小数的产生
- 格式:doc
- 大小:33.50 KB
- 文档页数:5
数学:下册小数的意义和性质——小数的意义和读写法2011-3-15 16:23:00 来源:人气:789 讨论:0条课程解读一、学习目标:1. 了解小数的产生,理解小数的意义。
2. 认识小数的计数单位。
3. 会读、写小数。
二、重点、难点:重点:认识小数的计数单位。
难点:理解小数的意义。
三、考点分析:1. 小数的产生。
2. 小数的意义。
3. 小数的读法。
4. 小数的写法。
知识梳理1. 小数的产生。
在进行测量和计算时,往往不能正好得到整数结果,还需要把一个单位平均分成10份、100份、1000份等较小的单位来量,从而产生了小数。
2. 小数的意义。
把单位1平均分成10份、100份、1000份……这样的一份或几份可以用分母是10、100、1000……的分数来表示,也可以用小数表示。
小数的计数单位分别是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……每相邻两个计数单位间的进率是10。
3. 小数的读法。
读小数时,先读整数部分,按整数的读法读;再读小数点,小数点读作“点”;最后读小数部分,依次读出每一位上的数字。
(注意:整数部分是0的小数,整数部分就读零;小数部分有几个0就读出几个零)4. 小数的写法。
先写整数部分,按照整数的写法写,如果整数部分是零,就直接写0;再在个位的右下角点小数点;最后依次写出小数部分每一位上的数字。
典型例题[方法应用题]例1. 桌子的长度是1米2分米。
用米作单位,不够1米怎么办?思路分析:(1)题意分析:小数的产生。
(2)解题思路:桌子的长度是1米多出2分米,如果多出的部分仍然用米作单位,该怎么办?这时就需要用一种新的数来表示,这就是小数。
解答过程:桌子的长度是1米2分米,因为1米=10分米,1分米=1/10米,所以2分米有2个1/10米,就是2/10米,用小数表示是0.2米,桌子的长度是1.2米。
解题后的思考:在进行测量和计算时,往往不能正好得到整数的结果,为了适应生产和生活的需要,便产生了小数例2. 练习本的厚度是2分米,用米作单位是多少呢?其他以分米、厘米为单位的整数用米作单位怎样来表示呢?思路分析:(1)题意分析:认识一位小数和两位小数。
人教版四年级下册数学【小数的意义和性质】知识篇1、小数的意义和读写法①小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,还需要把一个单位平均分成10份、100份、1000份等较小的单位来量,从而产生了小数。
②小数的意义:把单位“1”平均分成10份、100份、1000份……取其中的1份或几份,表示十分之几、百分之几、千份之几……的数,叫小数。
分母是10、100、1000……的分数可以用小数来表示,表示十分之几的小数是一位小数、表示百分之几的小数是两位小数、表示千分之几的小数是三位小数……。
小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……每相邻两个计数单位间的进率是10。
口诀:小数意义好理解,它与分数很亲密。
分母是10、100、1000……小数位数一、二、三……小数单位来计数,0.1、0.01、0.001……要记牢。
提醒:小数是十进制分数的另一种表现形式。
小数点后面有几位数字就称为几位小数。
整数部分是0的小数叫做纯小数;整数部分不为0的小数叫做带小数。
☆小数和分数的转化方法:(1)分母是10的分数可以用一位小数表示,小数点后面一定有一位小数。
它的计数单位是十分之一。
(2)分母是100的分数可以用两位小数表示,小数点后面一定有两位小数。
它的计数单位是百分之一。
(3)分母是1000的分数可以用三位小数表示,小数点后面一定有三位小数。
它的计数单位是千分之一。
小数的数位顺序表解读:小数由、和组成。
⑴、数位顺序表中每相邻两个计数单位间的进率是10。
⑵、小数部分的数位是十分位、百分位、千分位……最高位是十分位,没有最低位;整数部分的最低位是个位,没有最高位;个位和十分位的进率是10;没有最大的小数,也没有最小的小数。
整数○小数⑶、没有最大的一位小数,最小的一位小数是0.1。
举例:(1)6.378的计数单位是(0.001),6.378中有(6378)个千分之一(0.001)。
小数的性质和意义一、小数的产生和意义1.在进行测量和计算时,往往不能正好得到整数的结果,还需要把一个单位平均分成10份、100份、1000份等较小的单位来量,从而产生了小数。
2.把单位“1”平均分成10份、100份、1000份……这样的一份或者几份可以用分母是10、100、1000……的分数来表示,也可以用小数来表示。
(小数是分数的另外一种形式。
分母是10的分数用小数表示时,小数点后面一定有一位数。
)小数的计数单位是十分之一、百分之一、千分之一…….分别写作0.1、0.01、0.001……小数每相邻两个计数单位间的进率是10.3.在直线上标数,关键要弄清直线上把单位“1”平均分成多少份,每个小格代表多少。
例:在直线上标出下面各数的位置。
4.5.小数的读法:读小数时先读整数部分,按照数的读法读;再读小数点,小数点读作“点”;最后读小数部分,小数部分要依次读出每一位上的数字。
(注意:整数部分是0的小数,整数部分就读作零;小数部分有几个0就读出几个零)例如,0.58 读作() 3.5 读作()6.小数的写法:先写整数部分,按照整数的写法写,如果整数部分是零,就直接写0;再在个位的右下角点上小数点;最后依次写出小数部分每一位上的数字。
例如,一点四写作();零点零九写作()7.读数时要写汉字小写数字,写数时要写阿拉伯数字。
读小数部分时,一定要注意所有的“0”都要一一读出。
没有最大的一位小数,最小的一位小数是0.1二、小数的性质和大小比较1.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
(所谓小数的末尾是指小数的最低位)。
2.小数化简的方法:依据小数的性质去掉小数末尾的0,小数的大小不会改变。
(化简小数时只能去掉小数末尾的0,其他位置的0不能去掉,否则会改变小数的大小。
3.增加小数位数的前提是不改变小数的大小,只在小数的末尾添上“0”即可。
整数改写成小数,首先在整数的右下角点上小数点,然后根据需要添上相应个数的“0”(把整数改写成小数,千万不能漏写小数点)。
第四章小数的意义和性质一、小数的产生在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
二、用小数表示分数分母是10、100、1000……的分数可以用小数来表示。
三、小数的进制小数是十进制分数的另一种表现形式。
四、小数的数位和计数单位顺序表1、6.378的计数单位是()。
(最低位的计数单位是整个数的计数单位)2、6.378中有6个(),3个(),7个( ),8个( )3、6.378中有()个千分之一。
4、9.426中的4表示4个()五、小数的读法先读整数部分(按照原来的读法),再读小数点,再读小数部分。
读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
六、小数的写法先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
七小数的性质小数的末尾添上“0”或去掉“0”,小数的大小不变。
注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。
作用可以化简小数等。
八、小数的大小比较1、先比较整数部分;2、如果整数部分相同,就比较十分位;3、十分位相同,就比较百分位;4、以此类推,直到比较出大小。
九、小数点的移动小数点向右移:移动一位,小数就扩大到原数的10倍;移动两位,小数就扩大到原数的100倍;移动三位,小数就扩大到原数的10 00倍;……单位换算:(1)高级单位转化成低级单位=======乘以进率,小数点向右移动。
(2)低级单位转化成高级单位=======除以进率,小数点向左移动。
十一、小数的近似数(用“四舍五入”的方法):1、保留整数,表示精确到个位,就是要把小数部分省略,要看十分位,如果十分位的数字大于或等于5则向前一位进一。
如果小于五则舍。
2、保留一位小数,表示精确到十分位,就要把第一位小数以后的部分全部省略,这时要看小数的第二位,如果第二位的数字比5小则全部舍。
反之,要向前一位进一。
3、保留两位小数,表示精确到百分位,就要把第二位小数以后的部分全部省略,这时要看小数的第三位,如果第三位的数字比5小则全部舍。
人教版小学四年级数学下册【小数的意义和性质】知识篇1、小数的意义和读写法①小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,还需要把一个单位平均分成10份、100份、1000份等较小的单位来量,从而产生了小数。
②小数的意义:把单位“1”平均分成10份、100份、1000份……取其中的1份或几份,表示十分之几、百分之几、千份之几……的数,叫小数。
分母是10、100、1000……的分数可以用小数来表示,表示十分之几的小数是一位小数、表示百分之几的小数是两位小数、表示千分之几的小数是三位小数……。
小数的计数单位是十分之一、百分之一、千分之一……分别写作、、……每相邻两个计数单位间的进率是10。
口诀:小数意义好理解,它与分数很亲密。
分母是10、100、1000……小数位数一、二、三……小数单位来计数,、、……要记牢。
提醒:小数是十进制分数的另一种表现形式。
小数点后面有几位数字就称为几位小数。
整数部分是0的小数叫做纯小数;整数部分不为0的小数叫做带小数。
☆小数和分数的转化方法:(1)分母是10的分数可以用一位小数表示,小数点后面一定有一位小数。
它的计数单位是十分之一。
(2)分母是100的分数可以用两位小数表示,小数点后面一定有两位小数。
它的计数单位是百分之一。
(3)分母是1000的分数可以用三位小数表示,小数点后面一定有三位小数。
它的计数单位是千分之一。
小数的数位顺序表解读:小数由、和组成。
⑴、数位顺序表中每相邻两个计数单位间的进率是10。
⑵、小数部分的数位是十分位、百分位、千分位……最高位是十分位,没有最低位;整数部分的最低位是个位,没有最高位;个位和十分位的进率是10;没有最大的小数,也没有最小的小数。
整数○小数⑶、没有最大的一位小数,最小的一位小数是。
举例:(1)的计数单位是(),中有(6378)个千分之一()。
(记住:最低位的计数单位是整个数的计数单位。
)(2)中有6个(一/1),3个(十分之一/,7个(百分之一/,8个(千分之一/。
小数的性质与意义小数的意义和性质1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
小数的计数单位就是十分之一、百分之一、千分之一……分别文学创作0.1、0.01、0.001……2、每相邻两个记数单位间的进率是(10),小数是十进制。
3、小数的数位就是十分位、百分位、千分位……最低位就是十分位。
整数部分的最高位就是个位。
个位和十分位的4、小数的数位顺序表5、小数的读法:上节整数部分(按照原来的读法),再念小数点,再念小数部分。
念小数部分,小数部分必须依次读出每个数字,而且有几个0就读几个0。
6、小数的读法:先写下整数部分(按照原来的读法),再写小数点,再小数部分:写下小数部分,小数部分必须依次写出每个数字,而且有几个0就写几个0。
7、小数的性质:小数的末尾迎上“0”或者换成“0”,小数的大小维持不变。
8、小数的大小比较:(1)就比较百分位;(4)以此类推,直到比较出大小。
9、小数点的移动小数点向右移:移动一位,小数就不断扩大至原数的10倍;移动两位,小数就扩大到原数的100倍;移动三位,小数就扩大到原数的1000倍……小数点向左移:移动一位,小数就缩小10倍,即小数就缩小到原数的110;移动两位,小数就增大100倍,即为小数就增大至原数的1100;移动三位,小数就缩小1000倍,即小数就缩小到原数的11000;10、生活中常用的单位:质量:1吨=1000千克;1千克=1000克长度:1千米=1000米1分米=10厘米1厘米=10毫米1分米=100毫米1米=10分米=100厘米=1000毫米面积:1平方米=100平方分米1平方分米=100平方厘米1平方千米=100公顷1公顷=10000平方米人民币:1元=10角1角=10分后1元=100分后例题1、0.850读作(),“二十点零七”写作()。
0.035读成(),“二点零七”文学创作()例题2,化简下列小数。
0.020=0.2000=0.0010=6.00=1.560=4.300=7.5080=12.010=100.100=例题3,把下面的数按从大到小的顺序排列起来:(1)0.5、0.51、0.501、0.511(2)4.56、5.65、4.585、4.506(3)用0、1、2、3、4这五个数字,共同组成最小的三位小数就是(),最轻的三位小数()例题4,下面各小数在哪两个相连的自然数之间?它们各近似于哪个自然数?()4.86>()例题5,(1)0.3×10=0.3×100=0.3×1000=0.45×()=45000.45×()=4.50.45×()(2)0.2÷10=0.2÷100=0.2÷1000=4.3÷()=0.434.3÷()=0.0434.3÷()=0.0043(3)在内填×、÷,()填适当的数)))=32.1例题6,单位换算4.7km=()m3.3t=()kg1.63kg=()g3.68m=()cm3.2g=()kg40dm=()m6.54cm=()mm45kg=()t1、在括号中填入适度的数。
人教版小学四年级数学下册【小数的意义和性质】知识篇1、小数的意义和读写法①小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,还需要把一个单位平均分成10份、100份、1000份等较小的单位来量,从而产生了小数。
②小数的意义:把单位“1”平均分成10份、100份、1000份……取其中的1份或几份,表示十分之几、百分之几、千份之几……的数,叫小数。
分母是10、100、1000……的分数可以用小数来表示,表示十分之几的小数是一位小数、表示百分之几的小数是两位小数、表示千分之几的小数是三位小数……。
小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……每相邻两个计数单位间的进率是10。
口诀:小数意义好理解,它与分数很亲密。
分母是10、100、1000……小数位数一、二、三……小数单位来计数,0.1、0.01、0.001……要记牢。
提醒:小数是十进制分数的另一种表现形式。
小数点后面有几位数字就称为几位小数。
整数部分是0的小数叫做纯小数;整数部分不为0的小数叫做带小数。
☆小数和分数的转化方法:(1)分母是10的分数可以用一位小数表示,小数点后面一定有一位小数。
它的计数单位是十分之一。
(2)分母是100的分数可以用两位小数表示,小数点后面一定有两位小数。
它的计数单位是百分之一。
(3)分母是1000的分数可以用三位小数表示,小数点后面一定有三位小数。
它的计数单位是千分之一。
⑴、数位顺序表中每相邻两个计数单位间的进率是10。
⑵、小数部分的数位是十分位、百分位、千分位……最高位是十分位,没有最低位;整数部分的最低位是个位,没有最高位;个位和十分位的进率是10;没有最大的小数,也没有最小的小数。
⑶、没有最大的一位小数,最小的一位小数是0.1。
举例:(1)6.378的计数单位是(0.001),6.378中有(6378)个千分之一(0.001)。
(记住:最低位的计数单位是整个数的计数单位。
小数的意义和性质小数的意义和性质的知识点归纳1.小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。
2、分母是10、100、1000……的分数可以用小数来表示。
3、小数是十进制分数的另一种表现形式。
4、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……5、每相邻两个计数单位间的进率是10。
6、小数的数位是十分位、百分位、千分位……最高位是十分位。
整数部分的最低位是个位。
个位和十分位的进率是10。
7、小数的数位顺序表整数部分小数点小数部分数位…万位千位百位十位个位•十分位百分位千分位万分位…计数单位…万千百十一(个) 十分之一百分之一千分之一万分之一…(1)6.378的计数单位是0.001。
(最低位的计数单位是整个数的计数单位)(2)6.378中有6个一,3个十分之一(0.1),7个百分之一(0.01),8个千分之一(0.001)。
(3)6.378中有(6378)个千分之一(0.001)。
(4)9.426中的4表示4个十分之一(0.1)[4在十分位]8、小数的读法:先读整数部分(按照原来的读法),再读小数点,再读小数部分。
读小数部分,小数部分要依次读出每个数字,而且有几个0就读几个0。
9、小数的写法:先写整数部分(按照原来的写法),再写小数点,再小数部分:写小数部分,小数部分要依次写出每个数字,而且有几个0就写几个0。
10、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。
作用可以化简小数等。
11、小数的大小比较:(1) 先比较整数部分;(2)如果整数部分相同,就比较十分位;(3)十分位相同,就比较百分位;(4)以此类推,直到比较出大小。
12、小数点移动引起的变化:(1)小数点向右移动一位、两位、三位......相当于把原来数乘10、 100、 1000 ......小数就扩大到原数的10倍、100倍、1000倍......(2)小数点向左移动一位、两位、三位......相当于把原来数除以10、 100、 1000 ......小数就缩小到原数的101、1001、10001...... 巩固练习一、填空:(1)、2个1,3个0.1,4个0.01,组成( )。
小数的由来
中国自古以来就使用十进位制计数法,一些实用的计量单位也采用十进制,所以很容易产生十进分数,即小数的概念。
第一个将这一概念用文字表达出来的是魏晋时代的刘徽。
他在计算圆周率的过程中,用到尺、寸、分、厘、毫、秒、忽等7个单位;对于忽以下的更小单位则不再命名,而统称为“微数”。
到了宋、元时代,小数概念得到了进一步的普及和更明确的表示。
杨辉《日用算法》载有两斤换算的口诀:“一求,隔位六二五;二求,退位一二五”,这里的“隔位”、“退位”已含有指示小数点位置的意义。
人教版小学四年级数学下册小数的意义和性质知识点1、小数的意义和读写法①小数的产生:在进行测量和计算时,往往不能正好得到整数的结果,还需要把一个单位平均分成10份、100份、1000份等较小的单位来量,从而产生了小数。
②小数的意义:把单位“1”平均分成10份、100份、1000份……取其中的1份或几份,表示十分之几、百分之几、千份之几……的数,叫小数。
分母是10、100、1000……的分数可以用小数来表示,表示十分之几的小数是一位小数、表示百分之几的小数是两位小数、表示千分之几的小数是三位小数……。
小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……每相邻两个计数单位间的进率是10。
口诀:小数意义好理解,它与分数很亲密。
分母是10、100、1000……小数位数一、二、三……小数单位来计数,0.1、0.01、0.001……要记牢。
提醒:小数是十进制分数的另一种表现形式。
小数点后面有几位数字就称为几位小数。
整数部分是0的小数叫做纯小数;整数部分不为0的小数叫做带小数。
☆小数和分数的转化方法:(1)分母是10的分数可以用一位小数表示,小数点后面一定有一位小数。
它的计数单位是十分之一。
(2)分母是100的分数可以用两位小数表示,小数点后面一定有两位小数。
它的计数单位是百分之一。
(3)分母是1000的分数可以用三位小数表示,小数点后面一定有三位小数。
它的计数单位是千分之一。
⑴、数位顺序表中每相邻两个计数单位间的进率是10。
⑵、小数部分的数位是十分位、百分位、千分位……最高位是十分位,没有最低位;整数部分的最低位是个位,没有最高位;个位和十分位的进率是10;没有最大的小数,也没有最小的小数。
⑶、没有最大的一位小数,最小的一位小数是0.1。
举例:(1)6.378的计数单位是(0.001),6.378中有(6378)个千分之一(0.001)。
(记住:最低位的计数单位是整个数的计数单位。
浅谈小数的产生
摘要:人教版义务教育课程标准实验教材小学四年级《数学》下册《小数的产生和意义》一节中对“小数的产生”进行了阐释,笔者认为这里解释的比较笼统、有失妥当。
小数产生的主要原因,一是计量的单位过多,特别是一些较小的计量单位用处不大,使用时不方便(像记录计算比较等等);二是十进制计数法普及应用,使得其在小数部分得以推广;三是数学讲究用符号、数字代替语言,越简洁的表示方法越有较强的生命力。
小数产生正是在上述情况下产生和形成的。
关键词:人教版小学数学小数产生原因
在人教版义务教育课程标准实验教材小学四年级《数学》下册《小数的产生和意义》一节中,对于小数的产生,教师用书上是这样表述的:通过实际测量活动,使学生体会到在进行测量和计算时,往往得不到整数的结果,还需要把一个单位平均分成10份、100份、1000份……等较小的单位来量,从而产生了小数。
笔者认为这样表述有失妥当,值得商榷。
下面,谈谈我个人的粗浅看法。
一、教材对小数产生的原因解释有所牵强
教材中的主题(体)图传达的意思是:在测量中常常无法得到整数,余下部分不够1个单位,于是产生了小数。
或者要测量的东西不够1个单位,于是有了小数产生的必要。
笔者认为这种说法有点牵
强,小数并不是在这种情况下产生的,在这种情况下只能产生更小的一级单位。
1、小数最初产生原因是缘于单位太多,记录计算过于麻烦。
在测量物体时,我们一般先要定个标准(即标准单位),但在具体测量时,我们会发现,有时标准单位有点大,无法满足测量的需要,于是就产生了小的单位,这些小单位与原来的标准有一定的关系(即进率)。
如:长度:丈、尺、寸(米、分米、厘米、毫米)……,质量:斤、两、钱……,时间:年、月、日、时、分、秒……,等等。
公元三世纪魏晋时代的刘徽计算圆周率的过程中,用到尺、寸、分、厘、毫、秒、忽7个单位,对于忽以下的更小单位则不再命名,而统称为“微数”,这是小数的雏形。
从这里可以看出,刘徽在测量计算圆周率的过程中用到许多单位。
像尺、寸这些单位在日常生活中经常用到,最先出现,随着测量和计算的深入,测量比尺寸更小的物体时,尺、寸已不能满足需要,为计算和测量更小的部分,而逐渐产生了分、厘、毫、秒、忽这些单位。
随着计算测量的更进一步深入,还需要更多更小一点的单位,这样太麻烦了,于是刘徽对于“忽”以下的更小单位则不再命名,而统称为“微数”。
2、分数的弊端是产生小数的又一个原因。
人类历史上最早产生的数是正整数,后来在度量和均分时往往不能正好得到整数结果,就产生了分数。
分数的产生经历了一个漫长的过程。
人们只使用简单的分数,如一半,一半的一半等,后来
才逐渐出现了三分之一,三分之二等简单的分数。
当除不尽的时候,把余数作为分子,除数作为分母,于是就产生了一个分子在上,分母在下的分数筹算形式。
但是分数在使用的过程中也存在很多的弊端:第一,分数的计数单位太多,不同分母的分数,计数单位不一样,这样不便于记录、计算和比较大小。
例如在计算 + 时,还需要先通分,将两个数的计数单位统一后再计算;像与这样的数又难以很快辨别其大小。
第二,有些分数大小相同,却有很多表示方法,如:一半,用分数可以有、、、……多种表示,不如用小数0.5表示来的简洁。
这样分数在记录、计算和比较大小等实际应用中表现出的弊端影响了分数的进一步发展,于是需要一种更简洁实用的计数方法来满足对比1小的数的记录。
这是小数产生的又一个原因。
3、十进制计数法是小数产生的第三个原因。
中国自古以来就一直使用十进制计数法,一些实用的计数单位也采用十进制,所以很容易产生十进分数即小数。
从自然数的写法来看,各相邻计数单位(个、十、百、千……)之间的进率都是十,而当要记录不够最小一个计数单位(1)后,为了书写记录方便,把自然数的计数方法推广到小数部分。
将最小的一个计数单位1平均分成10份,并将表示这个数位上数的计数单位定为0.1,且10个0.1就是1这是利用自然数记数法则推广到不是整数部分时的记录方法。
个位的右边第一位规定为十分位,它的计数
单位是十分之一(0.1);个位的右边第二位规定为百分位,它的计数单位是百分之一(0.01),依次类推,千分位、万分位……其计数单位分别是0.001()、0.0001()……,这里小数的数位和计数单位充分利用了分数的有关名称,小数是特殊的分数,是十进制分数。
二、小数部分数位名称和计数单位难以理解。
从教材编排来看,本册(人教课标四年级下册第四单元)“小数的产生和意义”是在三年级“分数的初步认识”和“小数的初步认识”的基础上进行学习的。
书中解释:因为十分之几的数(分母是10的数)可用一位小数表示,因此一位小数的计数单位是十分之一,可以用0.1表示。
这种说法笔者的理解是:因为一位小数(从0.1—0.9而论)是由分母是10
的分数变化而来,因此一位小数的计数单位也是借用了分数的计数单位是十分之一,数位表上小数点后第一位叫十分位也可以这么解释。
书中谈到小数的计数单位是十分之一、百分之一……,也都是借用了分数的计数单位。
而关于分数计数单位却要到五年级才要学习,这里出现小数的计数单位是十分之一、百分之一……对学生来说不好理解。
综合上述,笔者认为:
测量和计算能否正好得到整数不能看作小数产生的必然原因,因为不能得到整数可以进一步产生更多的新的单位,令其为整数。
而小数产生的真正原因是:
1.一些量的单位过多,特别一些较小的单位用处不大,且单位过多,不便使用(像记录、计算、比较等等)。
2.十进制计数法从古到今的使用,使得其在小数部分得以推广。
3.数学讲究用符号、数字代替语言,因此越简洁的表示方法越有较强的生命力。
随着社会的不断发展、不断进步,在社会发展中起重要作用的数也在不断发展。
在数的发展历史长河中,小数只是一朵浪花,随着社会发展的需要将会有更多的数走进我们的生活。
注:“本文中所涉及到的图表、公式、注解等请以pdf格式阅读”。