, 主要是因为其略显肥胖的机身和“期蜩”十分相似。
肥胖的机身虽然会在一定程度上增加飞机的阻力,但同时也带来了较大的舱容。
因此,该机十分适于装载许多特殊设备进行飞行作业。
蠡斯A飞机采用矩形机翼,翼展1・3血,翼面积0.24 标准起飞重量在1.3kg左右。
准备工作:绘制飞机基本三面图和翼型我们将这架原创的飞机命名为蠡斯A,经过经验分析和设计计算,我们首先得到这架飞机的外形尺寸,并利用AUTOCAD软件绘制飞机基本的三面图或两面图。
这张图的作用主要是在以后建模过程中作为参考,因此尺寸不需要十分准确,只要能够让自己大概掌握飞机的外形轮廓即可。
在完成绘制后,将其导出为DXF文件保存。
(0(W)当然,如果自己对新飞机的外形已经心有成竹,那么这一步完全可以跳过。
接下来使用Profili软件,导入需要的翼型,在本模型上使用的是CLARK Yo 关于Profili的使用,不是我们这篇文章的重点,因此只简略叙述其过程。
在Profili 软件环境下点击左上角翼型图标,打开翼型库。
(001)I - D . …- jg 麻口 x :厂 |;订?Profili 2.21在弹出的翼型库窗口中,找到“Filter By Name”按钮和其右侧的文本框,在文本框中输入“CLARK”,软件将自动过滤出名称中包含“CLARK”的所有翼型。
从左侧选择框中找到“CLARK Y”,单击使其变蓝,选择Ribs-templates —>Begin printing a rib or template for the selected airfoil,打开翼型绘制对话框。
(002)£色岡GT凰剖图Fronn 2.21翼型绘制对话框中,只在Draw chord line (绘制翼弦)前打钩,选择确定。
(003)在翼型模板生成后,从屏幕上方找到DXF导出按钮,将翼型导出为DXF 文件。
(004)CATIA的初始准备以上准备工作全部完成,下面开始进入我们的主要对象一一CATIA软件的工作环境。
相信绝大多数读者都是第一次使用,因此我们一步一步,从最开始的设置说起。
CATIA是一个随意性很大的软件,不仅在作图方面,就连其操作界面也是如此。
每一个使用CATIA的设计人员都很可能拥有不同形式的设计界面,以便尽可能符合自己的绘图习惯。
在第一次使用CATIA时,我们通常需要对CATIA 的使用界面进行一些处理。
目前使用最广泛的是CATIA V5版本,以后的全部操作,我们都将在CATIA V5R17版本下进行。
由于程序需要进行很多初始化工作,因此在绝大多是电脑上,进入CATIA 需要花上两到三分钟时间。
在进入CATIA后,一般会自动生成一个product文件,现在我们暂时不用管它,宜接将其关闭即可。
(005)^PMDsiiw ■坯・J儿1在空白页面上,单击上部菜单栏最左边的开始,可以看到里面有许多内容, 其中包含机械零件设计.曲面设计.数控加工等等,可见CATIA作为工业设计软件其功能的强大。
这里,我们因为是设计航模,只会用到其中很少的一部分。
现在开始一〉形状一>创成式外形设计。
(006)然后会弹出一个对话框,让输入新建零部件号,直接点确定即可。
下面即进入了创成式外形设计模块。
我们一般利用这个模块绘制模型的外形曲面。
(007)这是一个没有经过调整的标准界面一一很多工具都隐藏起来了,图标布置得也很没规律,一般需要我们手动调整一下。
首先将鼠标移至任何一个图标附近,单击右键,可以看到所有能够显示的 工具条。
一般情况下可以打开图形属性工具条,关掉ENOVIAV5。
(008)仔细观察,可以看到工具条在屏幕右下角处显示一个很淡的"F 图标,这 表示由于屏幕大小限制,有一部分图标无法显示。
为了显示所有图标,我们还 需要进一步改变工具条的位置。
(009) ■"斤 -*ffi 0FS卜""fB 卜■” ffi—” fD5工4!»«»••<•2賓____________________________ _ «<■ p 屮:■•巾 TB-*s. fin-{r 庁£分口 H 匕另外,注意到很多工具图标的右下角都有一个黑色的三角,这表示点击该 图标可以进一步展开出多个操作按钮。
通过拖拽展开后工具条上的横线部分, 我们还可以把它也拖到方便的地方。
比如,笔者个人很喜欢把视图工具条展开, 并放置在屏幕上方。
(011)CATIA 的工具条被许多小横线隔成数段。
点击每一段前的横线,即可拖动 改变工具条的位置。
这样我们可以让所有隐藏的图标都显示出来。
(010)丄MWXKSttIf G •一 •*<-<<;・c ,seQ0w 〉・#G® ■・就这样,我们完成了 CATIA 创成式外形设计模块第一次使用时的界面设置。
有的时候,当我们发现工具条位置由于某些原因发生了改变,导致我们无法找 到需要的工具图标时,可以打开“工具一>定制匕单击工具栏选项卡,点击恢 复位置按钮,就可以将所有工具条恢复至初始默认位置。
下面,我们就可以开始进入翼型的绘制过程。
利用草图工具绘制翼型单击“文件一>打开”找到我们从Proflli 中导入的基本翼型数据文件。
这时 CATIA 会自动进入工程图绘制模式,并打开指定的DXF 文件。
按下鼠标左键, 拖出选择框选择整个翼型曲线,当全部曲线变成橙色显示时,则表示选择成功。
按下键盘"Ctrl + C”快捷键,或者单击菜单“编辑一>复制”以将翼型存入剪 贴板(0⑵x・20角 IQ. E Al人于q 久 Be单击窗口,找到我们刚才创立的曲面文件,单击回到曲面造型界面。
(013)用鼠标左键单击左侧特征树下的“zx 平面”将其置于高亮,单击工具栏上 草图绘制工具(014)进入草图绘制模式后,照例先收拾一下工具栏,将其尽可能展开并放置在 比较好看的位置上。
这里有一个需要注意的地方,找到工具栏上“网络”和“点 对齐”图标。
其功能分别是显示背景网格和网格节点的捕捉,类似AUTOCAD 下的栅格捕捉功能。
一般我们用不到它,因此单击使其取消点亮状态。
(015) ••••• • □ HUE r 心二3 于十%气庁 E jnj Q仏!"■ "■ LJT L»a .s LJ 二 引二prartl 7嘗砒鸟©%庄注^亠各包2严2 耳軌♦・ %- a 于弓・口卫已話・@ 刊口二离H.W0 眄.••・•"八在粘贴的过程中,我们可能会遇到一个问题,按下粘贴键后,并没有看到 翼型显示在屏幕中。
不用着急,这时很可能需要进行一下屏幕的放大缩小操作。
方法是:按紧鼠标中键(滚轮),单击右键(注意不是按住不放),这时上下拖 动鼠标即能完成屏幕的方法和缩小操作。
顺带在此再讲一下屏幕的旋转操纵, 方法是:按紧鼠标中键,然后按紧右键,这时拖动鼠标即是屏幕显示的旋转操 纵。
需要平移屏幕时,按紧鼠标中键同时拖动鼠标即可。
当我们需要回到草图 的“法向”也就是从正上(下)方观察草图状态,单击工具栏上“法线视图” 图标。
(017)n ••*; on < «nc «■• B - I * ,■::・ "□ ^Q $/>. .B・ Qq "$■* "J 习z ・ia .・’■・“ x二d■ xy 干術 ■” FB ・J!X f - 参事料口九何介这时,我们不需要对曲线进行任何处理,单击“退出工作台”图标完成基 本翼型的导入。
(018)• C、、-*xy ffi rr --X平盃CL按下“Ctrl + V”快捷键或者点击菜单栏“编辑一>粘贴”就可以将刚才工 程图模块中复制的翼型曲线复制过来。
这时曲线会显示成黑色的。
(016)/ivancKJUviSp«,r^xy f 6卜"卜■” ffi 8环q①口"再次单击左侧特征树下的“ZX平面”,单击草图工具栏上“草图”图标。
这时可以看到上一张草图已经成为了我们现在的背景。
现在需要借用它一下,点击上一张草图中的曲线将其置于高亮,按下工具栏“投影三维元素”图标,这样可以把背景中的图线投影到当前草图中。
如果投影成功,曲线会显示为黄色。
(019)选择翼型表面曲线和翼弦线,点击“构造/标准元素图标”图标,将其转化为虚线。
虚线即“构造元素”,一旦退出当前草图,所有虚线将不再显示,就相当于我们作图时候辅助线的作用。
对虚线再次点击“构造/标准元素图标”图标, 又可以把它改变会标准元素。
(020)・ Qq? Q e~ O &&9BS3S^842 ■用叮J于扌今工曼c 工工、:24 X-■ x f5卜听第体3停@曰勺:S 4 : 俎“rw*I |在上面一步操作中,如果之前的那张草图有些碍事,影响了对曲线的选择, 那么可以右键单击特征树下的上一个草图,选择“隐藏/显示”即可暂时隐藏掉。