电场和电磁场
- 格式:ppt
- 大小:17.40 MB
- 文档页数:140
电磁场理论基础磁现象和电现象本质上是紧密联系在一起的,自然界一切电磁现象都起源于物质具有电荷属性,电现象起源于电荷,磁现象起源于电荷的运动。
变化的磁场能够激发电场,变化的电场也能够激发磁场。
所以,要学习电磁流体力学必须熟悉电磁场理论。
1. 电场基本理论(1) 电荷守恒定律在任何物理过程中,各个物体的电荷可以改变,但参于这一物理过程的所有物体电荷的代数总和是守恒的,也就是说:电荷既不能创造,也不能被消灭,它们只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分。
例如中性物体互相摩擦而带电时,两物体带电量的代数和仍然是零。
这就是电荷守恒定律。
电荷守恒定律表明:孤立系统中由于某个原因产生(或湮 没)某种符号的电荷,那么必有等量异号的电荷伴随产生(或湮没),孤立系统总电荷量增加(或减小),必有等量电荷进入(或离开)该系统。
(2) 库仑定律1221202112ˆ4r δπε+=r q q f (N) 库伦经过实验发现,真空中两个静止点电荷(q 1, q 2)之间的作用力与他们所带电荷的电量成正比,与他们之间的距离r 平方成反比,作用的方向沿他们之间的连线,同性电荷为斥力,异性电荷为引力。
ε0为真空介电常数,一般取其近似值ε0=8.85⨯10-12C •N -1•m -2。
ε0的值随试验检测手段的进步不断精确,目前精确到小数点后9位(估计值为11位)。
库仑反比定律也由越来越精确的实验得到验证。
目前δ<10-16。
库仑反比定律的适用范围(10-15m(原子核大小的数量级)~103m)。
Charles Augustin de Coulomb 1736-1806 France(3) 电场强度 00)()(qr F r E =(V ·m -1)真空中电荷与电荷之间相互以电场相互发生作用。
若试探电荷q 0在电场r 处受电场力为F 0(r ), 则电 场强度为E (r )。
(4) 静电场的高斯定理 ∑⎰⎰=⋅)(01S in Sq d εS E由于静电场的电力线起始于正电荷,终止于负电荷, 不会相交也不会形成封闭曲线,这就决定通过静电场内 某一封闭曲面S 的电通量为此封闭曲面所包围的电荷的01ε倍。
电磁场练习题电场与磁场的叠加与相互作用电磁场练习题——电场与磁场的叠加与相互作用在物理学中,电磁场是电荷与电流所产生的场,由电场和磁场组成。
电磁场的相互作用以及叠加是电磁学的重要内容。
下面,我们将通过一些实例来解析电场与磁场的叠加与相互作用。
1. 实例一:平行板电容器中的带电粒子假设有一个带正电荷q的质点,位于距离一个平行板电容器距离为d的位置。
平行板电容器的两个平行的金属板分别带上正电荷和负电荷,形成了一个匀强电场。
此时,电场的电势差为ΔV,根据电场的叠加原理,带电粒子所受到的电场力为F1 = qΔV。
假设带电粒子的速度v与电场垂直,则带电粒子还受到一个宽度为d的磁场,根据磁场的叠加原理,粒子在磁场中受到的洛伦兹力为F2 = qvB。
因此,带电粒子所受到的合力为F = F1 + F2 = qΔV + qvB。
2. 实例二:电流通过直导线考虑一个长直导线,导线中有电流I,与导线平行的方向定义为x轴方向。
在导线周围产生一个以导线为轴线的环形磁场。
现在,我们再在导线周围和导线之间施加一个电场,即有一个电场E与导线方向相同。
根据磁场的叠加原理,磁场B和电场E的合力为F1 = qE。
根据电场的叠加原理,导线所带来的电场力为F2 = ILB,其中L为导线的长度,B为导线周围的磁场强度。
所以,导线受到的总合力为F = F1 + F2 = qE + ILB。
3. 实例三:异向电场和磁场中的运动粒子假设有一个粒子,同时存在电场和磁场。
电场E方向为x轴方向,磁场B方向为z轴方向。
粒子的速度v方向既不与电场方向也不与磁场方向垂直,而是与两者夹角θ。
粒子在电场中受到的电场力为F1 = qE。
粒子在磁场中受到的洛伦兹力为F2 = qvBsinθ。
所以,粒子所受到的合力为F = F1 + F2 = qE + qvBsi nθ。
当粒子在电磁场中运动时,合力将改变粒子的运动轨迹。
总结起来,电场与磁场的叠加与相互作用是电磁学中的基本概念。
电场一、电荷:1.带正负电的基本粒子,称为电荷。
2.带正电的粒子叫正电荷(+),带负电的粒子叫负电荷(“﹣”)。
也是某些基本粒子(如电子和质子)的属性,它使基本粒子互相吸引或排斥。
3.元电荷:又称“基本电量”或“元电荷”。
在各种带电微粒中,电子电荷量的大小是最小的,人们把最小电荷叫做元电荷,也是物理学的基本常数之一,常用符号e表示。
基本电荷e=1.6021892×10^-19库仑,(通常取e=1.6×10^-19C)。
是一个电子或一个质子所带的电荷量。
任何带电体所带电荷都是e的整数倍。
4.点电荷:不考虑其尺寸、形状和电荷分布情况的带电体。
是实际带电体的理想化模型。
在研究带电体间的相互作用时,若带电体的尺寸远小于它们之间的距离时,就可把带电体看成点电荷。
点电荷是没有大小的带电体,是一种理想模型.实际的带电体(包括电子、质子等)都有一定大小,都不是点电荷.当电荷间距离大到可认为电荷大小、形状不起什么作用时,可把电荷看成点电荷.5.对非点电荷间的相互作用力,可看成许多点电荷间相互作用力的叠加.静止点电荷对运动点电荷的作用力可用库仑定律(F=k*(q1*q2)/r^2)计算,但运动点电荷对运动点电荷的作用力一般不能用库仑定律计算.(比例常数k = 1/4pe0 (1-3)=9.0x10^9牛 ·米2/库2(N*m^2/C^2))6.获取电荷:摩擦起点,接触取电,感应起电。
二、电荷守恒定律:1.对于一个孤立系统,不论发生什么变化,其中所有电荷的代数和永远保持不变。
(电荷守恒定律表明,如果某一区域中的电荷增加或减少了,那么必定有等量的电荷进入或离开该区域;如果在一个物理过程中产生或消失了某种电荷,那么必定有等量的异号电荷同时产生或消失。
)三、库仑定律:1. F=k*(Q1*Q2)/r^2。
(静电力常量: k = 9.0x10^9牛 ·米2/库2(N*m^2/C^2))2. 真空中两个静止的点电荷之间的作用力与这两个电荷所带电量的乘积成正比,和它们距离的平方成反比,作用力的方向沿着这两个点电荷的连线,同名电荷相斥,异名电荷相吸。
电磁场百科全书在电磁学里,电磁场(electromagnetic field)是因带电粒子的运动而产生的一种物理场。
处于电磁场的带电粒子会感受到电磁场的作用力。
电磁场与带电粒子(电荷或电流)之间的相互作用可以用麦克斯韦方程组和洛伦兹力定律来描述。
电磁场可以被视为电场和磁场的连结。
追根究底,电场是由电荷产生的,磁场是由移动的电荷(电流)产生的。
对于耦合的电场和磁场,根据法拉第电磁感应定律,电场会随着含时磁场而改变;又根据麦克斯韦-安培方程,磁场会随着含时电场而改变。
这样,形成了传播于空间的电磁波,又称光波。
无线电波或红外线是较低频率的电磁波;紫外光或 X-射线是较高频率的电磁波。
电磁场涉及的基本相互作用是电磁相互作用。
这是大自然的四个基本作用之一。
其它三个是引力相互作用,弱相互作用和强相互作用。
电磁场倚靠电磁波传播于空间。
从经典角度,电磁场可以被视为一种连续平滑的场,以类波动的方式传播。
从量子力学角度,电磁场是量子化的,是由许多个单独粒子构成的。
目录 [隐藏]1 概念2 电磁场的结构2.1 连续结构2.2 离散结构3 电磁场动力学4 电磁场是一个反馈回路5 数学理论6 电磁场性质6.1 光波是一种电磁辐射7 健康与安全8 参阅9 参考文献10 外部链接[编辑] 概念静止的电荷会产生静电场;静止的磁偶极子会产生静磁场。
运动的电荷形成电流,会产生电场和磁场。
电场和磁场统称为电磁场。
电磁场对电荷产生力,以此可以检测电磁场的存在。
电荷、电流与电磁场的关系由麦克斯韦方程组决定。
麦克斯韦方程共有四条,是一组偏微分方程,其未知量是电场(E)、磁场(B)、位移电流(D)、辅助磁量(H)。
其中包括这些未知量对时间和空间的偏导数。
给定了源(电荷与电流)和边界条件(电场与磁场在边界上的值),可以用数值方法求解麦克斯韦方程,从而得到电场和磁场在不同时刻和位置的值。
这一过程称为电磁场数值计算,或者计算电磁学(英语:computational electromagnetics),在电子工程尤其是微波与天线工程中有重要地位。
电磁场的电场线和磁场线电磁场是物理学领域中的重要概念,它描述了电荷和电流在空间中产生的电场和磁场。
在电磁场中,电场线和磁场线是用来表示电场和磁场分布的图形工具。
本文将介绍电磁场的电场线和磁场线的概念、特点以及应用。
一、电场线的概念和特点电场线是用来表示电场分布的图形工具。
在电磁场中,电场线是由一系列连接在一起的箭头组成的曲线。
这些箭头的方向表示了电场的方向,箭头的长度表示了电场的强度。
一条电场线上任意一点的切线方向为该点的电场方向。
电场线越密集,表示电场越强。
电场线具有以下特点:1. 电场线始于正电荷,并在负电荷处终止。
电场线在电荷周围形成以电荷为中心的辐射状分布,正电荷和负电荷的电场线相互离开或相互靠近。
2. 电场线不可能相交。
因为电场是矢量量,不能同时有多个方向。
3. 电场线垂直于导体表面。
在导体表面上的电场线与导体表面垂直,表示导体是一个等势面。
二、磁场线的概念和特点磁场线是用来表示磁场分布的图形工具。
在电磁场中,磁场线是由闭合曲线组成的,它们形成了磁感线的分布。
磁场线用来表示磁感线的方向和强度。
一条磁场线上任意一点的切线方向为该点的磁感线的方向。
磁场线具有以下特点:1. 磁场线是环形闭合曲线。
物理上只有在磁场感应线与磁线只有在环形循环线上排列。
2. 磁场线是无极真环路。
磁场线既无起点也无终点。
3. 磁场线不可能相交。
因为磁感线是闭合曲线,同一点上不能同时有两个方向。
三、电场线和磁场线的应用1. 电场线和磁场线可以帮助我们理解电磁场的分布规律。
通过分析电场线和磁场线的形状和密度,可以了解电磁场的强度和分布情况,从而对电磁现象有更深入的了解。
2. 电场线和磁场线在物理实验和工程应用中起着重要的作用。
通过实验和观察电场线和磁场线的变化,可以研究电磁现象的特性并进行相应的应用。
3. 电场线和磁场线的分布可以用于计算电磁场的力和能量。
根据电场线和磁场线的特征,可以计算电场对电荷的作用力和磁场对电流的作用力。
电磁场的能量和功率的计算电磁场是物质的一种基本性质,包含了电场和磁场两个方面。
在电磁学中,我们常常需要计算电磁场的能量和功率,以便更好地理解和应用电磁学原理。
本文将介绍一些常见的计算方法。
一、电磁场的能量计算1. 电场能量的计算对于电场能量的计算,可以使用以下公式:W_e = 0.5 * ε * E^2 * V其中,W_e表示电场能量,ε表示介质的电容率,E表示电场强度,V表示电场所占据的体积。
2. 磁场能量的计算对于磁场能量的计算,可以使用以下公式:W_m = 0.5 * B^2 * V / μ其中,W_m表示磁场能量,B表示磁场强度,V表示磁场所占据的体积,μ表示介质的磁导率。
二、电磁场的功率计算1. 电场功率的计算对于电场功率的计算,可以使用以下公式:P_e = 0.5 * ε * E^2 * A * v其中,P_e表示电场功率,ε表示介质的电容率,E表示电场强度,A表示电场的横截面积,v表示电场的传播速度。
2. 磁场功率的计算对于磁场功率的计算,可以使用以下公式:P_m = 0.5 * B^2 * A * v / μ其中,P_m表示磁场功率,B表示磁场强度,A表示磁场的横截面积,v表示磁场的传播速度,μ表示介质的磁导率。
三、总结与应用通过以上的能量和功率计算公式,我们可以更好地理解电磁场的能量和功率的含义和计算方法。
这些计算方法在电磁学的研究和应用中起到了重要的作用。
例如,在电磁波传播过程中,我们可以通过计算电场和磁场的能量和功率来分析电磁波的强度和传播特性。
在电磁辐射防护中,我们可以通过计算电磁场能量和功率来评估辐射风险和采取相应的防护措施。
此外,电磁场的能量和功率计算也为电磁学教学提供了重要的工具和实例,帮助学生更好地理解和应用电磁学原理。
总而言之,电磁场的能量和功率的计算是电磁学研究和应用中的重要内容。
通过使用合适的公式和方法,我们可以准确地计算电磁场的能量和功率,从而更好地理解和应用电磁学知识。
ICS Z 电场、磁场、电磁场防护规定Regulations for electric, magnetic, and electromagnetic fields radiation protection(征求意见稿)GB××××—××××前 言为贯彻《中华人民共和国环境保护法》,防止电场、磁场、电磁场污染,保障公众健康、促进伴有电场、磁场、电磁场的实践的正当发展,制定本标准。
本标准规定了环境中300GHz及以下频率的电场、磁场、电磁场(不包括静电场和静磁场)的公众曝露限值。
本标准规定的限值,可以防止对健康不利的各种急性影响,同时考虑到对健康不利的慢性影响采取预防性原则。
本标准是对GB8702-88《电磁辐射防护规定》的修订,本标准基本框架参考了国际非电离辐射防护委员会(ICNIRP)《限制时变电场、磁场和电磁场(300GHz及以下)曝露导则,1998》。
本标准主要修订内容如下:——删减了职业曝露限值;——增加了0.1MHz以下频段、30GHz~300GHz频段的曝露限值;——各频段的曝露限值在世界卫生组织推荐标准基础上再增加了一个安全系数,与GB8702-88《电磁辐射防护规定》相比有所修改;——删减了对电磁源管理要求及监测的内容。
——调整豁免管理内容。
自本标准实施之日起,GB8702-88《电磁辐射防护规定》废止。
本标准由环境保护部科技标准司、核安全司组织制订。
本标准起草单位:浙江省辐射环境监测站。
本标准由环境保护部年月日批准。
本标准自年月日起实施。
本标准由环境保护部解释。
电场、磁场、电磁场防护规定1适用范围本标准规定了300GHz及以下频率的电场、磁场、电磁场(不包括静电场和静磁场)的公众曝露限值及电磁设施(设备)豁免管理要求。
本标准适用于中华人民共和国境内产生电场、磁场、电磁场的单位、设施、设备以及受到曝露的公众.但本标准的限值不适用于为病人安排的治疗或诊断曝露,也不适用于移动无线通信终端(如移动电话、对讲机、无线网卡等)发射引起的曝露。
电磁场和电场的区别电磁场和电场是我们生活中经常会遇到的两个物理概念,它们都与电荷运动相关。
虽然这两个词看起来很相似,但它们实际上是有很大的不同之处。
接下来,我们将从多个角度来探讨电磁场和电场的异同。
一、概念区别首先,先来简单地解释一下电磁场和电场的概念。
电场是指由电荷引起的周围空间内的一个区域,该区域内存在电场力的存在。
电场具有方向性,与电荷的性质有关。
在一个电场中,如果有电荷存在,它们受到的电场力将会决定它们的运动方向和速度。
电场的大小随着距离的增加而减弱,其大小与电荷性质、电荷间的距离和介质的性质都有关。
电磁场也是由带电物体的电荷所产生的,但它与电场的不同之处在于,它包括了磁场,是两种场的合成。
当电流通过导体时,同时也会产生磁场。
电磁场的作用与电场类似,但其作用范围更广,可以通过电磁波传播,具有导电性。
二、数学表述在数学上,电场和电磁场的表述方式也略有不同。
电场可以通过库仑定律描述,库仑定律用于描述两个电荷间的力,其公式为:F=Kq1q2/r^2,其中F表示电场力,K表示库仑常数,q1和q2分别代表两个电荷的电量,r代表两个电荷之间的距离。
电磁场可以通过麦克斯韦方程组来描述,麦克斯韦方程组是描述电磁场行为的基本方程组,它包括4个方程式,分别是高斯定理、高斯安培定理、法拉第电磁感应定律和安培环路定理。
三、物理特性从物理特性来看,电磁场与电场也存在一定的差异。
在电场中,当一个正电荷在电场中移动时,它会受到一个向电场力相反的力,而当负电荷在电场中移动时,则会受到同向电场力的作用。
这个规律被称为电场的反向性,是电场中电荷受力的基本法则。
而在电磁场中,由于它包括了磁场,所以存在磁场的特性,例如对应的安培定理。
安培定理是电磁学中一条基本原理,它描述了任意封闭曲面内的电流总和等于曲面所包围的磁通量的变化率,即高斯定理的变形,其中电荷的运动和磁场的变化有关。
四、应用领域电磁场和电场在科学技术和日常生活中都有广泛应用。
运动电荷的电场电场是一种作用于电荷上的力学场,它是一种可以把物质改变状态和力学现象的空间现象。
它是一种可以把电荷从一处转移到另一处的能量场。
当某物体内的电荷运动时,就会在当地形成一个电场。
当地的电场将会影响物体内其他电荷的运动状态,从而产生电动力作用在电荷上,并形成另一种电势差。
电场的特点是它的强大能力和辐射性,对于电荷的作用是指向性的,只作用于处于电场中的电荷,当电荷运动时,它在其周围形成一个庞大的电场,可以影响其他物质的构造和性质。
二、运动电荷的电场运动电荷是指物体内部运动的电荷,运动电荷在运动过程中,会在其周围形成一个电场。
电场的形成受到运动电荷的运动方向和运动的力度影响,电场的强度和半径越大,电动力也越大,具有辐射效应。
以静电电荷为例,当静电电荷接近时,其内部电荷受到电场影响,会产生磁场,再转移到另一物体。
当静电电荷运动时,其周围的空间中就会出现电磁场,从而形成电场。
另外,运动电荷可以用弹簧原理来解释,当弹簧受到一处力作用时,会由一端传给另一端,产生力的穿透性,其力的转移方式类似于电中的电磁场,因此,运动的电荷可以通过电磁场的影响将其力传给另一处,形成一个电场。
三、电场的用途电场对于人类有着重要的用途,它可以帮助我们更清楚地理解电荷的行为,从而制造出更好的电子设备、通讯设备和其他科技产品。
除了电子设备外,电场还可以用于军事领域,作为一种特殊的武器。
电场武器可以制造出一股电磁场,让敌人受到影响,造成不可思议的伤害。
另外,电场还可以用于气象预测,观测的原理是通过探测电场可以建立全球的电磁系统,以便于发现和报警。
电场还可以用于生物学研究中,可以检测生物体内部的电动力和电磁场,可以更清楚地了解生物体的生理过程。
四、总结电场是一种作用于电荷上的力学场,它是一种可以把物质改变状态和力学现象的空间现象,它具有强大的能力和辐射性,只作用于处于电场中的电荷,当运动电荷在运动过程中,会在其周围形成一个电场,电场的形成受到运动电荷的运动方向和运动的力度影响。
电磁场db 名词解释-概述说明以及解释1.引言1.1 概述:电磁场是物理学中重要的概念,它描述了电荷和电流在空间中产生的电场和磁场的相互作用。
电磁场在现代科学技术中有着广泛的应用,涉及到电磁波、电磁辐射、电磁感应等多个领域。
在电磁场理论中,单位“dB”(分贝)是一个常用的描述电磁场强度的指标,它对于衡量电磁场的强度和变化具有重要的意义。
本文将重点介绍电磁场中的dB概念,阐述其含义和应用,以帮助读者更好地理解电磁场的特性和作用。
同时,我们将探讨电磁场中dB的重要性,并展望未来在电磁场研究领域的发展方向。
通过深入探讨电磁场db 的相关知识,我们希望读者能够对电磁场理论有更深入的认识,从而为相关领域的研究和实践提供更加全面和有效的支持。
1.2 文章结构文章结构部分的内容如下:文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分中,将概述电磁场db的概念和重要性,说明文章的结构和目的。
在正文部分,将详细介绍电磁场的概念,磁场与电场的关系以及dB的含义与应用。
在结论部分,将总结电磁场db的重要性,并提出未来研究方向和结论。
整个文章结构清晰,逻辑性强,有助于读者全面了解电磁场db的知识。
1.3 目的本文的目的在于解释电磁场db的含义及其在实际应用中的重要性。
通过深入探讨电磁场的概念、磁场与电场的关系以及dB的含义与应用,我们将帮助读者更好地理解电磁场的基本原理和特性。
同时,也希望能够引起读者对电磁场的深入研究和未来发展方向的思考,为电磁场领域的进一步探索和应用奠定基础。
通过本文的阐述,读者可以更全面地了解电磁场db,并认识到其在各个领域中的重要性和应用前景。
2.正文2.1 电磁场概念电磁场是由电场和磁场所组成的物理场,是描述电荷以及电荷之间作用的理论框架。
电磁场是经典电动力学的基本概念之一,也是物质世界中最基本的力之一。
在电磁场中,电场是由电荷产生的力场,它描述了电荷在空间中受力的情况。
电场是通过电场线来描述的,它们代表了电场的方向以及强度。
电机内的电磁场电机是一种将电能转换为机械能的设备,它的核心部件就是电磁场。
电机内的电磁场的形成和运作原理是电机能够正常工作的关键。
本文将从电机内的电磁场的形成、作用以及优化等方面进行阐述。
一、电磁场的形成电磁场是由电流在导线中产生的,而电机中产生电磁场的部分是电流通过电枢线圈时产生的。
当电流通过电枢线圈时,电流激发了电枢线圈中的电子,使其产生旋转的磁场。
这个旋转的磁场与电枢线圈周围的永磁体产生相互作用,从而使电机转动。
二、电磁场的作用电磁场在电机中起到了至关重要的作用。
首先,它产生了旋转力矩,将电能转化为机械能。
其次,电磁场的方向可以通过改变电流的方向来改变,从而实现电机的正转和反转。
此外,电磁场还可以改变电机的速度和转矩,通过调整电流的大小和方向来实现。
三、电磁场的优化为了使电机的性能更好,需要对电磁场进行优化。
首先,可以通过增加电枢线圈的匝数来增强电磁场的强度。
其次,可以采用电枢线圈绕制的不同方式,如分布绕组和集中绕组,来改变电磁场的分布。
此外,还可以通过改变永磁体的材料和形状,来改变电磁场与永磁体的相互作用,从而提高电机的效率和性能。
四、电磁场的应用电磁场的应用非常广泛,不仅仅局限于电机领域。
在电机领域,电磁场被应用于各种类型的电机,如直流电机、交流电机、步进电机等。
此外,电磁场还被应用于发电机、变压器、电磁铁等设备中。
除了电机领域,电磁场还被应用于通信、雷达、医疗等领域。
总结起来,电机内的电磁场是电机正常工作的关键。
电磁场的形成和作用使得电机能够将电能转化为机械能,并且实现了电机的正转、反转、调速和调矩等功能。
通过优化电磁场的设计,可以提高电机的性能和效率。
电磁场的应用不仅仅局限于电机领域,还涉及到各个领域的设备和技术。
电磁场的研究和应用对于推动科技进步和社会发展具有重要意义。
希望本文能够让读者对电机内的电磁场有更深入的了解。
电场diànchǎng [electric field]电场是电荷及变化磁场周围空间里存在的一种特殊物质。
电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。
电场具有通常物质所具有的力和能量等客观属性。
电场的力的性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力。
电场的能的性质表现为:当电荷在电场中移动时,电场力对电荷作功(这说明电场具有能量)。
静止电荷在其周围空间产生的电场,称为静电场;随时间变化的磁场在其周围空间激发的电场称为有旋电场(也称感应电场或涡旋电场)。
静电场是有源无旋场,电荷是场源;有旋电场是无源有旋场。
普遍意义的电场则是静电场和有旋电场两者之和。
电场是一个矢量场,其方向为正电荷的受力方向。
电场的力的性质用电场强度来描述。
磁场英文:magnetic field简易定义:能够产生磁力的空间存在着磁场。
磁场是一种特殊的物质。
磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。
电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。
由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。
磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力距皆源于此。
而现代理论则说明,磁力是电场力的相对论效应。
与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。
然而,作为一个矢量场,磁场的性质与电场颇为不同。
运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。
换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。
磁感应强度:与磁力线方向垂直的单位面积上所通过的磁力线数目,又叫磁力线的密度,也叫磁通密度,用B表示,单位为特(斯拉)T。
电磁场与环境污染问题,如何防止电磁污染?关键词:电磁场;污染源;危害;防治。
摘要:近年来,随着社会经济的飞速发展,环境保护也迅速展开,人类越来越重视自己的生存环境,人类的生存需要合适的物理环境。
但是,随着社会电子科学技术的发展,各种各样的电磁充斥着人类的生存空间,如微波炉、电脑、手机等产品的广泛应用,在给人类生活带来便利的同时也对环境造成严重的污染,影响人类的健康,这些已经引起人们的警惕。
本文运用所学知识,简单阐述一下电磁场与环境污染问题,以及如何防止电磁污染,以增强人们防范意识、远离污染、减小危害。
一、电磁场:1、电磁场定义:有内在联系、相互依存的电场和磁场的统一体的总称。
随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。
电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,形成电磁波。
电磁场是电磁作用的媒递物,具有能量和动量,是物质存在的一种形式。
电磁场的性质、特征及其运动变化规律由麦克斯韦方程组确定。
2、电磁场分类:(1)似稳电磁场:时变场中不同于静态场的上述一些现象,其显著程度都与频率的高低及设备的尺寸紧密相关。
按照实际需要,在容许的近似范围内,对时变场的部分过程可以当作恒定场处理,称之为似稳电磁场或准静态场。
这种方法使分析工作大为简化,在电工技术中是行之有效的方法,已为人们所广泛采用。
(2)交变电磁场与瞬变电磁场:时变电磁场还可以进一步分为周期变化的交变电磁场及非周期性变化的瞬变电磁场。
对它们的研究在目的上和方法上有一些各自的特点。
交变电磁场在单一频率的正弦式变化下,可采用复数表示以化简计算,在电力技术及连续波分析中应用甚多。
瞬变电磁场又称脉冲电磁场,覆盖的频率很宽,介质或传输系统呈现出色散特性,往往需要采取频域、或时序展开等方法进行分析。
二、电磁场与环境污染:1 电磁辐射和电磁污染不断变化的电场和磁场会形成一个向空间传播的电磁波。