2013年迎春杯初赛五年级笔试试题及详解-张昊宇老师
- 格式:pdf
- 大小:1.33 MB
- 文档页数:5
师2010年“数学解题能力展示”读者评选活动(五年级初赛详解)(测评时间:2010年1月3日9:00-10:00)姓名______ 分数_______ 一、填空题I (每题8分,共32分) 1、 计算:22721331941311231216+-+-+⎪⎭⎫⎝⎛+⨯+⎪⎭⎫⎝⎛-⨯=______;2、 小张有200支铅笔,小李有20支钢笔。
每次小张给小李6支铅笔,小李还给小张1支钢笔。
经过______次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍;3、 在长方形ABCD 中,BE =5,EC =4,CF =4,FD =1,如图所示,那么△AEF 的面积是______;4、 20092010200920092009个⨯⨯⨯的个位数字是______;二、填空题II (每题10分,共40分)5、 一个等差数列的第3项是14,第18项是23,那么这个数列的前2010项中有______项是整数;6、 甲、乙两车从A 城市出发驶向距离300千米远的B 城市。
已知甲车比乙车晚出发1小时,但提前1小时到达B 城市。
那么,甲车在距离B 城市______千米处追上乙车; 7、 已知一个五位回文数等于45与一个四位回文数的乘积(即deed abcba ⨯=45),那么这个五位回文数最大的可能值是______;8、 请从1、2、3、⋯、9、10中选出若干个数,使得1、2、3、⋯、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和。
那么,至少需要选出______个数;三、填空题III (每题12分,共48分)9、 如图,请沿虚线将7⨯7的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且这个数字就是此长方形的面积。
那么第四列的7个小方格分别属于______个不同的长方形;D B AC F41 4 311、 如图,等腰直角三角形DEF 的斜边在等腰直角三角形ABC 的斜边上,连结AE 、AD 、AF ,于是整个图形被分成五块小三角形,图中已标出其中三块的面积,那么△ABC 的面积是______;(36) 12、 如图,C 、D 为AB 的三等分点。
2013年“迎春杯”数学解题能力展示初赛试卷(五年级)一、填空题(共3小题,每小题8分,满分24分)1.(8分)算式999999999﹣88888888+7777777﹣666666+55555﹣4444+333﹣22+1的计算结果的各位数字之和是.2.(8分)如图竖式中,使得乘积最小的两个乘数和是.3.(8分)把1﹣8这8个数字放到一个正方体的八个顶点处,然后在每条棱的中点处写上这条棱的两个顶点处所写的数的平均数,如果上底面的四个中点和下底面的四个中点上写的数都是整数,那么另外四个中点处所写的数中,有不是整数.二、填空题(共3小题,每小题12分,满分36分)4.(12分)如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD比AD长2,那么三角形ABC的面积是.5.(12分)如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是.12533421546.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.三、填空题(每小题15分,满分75分)7.(15分)五支足球队伍比赛,每两个队伍之间比赛一场:胜者得3分,负者得0分,平局各得1分,比赛完毕后,发现各队得分均不超过9分,且恰有两只队伍同分,设五支队伍的得分从高到低依次为A、B、C、D、E(有两个字母表示的数是相同的),若恰好是15的倍数,那么此次比赛中共有多少场平局?8.(15分)由2013个边长为1的小正三角形拼成的四边形中,周长的最小值是.9.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.10.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是.11.(15分)有一个奇怪的四位数(首位不为0),它是完全平方数,它的数字和也是完全平方数,用这个四位数除以它的数字和得到的结果还是完全平方数,并且它的约数个数还恰好等于它的数字和,那当然也是完全平方数,如果这个四位数的各位数字互不相同,那么这个四位数是多少?2013年“迎春杯”数学解题能力展示初赛试卷(五年级)参考答案与试题解析一、填空题(共3小题,每小题8分,满分24分)1.(8分)算式999999999﹣88888888+7777777﹣666666+55555﹣4444+333﹣22+1的计算结果的各位数字之和是45.【解答】解:由于计算过程没有出现进位借位,故结果各位数字之和就是式中各数的各位数字之和相加减,原式=9×9﹣8×8+7×7﹣6×6+5×5﹣4×4+3×3﹣2×2+1×1(mod10)=(9+8)(9﹣8)+(7+6)(7﹣6)+…+(3+2)(3﹣2)+1=9+8+7+6+5+4+3+2+1=45,故答案为45.2.(8分)如图竖式中,使得乘积最小的两个乘数和是160.【解答】解:(1)积的最高位是2,可以得出前面两次算出的积的最高位都是1,再由此推出第一个乘数的第一位是1,最后一位是3;(2)根据积的个位是1,可以知道两个乘数的个位数字的积的末尾是1,结合上第一个乘数的个位是3,就能确定第二个乘数的个位是7;(3)因为第一个乘数乘第二个乘数的十位数字得到的是一百多,也就能确定第二个乘数的十位数字是1;(4)根据第一个乘数乘7的积是一千零几,可以推出第一个乘数的十位数字是4.故这题中两个乘数是143和17,第一次算出的积是1001,第二次的积是143,最后的积是2431.因此这两个乘数的和是143+17=160.3.(8分)把1﹣8这8个数字放到一个正方体的八个顶点处,然后在每条棱的中点处写上这条棱的两个顶点处所写的数的平均数,如果上底面的四个中点和下底面的四个中点上写的数都是整数,那么另外四个中点处所写的数中,有4个不是整数.【解答】解:奇偶性问题1~8八个数4奇4偶,上下两组各4个数同时满足相邻和为偶数,唯一情况为上下另组数分别同奇同偶.即上面4个为奇数,下面4个为偶数或者上面4个为偶数,下面4个为奇数.所以上下4组数和都是奇数,即它们的平均数都不是整数.所以有4个不是整数.故答案为4个.二、填空题(共3小题,每小题12分,满分36分)4.(12分)如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD比AD长2,那么三角形ABC的面积是24.【解答】解:作CE⊥AB于E.∵CA=CB,CE⊥AB,∴CE=AE=BE,∵BD﹣AD=2,∴BE+DE﹣(AE﹣DE)=2,∴DE=1,在Rt△CDE中,CE2=CD2﹣DE2=24,=•AB•CE=CE2=24,∴S△ABC故答案为245.(12分)如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是150.1253342154【解答】解:首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格.逆推得出唯一图形.相加求和为150.黑豆网https://黑豆网是国内不错的在线观看电影的网站,涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:##金马医药招商网是专业提供医药代理招商的资讯信息发布平台,医药代理招商网即医药视频招商网或医药火爆招商网这里提供专业的医药代理招商服务。
迎春杯初赛真题五年级2008年——2016年2016年10月学校:_____________姓名:_____________2008迎春杯五年级初赛真题(测评时间:2007年12月2日9:00—10:30)一、填空题Ⅰ(每题8分,共40分)1.★小华在计算 3.69除以一个数时,由于商的小数点向右多点了一位,结果得24.6,这道题的除数是.2.★右图中平行四边形的面积是1080m2,则平行四边形的周长为m.3.★当a= 时,下面式子的结果是0?当a= 时,下面式子的结果是1?(36-4a)÷84.★★箱子里装有同样数量的乒乓球和羽毛球.每次取出5个乒乓球和3个羽毛球,取了几次之后,乒乓球恰好没有了,羽毛球还有6个,则一共取了次,原来有乒乓球和羽毛球各个.5.★★★在右边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数tavs= .二、填空题Ⅱ(每题10分,共50分)6.★★★一个五位数恰好等于它各位数字和的2007倍,则这个五位数是.块的面积分别是2、8、58,则④、⑤这两块的面积差是.8.★★在纸上写着一列自然数1,2,…,98,99.一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面.例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是.9.★★★甲、乙二人要从网上下载同一个100兆大小的软件,他们同时用各自家中的电脑开始下载,甲的网速较快,下载速度是乙的5倍,但是当甲下载了一半时,由于网络故障出现断网的情况,而乙家的网络一直正常.当甲的网络恢复正常后,继续下载到99兆时(已经下载的部分无需重新下载),乙已经下载完了,则甲断网期间乙下载了兆.10. ★★★★★如图,5×5方格被分成了五块;请你在每格中填入1、2、3、4、5中的一个,使得每行、每列、每条对角线的五个数各不相同,且每块上所填数的和都相等.现有两个格子已分别填入1和2,请在其它格子中填上适当的数,则ABCDE 是 .三、填空题Ⅲ(每题12分,共60分)11. ★★★★在右图的每个方框中填入一个数字,使得除法算式成立.则被除数应是___________.12. ★★★★有4个不同的数字共可组成18个不同的4位数.将这18个不同的4位数由小到大排成一排,其中第一个是一个完全平方数,倒数第二个也是完全平方数,则这18个数中最大的数是 .13. ★★★★国际象棋中“马”的走法如图1所示,位于○位置的“马”只能走到标有×的格中,类似于中国象棋中的“马走日”.如果“马”在8×8的国际象棋棋盘中位于第一行第二列(图2中标有△的位置),要走到第八行第五列(图2中标有★的位置),最短路线有 条.14.★★★★给你一架天平和两个砝码,这两个砝码分别重50克和100克,如果再添上3个砝码,则这5个砝码能称出的重量种类最多是种.(天平的左右两盘均可放砝码)15.★★★★★将右图中的2007(即阴影部分)分成若干个1×2的小长方形,共有种分法.2009迎春杯五年级初赛真题(测评时间:2008年12月6日9:00—10:30)一、填空题Ⅰ(每题8分,共40分)1.★★计算:82.54+835.27-20.38÷2+2×6.23-390.81-9×1.03= .2.★某班女同学人数是男同学的2倍,如果女同学的平均身高是150厘米,男同学的平均身高是162厘米.那么全班同学的平均身高是厘米.3.★★如果两个合数互质,它们的最小公倍数是126,那么,它们的和是.4.★★右图中三角形共有个.5.★★★从1,2,3,4,5,6中选取若干个数,使得它们的和是3的倍数,但不是5的倍数.那么共有种不同的选取方法.二、填空题Ⅱ(每题10分,共50分)6. ★★★某城市的交通系统由若干个路口(右图中线段的交点)和街道(右图中的线段)组成,每条街道都连接着两个路口.所有街道都是双向通行的,且每条街道都有一个长度值(标在图中相应的线段处).一名邮递员传送报纸和信件,要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次).他合理安排路线,可以使得自己走过最短的总长度是 .7. ★★★如右图,一个面积为2009平方厘米的长方形,被分割成了一个长方形、两个等腰直角三角形、三个梯形.已知除了阴影长方形外,其它的五块面积都相等,且B 是AC 的中点;那么阴影长方形的面积是平方厘米.8. ★★★★将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是 .9. ★★★★计算:5717191155234345891091011()⨯++++⨯⨯⨯⨯⨯⨯⨯⨯= .10.★★★★200名同学编为1至200号面向南站成一排.第1次全体同学向右转(转后所有的同学面朝西);第2次编号为2 的倍数的同学向右转;第3次编号为3的倍数的同学向右转;……;第200次编号为200的倍数的同学向右转;这时,面向东的同学有名.三、填空题Ⅲ(每题12分,共60分)11.★★★★有一位奥运会志愿者,向看台上的一百名观众按顺序发放编号1,2,3,……100,同时还向每位观众赠送一个单色喇叭.他希望如果两位观众的编号之差是质数,那么他们拿到的喇叭就是不同颜色的.为了实现他自己的愿望,他最少要准备种颜色的喇叭.12.★★★★一些棋子被摆成了一个四层的空心方阵(右图是一个四层空心方阵的示意图).后来小林又添入28个棋子,这些棋子恰好变成了一个五层的空心方阵(不能移动原来的棋子),那么最开始最少有个棋子.13.★★★★★请将1个1,2个2,3个3,…,8个8,9个9填入右图的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边).现在已经给出了其中8个方格中的数,并且知道A,B,C,D,E,F,G各不相同;那么,五位数CDEFG是.14.★★★★A地位于河流的上游,B地位于河流的下游.每天早上,甲船从A地、乙船从B地同时出发相向而行.从12月1号开始,两船都装上了新的发动机,在静水中的速度变为原来的1.5倍,这时两船的相遇地点与平时相比变化了1千米.由于天气原因,今天(12月6号)的水速变为平时的2倍,那么今天两船的相遇地点与12月2号相比,将变化千米.15.★★★★★如右图,长方形ABCD中被嵌入了6个相同的正方形.已知AB=22厘米,BC=20厘米,那么每一个正方形的面积为平方厘米.2010迎春杯五年级初赛真题(测评时间:2010年1月3日 9:00—10:00)一、填空题Ⅰ(每题8分,共32分)1. ★★计算:1111612193321722______.2334⎛⎫⎛⎫⨯-+⨯++-+-+= ⎪ ⎪⎝⎭⎝⎭2. ★★小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过_________次这样的交换后,小张手中的铅笔的数量是小李手中钢笔数量的11倍.3. ★★在长方形ABCD 中,BE =5,EC =4,CF =4, FD =1,如图所示,的面积是_________.4. ★★2009×2009×···×2009的个位数字是_________.2010个2009FE4 54CD15.★★★一个等差数列的第3项是14,第18项是23,那么这个数列的前2010项中有_________项是整数.6.★★★甲、乙两车同时从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1个小时,但提前1个小时到达B城市.那么,甲车在距离B城市_________千米处追上乙车.7.★★★已知一个五位回文数等于45与一个四位回文数的乘积(即45),那么这个五位=abcba deed 回文数最大的可能值是_________.8.★★★★从1,2,3···,9,10中选出若干个数,使得1,2,3,···,19,20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出_________个数.9. ★★★★如图,请沿虚线将7×7的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且这个数字就是此长方形的面积.那么第四列的7个小方格分别属于_________个不同的长方形.10. ★★★★九个大小相等的小正方形拼成了右图.现从点A 走到点B ,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法).那么从点A 走到点B 共有_________种不同的走法.11. ★★★★如图,等腰直角三角形DEF 的斜边在等腰直角三角形ABC 的斜边上,连接AE 、AD 、AF ,于是整个图形被分成五块小三角形.面积是_________.ABBC12.★★★★如图,C,D为AB的三等分点;8点整时甲从A出发匀速向B行走,8点12分乙从B出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时乙恰好到A.那么,丙出发时是8点_________分.A C D B2011迎春杯五年级初赛真题(测评时间:2010年12月19日8:30—9:30)一、填空题Ⅰ(每题8分,共40分)⨯+⨯+⨯+⨯+⨯的计算结果是.1.★算式123456789102.★十二月份共有31天,如果某年12月1日是星期一,那么该年12月19日是星期.(星期一至星期日用数字1至7表示)3.★★如图的等腰梯形上底长度等于3,下底长度等于9,高等于4.这个等腰梯形的周长等于.4.★★某乐团女生人数是男生人数的2倍,若调走24名女生,那么男生人数是女生人数的2倍.该乐团原有男女学生一共人.5.★★规定12010203=0+0+0+0=※......如果※....,54567826=0+0+0=0=+=※...,232349※.,那么a等于.15165a=二、填空题Ⅱ(每题10分,共50分)6. ★★★如图,从正方体的顶点A 沿正方体的棱到顶点B ,每个顶点恰好经过一次,一共有 种不同的走法.7. ★★★在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是 .8. ★★★两个正方形如图放置,图中的每个三角形都是等腰直角三角形.若其中较小正方形的边长为12cm ,那么较大正方形的面积是 cm 2.9. ★★★★如图的5×5的表格中有6个字母,请沿格线将右图分割为6个面积不同的小长方形(含正方形),使得每个长方形中恰好有一个字母,且每个字母都在小长方形角上的方格中.若这六个字母分别等于它所在小长方形的面积,那么五位数ABCDE = .110. ★★★★一个村庄有2011个小矮人,他们中的每个人不是戴红帽子就是戴蓝帽子.小矮人戴红帽子时说真话,戴蓝帽子时说假话.他们可以改变帽子的颜色.某一天,他们恰好每两人都见了一次面,并且都说对方戴蓝帽子.这一天他们总共最少改变了 次帽子的颜色.三、填空题Ⅲ(每题12分,共60分)11. ★★★★如图,一个大长方形被分成8个小长方形,其中长方形A 、B 、C 、D 、E 的周长分别是26厘米、28厘米、30厘米、32厘米、34厘米.那么大长方形的面积最大是 平方厘米.12. ★★★★如图是一个6×6的方格表,将数字1~6填入空白方格中,使得每一行、每一列数字1~6都只恰好出现一次,方格表还被粗线划分成了6块区域,每个区域数字1~6也恰好都只出现一次,那么最下面一行的 前4个数字组成的四位数ABCD 是 .13. ★★★★★甲、乙两车同时从A 地出发开往B 地.出发的时候,甲车的速度比乙车的速度每小时快2.5千米.10分钟后,甲车降低了速度; 再过5分钟后,乙车也降低了速度.这时乙车比甲车每小时慢0.5千米.又过了25分钟后两车同时到达B 地.那么甲车速度降低了 千米/时.BACD14.★★★★把同时满足下列两个条件的自然数称为“幸运数”:(1)从左往右数,第三位起,每一位的数字是它前面离它最近的两个数字的差(大数减去小数);(2)无重复数字.例如:132、871、54132都是“幸运数”;但8918(数字“8”重复)、990(数字“9”重复)都不是“幸运数”.最大“幸运数”从左往右的第二位数字是.15.★★★★★一个由某些正整数所组成的数组具有以下的性质:(1)这个数组中的每个数,除了1以外,都可被2、3或5中的至少一个数整除.(2)对于任意整数n,如果此数组中包含有2n、3n或5n中的一个,那么此数组中必同时包含有n及2n、3n和5n.已知此数组中数的个数在300和400之间,那么此数组有个数.2012迎春杯五年级初赛真题(测评时间:2011年12月17日 9:00—10:00)一.填空题(每小题8分,共32分)1. ★算式50311111212012101÷÷⨯⨯的计算结果是 .2. ★★在右图中,BC = 10,EC = 6,直角三角形EDF 的面积比直角三角形FAB的面积小5.那么长方形ABCD 的面积是 .3. ★★龙腾小学五年级共有四个班.五年级一班有学生42人,五年级二班是一班人数的76,五年级三班是二班人数的65,五年级四班是三班人数的1.2倍.五年级共有 人.4. ★★在右图中,共能数出 个三角形.二.填空题(每小题10分,共40分)5.★★一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.如果2011年最后一个能被101整除的日子是ABCD2011,那么ABCD=.6.★★★在右图的除法竖式中,被除数是.7.★★★五支足球队比赛,每两个队之间比赛一场;每场比赛胜者积3分,负者积0分,平局则各积1分.比赛完毕后,发现这五个队的积分恰好是五个连续的自然数.设第1、2、3、4、5名分别平了A、B、C、D、E场,那么五位数ABCDE=.8.★★★今天是2011年12月17日,在这个日期中有4个1、2个2、1个0、1个7.用这8个数字组成若干个合数再求和(每个数字恰用一次,首位数字不能为0,例如21110与217的和是21327),这些合数的和的最小值是.三.填空题(每小题12分,共48分)9.★★★★甲、乙两人分别从A、B两地同时出发,相向而行.第一次迎面相遇在距离B地100米处,相遇后甲的速度提高到原来的2倍;甲到B后立即调头,追上乙时,乙还有50米才到A.那么,AB 间的路程长米.10.★★★在右图中,线段AE、FG将长方形ABCD分成了四块;已知其中两块的面积分别是2cm2、11cm2,且E是BC的中点,O是AE的中点;那么长方形ABCD的面积是cm2.11.★★★★★在算式2011=⨯⨯⨯+HGFEABCD中,A、B、C、D、E、F、G、H代表1~8中不同的数字(不同的字母代表不同的数字).那么四位数ABCD=.12.★★★★有一个6×6的正方形,分成36个1×1的正方形.选出其中一些1×1的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出条对角线.F2013迎春杯五年级初赛真题(测评时间:2012年12月22日 9:00—10:00)一.填空题(每小题8分,共24分)1. ★★算式999999999888888887777777666666555554444333221-+-+-+-+的计算结果的各位数字之和是__________.2. ★★如图竖式中,使得乘积最小的两个乘数的和是__________.3. ★★把1~8这8个数字放到一个正方体的八个顶点处,然后在每条棱的中点处写上这条棱的两个顶点处所写的数的平均数.如果上底面的四个中点和下底面的四个中点上写的数都是整数,那么另外四个中点处所写的数中,有__________个不是整数.二.填空题(每小题12分,共36分)4. ★★★如图,在等腰直角三角形ABC 中,斜边AB 上有一点D ,已知5,2CD BD AD =-=,那么三角形ABC 的面积是__________.5.★★★如图, 7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是_________.6.★★★★甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的 2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过________分钟才能追上乙.三.填空题(每小题15分,共60分)7.★★★★五支足球队伍比赛,每两个队伍之间比赛一场:胜者得3分,负者得0分,平局各得1分.比赛完毕后,发现各队得分均不超过9分,且恰有两支队伍同分.设五支队伍的得分从高到低依次为、、、(有两个字母表示的数是相同的),若A B C D E恰好是15的倍数,那么此次比赛中EA、BDC共有__________场平局.8.★★★★由2013个边长为1的小正三角形拼成的四边形中,周长最小值是__________.9.★★★★★如图,正六边形ABCDEF的面积为1222,K、M、N分别为AB、CD、EF的中点,那么三角形PQR的面积是__________.10.★★★★★有一个奇怪的四位数(首位不为0),它是完全平方数,它的数字和也是完全平方数,用这个四位数除以它的数字和得到的结果还是完全平方数,并且它的约数个数还恰好等于它的数字和,那当然也是完全平方数.如果这个四位数的各位数字互不相同,那么这个四位数是__________.2014迎春杯五年级初赛真题(测评时间:2013年12月21日8:30—9:30)一、选择题(每小题8分,共32分)1.★在所有分母小于10的最简分数中,最接近20.14的分数是()A.1015B.1417C.1819D.16182.★下面的四个图形中,第()幅图只有2条对称轴A.图1 B.图2 C.图3 D.图43.★一辆大卡车一次可以装煤2.5吨,现在要一次运走48吨煤,那么至少需要()辆这样的大卡车.A.18 B.19 C.20 D.214.★★已知a、b、c、d四个数的平均数是12.345,a b c d>>>,那么b()A.大于12.345 B.小于12.345 C.等于12.345 D.无法确定二、选择题(每小题10分,共70分)5.★★如图,大正方形的边长为14,小正方形的边长为10,阴影部分的面积之和是()A.25 B.40 C.49 D.506.★★★甲、乙、丙、丁四人拿出同样多的钱,一起订购同样规格的若干件新年礼物,礼物买来后,甲、乙、丙分别比丁多拿了3,7,14件礼物,最后结算时,乙付给了丁14元钱,并且乙没有付给甲钱.那么丙应该再付给丁()元钱.A.6 B.28 C.56 D.707.★★★在下列算式的空格中填入互不相同的数字:()()⨯⨯.其中五个++++=2014一位数的和最大是()A.15 B.24 C.30 D.8.★★★已知4个质数的积是它们和的11倍,则它们的和为()A.46 B.47 C.48 D.没有符合条件的数9.★★为了减少城市交通拥堵的情况,某城市拟定从2014年1月1日起开始试行新的限行规则,规定尾号为1、6的车辆周一、周二限行,尾号2、7的车辆周二、周三限行,尾号3、8的车辆周三、周四限行,尾号4、9的车辆周四、周五限行,尾号5、0的车辆周五、周一限行,周六、周日不限行.由于1月31日是春节,因此,1月30日和1月31日两天不限行.已知2014年1月1日是周三并且限行,那么2014年1月份()组尾号可出行的天数最少.A.1、6 B.2、7 C.4、9 D.5、010.★★4个选项之中各有4个碎片,用碎片将下图铺满选项()是不能将下图恰好不重不漏地铺满的(碎片可以旋转、翻转)11.★★★如下图所示,将15个点排成三角形点阵或者梯形点阵共有3种不同方法(规定:相邻两行的点数均差1).那么将2014个点排成三角形点阵或者梯形点阵(至少两层)共有()种不同的方法.A.3 B.7 C.4 D.9三、选择题(每小题12分,共48分)12.★★★★今天是2013年12月21日,七位数ABCDEFG恰好满足:前五位数字组成的五位数ABCDE是2013的倍数,后五位数字组成的五位数CDEFG是1221的倍数.那么四位数ABFG的最小值是()A.1034 B.2021 C.2815 D.303613.★★★★甲、乙两人比赛折返跑,同时从A出发,到达B点后,立即返回,先回到A点的人获胜.甲先到达B点,在距离B点24米的地方遇到乙.相遇后,甲的速度减为原来的一半,乙的速度保持不变.在距离终点48米的地方,乙追上甲.那么,当乙到达终点时,甲距离终点还有__________米.A.6 B.8 C.12 D.1614.★★★★★如图,一只蚂蚁从中心A点出发,连走5步后又回到A点,且中间没有回到过A点.有____种不同的走法.(每一步只能从任意一点走到与它相邻的点,允许走重复路线.)A.144 B.156 C.168 D.18015.★★★★如图,请将0、1、2、……、14、15填入一个的表格中,使得每行每列的四个数除以4的余数都恰为0、1、2、3各一个,而除以4的商也恰为0、1、2、3各一个.表格中已经填好了几个数,那么,这个表格中最下方一行的四个数的乘积是().A.784 B.560 C.1232 D.5282015迎春杯五年级初赛真题(测评时间:2014年12月20日10:30—11:30)一、填空题Ⅰ(每小题8分,共32分)1.★算式(201412)205930830-⨯⨯-的计算结果是________.2.★★数学小组原计划将72个苹果发给学生,每人发的苹果数量一样多,后来又有6人加入小组,这样每个学生比原计划少发了1个苹果.那么,原来有_________名学生.3.★★★在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是_______.4.★★右图六角星的6个顶点恰好是一个正六边形的6个顶点.那么阴影部分面积是空白部分面积的________倍.二、填空题Ⅱ(每小题10分,共40分)5.★★★A和B是两个非零自然数,A是B的24倍,A的因数个数是B的4倍,那么A与B的和最小是________.6.★★珊珊和希希各有若干张积分卡.珊珊对希希说:“如果你给我3张,我的张数就是你的3倍.”希希对珊珊说:“如果你给我4张,我的张数就是你的4倍.”珊珊对希希说:“如果你给我5张,我的张数就是你的5倍.”这三句话中有一句话是错的.那么,原来希希有________张积分卡.7.★★★将1至8填入方格中,使得数列□□,9,□□,□□,□□从第三个项开始,每一项都等于前面两项的和,那么这个数列的所有项之和是________.8.★★★甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有________种不同的订阅方式.三、填空题Ⅲ(每小题12分,共48分)9.★★★如图,A、B为圆形轨道一条直径的两个端点.甲、乙、丙三个微型机器人在环行导轨上同时出发,作匀速圆周运动.甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动.出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过__________秒钟,乙才第一次到达B.10.★★★★如图,分别以一个面积为169的正方形的四条边为底,做4个面积为101.4平方厘米的等腰三角形.图中阴影部分的面积是________平方厘米.11.★★★★如果一个数的数字和与它3倍的数字和相同,却与它2倍的数字和不同,我们称这种数为“奇妙数”,那么,最小的“奇妙数”是________.12.请参考《2015年“数学花园探秘”科普活动初赛试题评选方法》作答.2016迎春杯五年级初赛真题(测评时间:2015年12月19日8:30—9:30)一、填空题Ⅰ(每小题8分,共32分)1. ★算式()⎪⎭⎫⎝⎛-÷⨯-⨯1912121912121919的计算结果是 .2. ★★有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.如果经过8小时后细胞的个数为1284,那么,最开始的时候有 个细胞.3. ★★如图,一道乘法竖式中已经填出了2、0、1、6,那么乘积是 .4. ★★有一个数列,第一项为12,第二项为19,从第三项起,如果它的前两项和是奇数,那么该项就等于前两项的和,如果它的前两项和是偶数,那么该项就等于前两项的差(较大数减较小数).那么,这列数中第 项第一次超过2016.□ □ □ × □ 2 □ 0 □ □ □ □ □ □ 1 □ 6二、填空题Ⅱ(每小题10分,共40分)5.★★★四位数双成成双的所有因数中,有3个是质数,其它39个不是质数.那么,四位数成双双成有个因数.6.★★★右图中,A、B、C、D、E是正五边形各边的中点,那么,图中共有个梯形.7.★★★对于自然数N,如果在1~9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的六合数是.8.★★★如图,魔术师在一个转盘上的16个位置写下来了1~16共16个数,四名观众甲、乙、丙、丁参加魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式.魔术师睁开眼,说:“选到偶数的观众请举手.”这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们所选的数了!”你认为甲和丁选的数乘积是.三、填空题Ⅲ(每小题12分,共48分)9.★★★★正八边形边长是16,那么阴影部分的面积是.10.★★★★某城市早7:00到8:00是高峰时段,所有车辆的行驶速度变为原来的一半.每天早上6:50,甲、乙两人从这城市的A、B两地同时出发,相向而行,在距离A地24千米的地方相遇.如果乙早出发20分钟,两人将在距离A地20千米的地方相遇;如果甲晚出发20分钟,两人恰巧在AB中点相遇.那么,AB两地相距千米.11.★★★★在空格里填入数字1~5,使得每行和每列的数字不重复.每个除法从上向下或者从左到右运算都能够整除.那么第二行的前三个数字依次组成的三位数是.12.请参考《2016年“数学花园探秘”科普活动初赛试题评选方法》作答.。
2012“数学解题能力展示”读者评选活动笔试试题小学五年级(2011年12月17日)一、填空题(每题8分,共32分)1.算式:10120121211111503⨯⨯÷÷的计算结果是_____________.2.在右图中,10BC =,6EC =,直角三角形EDF 的面积比直角三角形FAB 的面积小5.那么长方形ABCD 的面积是_____________.3.龙腾小学五年级共有四个班.五年级一班有学生 42人,五年级二班是一班人数的67,五年级三班是二班人数的56,五年级四班是三班人数的1.2倍.五年级共有______________人.4.在右图中,共能数出______________个三角形.二、填空题(每小题10分,共40分)5.一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.如果2011年最后一个能被101整除的日子是2011ABCD ,那么=ABCD ______________.6.在右图的除法竖式中,被除数是_______.7.五支足球队比赛,每两个队之间比赛一场;每场比赛胜者积3分,负者积0分,平局则各积1分.比赛完毕后,发现这五个队的积分恰好是五个连续的自然数.设第1、2、3、4、5名分别平了A、B、C、D、E场,那么五位数ABCDE=_____________.8.今天是2011年12月17日,在这个日期中有4个1、2个2、1个0、1个7.用这8个数字组成若干个合数再求和(每个数字恰用一次,首位数字不能为0,例如21110与217和是21327),这些合数的和的最小值是______________.三、填空题(每题12分,共48分)9.甲、乙两人分别从A、B两地同时出发,相向而行.第一次迎面相遇在距离B地100米处,相遇后甲的速度提高到原来的2倍;甲到B后立即调头,追上乙时,乙还有50米才到A.那么,AB间的路程长______________米.10.在右图中,线段AE、FG将长方形ABCD分成了四块;已知其中两块的面积分别是2平方厘米、11平方厘米,且E是BC的中点,O是AE的中点;那么长方形ABCD的面积是______________平方厘米.11.在算式2011+⨯⨯⨯=中,A、B、C、D、E、F、G、H代表1~8中不同的数字(不ABCD E F G H同的字母代表不同的数字).那么四位数ABCD=______________.⨯的正方形,分成36个1112.有一个66⨯的正方形.选出其中一些11⨯的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出______________条对角线.2012“数学解题能力展示”读者评选活动笔试试题 小学五年级参考答案1 2 3 4 5 6 44 35 144 40 1221 20952 7 8 9 10 11 12 13213 231 250 28 1563 21部分解析一、填空题(每题8分,共32分)1.算式:10120121211111503⨯⨯÷÷的计算结果是_____________. 【考点】整数四则运算 【难度】☆ 【答案】44【解析】原式=10145031111(11101503)=44⨯⨯⨯⨯÷⨯⨯.2.在右图中,10BC =,6EC =,直角三角形EDF 的面积比直角三角形FAB 的面积小5.那么长方形ABCD 的面积是_____________.【考点】几何 【难度】☆☆ 【答案】35【解析】可知长方形ABCD 的面积比ECB ∆的面积大5,所以长方形ABCD 的面积是10625=35⨯÷+.3.龙腾小学五年级共有四个班.五年级一班有学生 42人,五年级二班是一班人数的67,五年级三班是二班人数的56,五年级四班是三班人数的1.2倍.五年级共有______________人. 【考点】分数应用题 【难度】☆☆ 【答案】144【解析】二班人数为642=367⨯(人);三班人数为536=306⨯(人);四班人数为30 1.2=36⨯(人);所以,五年级共有42363036=144+++(人).4.在右图中,共能数出______________个三角形.【考点】几何计数【难度】☆☆【答案】40【解析】按组成三角形的块数来分类.一块的三角形:16;两块的三角形:16;三块的三角形:8.所以,++(个).三角形一共16168=40二、填空题(每小题10分,共40分)5.一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.如果2011年最后一个能ABCD______________.被101整除的日子是2011ABCD,那么=【考点】整除问题【难度】☆☆【答案】1221AB.判断能否被101整除要【解析】因为是最后一个能被101整除的日子,所以先看12月有没有,令=12用两位截断后奇偶作差能否被101整除.偶数段的和是2012=32+,那么奇数段的和可能是32、133.后面一个不可能,只能是32.那么321121ABCD=.CD=-=,12216.在右图的除法竖式中,被除数是_______.【考点】数字谜【难度】☆☆【答案】20952【解析】首先,1X =,9Y =,则1Z =;由10ABC D ⨯= ,知1D =,1A =,0B =; 由1092C E ⨯= ,知9E =,8C =;从而2972Y = ;由2972Y = 知PQ 取值38~47,又据108F PQ ⨯= ,得4F =. 所以,被除数108194=20952⨯.7.五支足球队比赛,每两个队之间比赛一场;每场比赛胜者积3分,负者积0分,平局则各积1分.比赛完毕后,发现这五个队的积分恰好是五个连续的自然数.设第1、2、3、4、5名分别平了A 、B 、C 、D 、E 场,那么五位数ABCDE =_____________. 【考点】逻辑推理 【难度】☆☆☆ 【答案】13213【解析】共赛3510C =场,每场两队得分和2或3,所以总分为210310⨯⨯ . 五个队的积分恰好是五个连续的自然数,而五个连续的自然数的和在210310⨯⨯ 有以下三种情况:2~6、3~7、4~8.若五个队的积分是2~6,则总分是20,从而所有比赛均为平局,每队都得4分,矛盾! 若五个队的积分是4~8,则总分是30,从而无平局,每队得分都应是3的倍数,矛盾! 所以,五个队的积分只能是3~7.总分为25,共平5场,2510A B C D E ++++=⨯= 第一名得7分,共赛4场,只能是胜2,平1,负1,所以=1A ; 第三名得5分,共赛4场,只能是胜1,平2,负1,所以2C = ; 第四名得4分,若全平,则和其它每队都平,从而3B ≥,4D =,3E =, 那么1+3+2+4+110A B C D E ++++≥>,矛盾! 所以第四名胜1,平1,负2,从而1D =;10101216B E A C D +=---=---=,而3B ≤,3E ≤,所以,只能3B =,3E =. 综上所述,13213ABCDE =.8.今天是2011年12月17日,在这个日期中有4个1、2个2、1个0、1个7.用这8个数字组成若干个合数再求和(每个数字恰用一次,首位数字不能为0,例如21110与217和是21327),这些合数的和的最小值是______________.【考点】质数合数分解质因数【难度】☆☆☆【答案】231【解析】因为0、1、2、7都不是合数,所以这些组成的合数中没有一位数.若组成4个两位合数,由于11是质数,从而4个1必须分别位于四个两位合数中,其中必有1个1和7在同一个合数中,而17、71都是质数,矛盾!所以至少有一个合数是三位数或以上.若组成的合数中最大的为三位数,还剩5个数字,数字个数为奇数,不可能使剩下的合数全为两位数,所以还得有一个合数是三位数.设组成的合数为ABC、DEF、GH,则有++=⨯++⨯++++100()10(+)ABC DEF GH A D B E G C F H≥⨯+⨯+++++=100(1+1)10(011)227231另一方面,这三个合数可以是102、117、12.综上所述,这些合数的和的最小值是231.三、填空题(每题12分,共48分)9.甲、乙两人分别从A、B两地同时出发,相向而行.第一次迎面相遇在距离B地100米处,相遇后甲的速度提高到原来的2倍;甲到B后立即调头,追上乙时,乙还有50米才到A.那么,AB间的路程长______________米.【考点】行程问题【难度】☆☆☆☆【答案】250【解析】如图,+(米)就行满假设甲一出发,速度就提高到原来的2倍,那么在相同的时间内,甲还差10050=1503个AB;而与此同时,乙还差50米就行满1个AB;所以,甲提速后,速度是乙的:-÷-=倍.(3150)(50)3AB AB从而,甲原来的速度是乙的32=1.5÷倍. 所以,AB 间的路程长100(1.51)250⨯+=(米).10.在右图中,线段AE 、FG 将长方形ABCD 分成了四块;已知其中两块的面积分别是2平方厘米、11平方厘米,且E 是BC 的中点,O 是AE 的中点;那么长方形ABCD 的面积是______________平方厘米.【考点】几何 【难度】☆☆☆☆ 【答案】28 【解析】如图,延长AE 、DC 交于点H .那么AFOGH 是一个沙漏形.ABECH 也是一个沙漏形. 由于E 是BC 中点,有::1:1AE EH BE EC ==, 由于O 是AE 中点,那么:1:3AO OH =.所以在沙漏形AFOGH 中,有22:1:31:9AOF GOH S S == . 所以,=29=18GOH S ⨯ (平方厘米),那么18117CEH S ∆=-=(平方厘米).而长方形的面积正好是ECH ∆面积的4倍. 所以,444728ABCD ABE CEH S S S ===⨯= (平方厘米).11.在算式2011ABCD E F G H +⨯⨯⨯=中,A 、B 、C 、D 、E 、F 、G 、H 代表1~8中不同的数字(不同的字母代表不同的数字).那么四位数ABCD =______________. 【考点】数字谜【难度】☆☆☆☆ 【答案】1563【解析】由123424E F G H ⨯⨯⨯≥⨯⨯⨯=,得201124ABCD ≤-,那么1A =.由于1A =,则E 、F 、G 、H 中至少一个偶数,从而E F G H ⨯⨯⨯为偶数.若5在E 、F 、G 、H 中,则E F G H ⨯⨯⨯个位为0,1D =,矛盾!所以5在B 、C 、D 中. 现在可以确定A 、B 、C 、D 中有两个数字是1和5.然后考虑这个加法算式中每个数除以3的余数.2011除以3的余数是1.E F G H ⨯⨯⨯除以3的余数有两种情形,0或不是0.下面分类讨论: (1)E F G H ⨯⨯⨯除以3的余数是0.则ABCD 除以3的余数是1.因为A 、B 、C 、D 中有两个数字是1和5,那么剩余两个数字的和除以3的余数是1,可能是3和4、3和7、6和4、6和7、2和8. ①如果是3和4,那么=2678=672E F G H ⨯⨯⨯⨯⨯⨯,D 是9,不可能;②如果是3和7,那么=2468=384E F G H ⨯⨯⨯⨯⨯⨯,20113841627ABCD =-=,矛盾; ③如果是6和4,那么=2378=336E F G H ⨯⨯⨯⨯⨯⨯,20113361675ABCD =-=,矛盾; ④如果是6和7,那么=2348=192E F G H ⨯⨯⨯⨯⨯⨯,D 是9,不可能; ⑤如果是2和8,那么=3467=504E F G H ⨯⨯⨯⨯⨯⨯,D 是7,矛盾. 所以这种情形里面没有正确答案. (2)E F G H ⨯⨯⨯除以3的余数不是0.这说明3和6都不在E 、F 、G 、H 里面, 那么=2478=448E F G H ⨯⨯⨯⨯⨯⨯,20114481563ABCD =-=,满足题意.12.有一个66⨯的正方形,分成36个11⨯的正方形.选出其中一些11⨯的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出______________条对角线.【考点】构造论证 【难度】☆☆☆☆ 【答案】21【解析】如下左图,可以画出21条对角线.如下右图,标记了21个格点,画出的每条11⨯正方形的对角线都要以这21个标记格点中的某一个为顶点.而据题意,所画出的任何两条对角线都没有公共点,所以每个标记格点至多画出一条对角线,从而至多画出21条对角线.。
2010年“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分).2. 小张有200支铅笔,小李有20支钢笔.每次小张给小李6支铅笔,小李还给小张1支钢笔.经过 次这样的交换后,小张手中铅笔的数量是小李手中钢笔数量的11倍.3. 如图,长方形ABCD 中,BE=4,EC=4,CF=4,FD=1,则⊿AEF 的面积是 .5. 一个等差数列的第3项是14,第18项是23,那么这个数列的前2010项中有 项是整数.6. 甲、乙两车同时从A 城市出发驶向距离300千米远的B 城市.已知甲车比乙车晚出发1个小时,但提前1个小时到达B 城市.那么,甲车在距离B 城市 千米处追上乙车.7. 已知一个五位回文数等于45与一个四位回文数的乘积(即),则这个五位回文数最大的可能值是 .8. 请从1, 2,3···,9,10 中选出若干个数,使得1,2,3···,19,20 中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出 个数.9. 如图,请沿虚线将7×7的方格表分割成若干个长方形,使得每个长方形中恰好包含一个数字,并且这个数字就是此长方形的面积.则第四列的小方格属于 个不同的长方形.=+-+-++⨯+-⨯227213319)4131(12)3121(6.1deed abcba ⨯=4510. 九个大小相等的小正方形拼成了右图.现从A到B,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线,如图的虚线就是一种走法.共有种不同的走法.11.如图,等腰直角三角形DEF的斜边在等腰直角三角形ABC的斜边上,连接AE、AD、AF,于是整个图形被分成五块小三角形.图中已标出其中三块的面积,则⊿ABC的面积是.12.C,D为AB的三等分点;甲8点整时从A出发匀速向B行走,8点12分乙从B点出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时乙恰好到A.那么,丙出发时是8点分2010年“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010 年1月3日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________填空题:(每题10分,共120分)2.小明带着一些钱去买签字笔,到商店后发现这种笔降价了12.5%,如果他带的钱恰好可以比原来多买13支,那么降价前这些钱可以买________支签字笔.3.满足图中算式的三位数abc最小值是________.4. 三个半径为100厘米且圆心角为60º的扇形如图摆放;那么,这个封闭图形的周长是________厘米.(π取3.14)5.用0~9这10个数字组成若干个合数,每个数字都恰好用一次,那么这些合数之和的最小值是________.6.梯形的上底为5,下底为10,两腰分别为3和4,那么梯形的面积为________.7. 有5个不同的正整数,它们中任意两数的乘积都是12的倍数,那么这5个数之和的最小值是________.8.一个大正方体、四个中正方体、四个小正方体拼成如图的立体图形,已知大、中、小三个正方体的棱长分别为5厘米、2厘米、1厘米.那么,这个立体图形的表面积是________平方厘米.9. 九个大小相等的小正方形拼成了右图.现从A点走到B点,每次只能沿着小正方形的对角线从一个顶点到另一个顶点,不允许走重复路线(如图的虚线就是一种走法).那么从A点走到B点共有________种不同的走法.10. 学校打算在1月4日或1月10日组织同学们看电影.确定好日期后,老师告诉了班长,但是由于“四”和“十”发音接近,班长有10%的可能性听错(把4听成10或者把10听成4).班长又把日期告诉了小明,小明也有10%的可能性听错.那么小明认为看电影的日期是正确日期的可能性为________%.11. 如图,C,D为AB的三等分点;8点整时甲从A出发匀速向B行走,8点12分乙从B出发匀速向A行走,再过几分钟后丙也从B出发匀速向A行走;甲,乙在C点相遇时丙恰好走到D点,甲,丙8:30相遇时乙恰好到A.那么,丙出发时是8点________分.12.图中是一个边长为1 的正六边形,它被分成六个小三角形.将4、6、8、10、12、14、16各一个填入7个圆圈之中.相邻的两个小正三角形可以组成6个菱形,把每个菱形的四个顶点上的数相加,填在菱形的中心A、B、C、D、E、F 位置上(例如:a+b+g+f=A).已知A、B、C、D、E、F依次分别能被2、3、4、5、6、7整除,那么a×g×d=___________.2010年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2010年2月6日8:30—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议.签名:___________一、填空题Ⅰ(每题8分,共40分)1.=⨯-⨯+1457266.22010 .2. 下表是人民币存款基准利率表 .小明现在有10000元人民币,如果他按照三年期整存整取的方式存款,3. 如图所示,有大小不同的两个正方体,大正方体的棱长是小正方体棱长的6倍.将大正方体的6个面都染上红色,将小正方体的6个面都染上黄色,再将两个正方体粘合在一起.那么这个立体图形表面上红色面积是黄色面积的 倍.4. 有一块用于实验新品种水稻的试验田形状如图,面积共40亩,一部分种植新品种,另一部分种植旧品种(种植面积不一定相等),以方便比较成果.旧品种每亩产500千克;新的品种中有75%都没有成功,每亩只产400千克,但是另外25%试验成功,每亩产800千克.那么,这块试验田共产水稻千克.5.在每个方框中填入一个数字,使得乘法竖式成立.已知乘积有两种不同的得数,那么这两个得数的差是.二、填空题Ⅱ(每题10分,共50分)6. 直角边长分别为18厘米,10厘米的直角△ABC 和直角边长分别为14厘米,4厘米的直角△ADE 如图摆放.M 为AE的中点,则△ACM 的面积为 平方厘米.新品种25% 旧品种7. 黑板上一共写了10040个数字,包括2006个1,2007个2,2008个3,2009个4,2010个5.每次操作都擦去其中4个不同的数字并写上一个第5种数字(例如擦去1、2、3、4各1个,写上1个5;或者擦去2、3、4、5各一个,写上一个1;……). 如果经过有限次操作后,黑板上恰好剩下了两个数字,那么这两个数字的乘积是 .8. 蜜蜂王国为了迎接2010年春节的到来,特地筑了一个蜂巢如下.每个正六边形蜂窝中,有由蜂蜜凝结而成的数字0、1或2.春节到来之时,群蜂将在巢上跳起舞步,舞步的每个节拍恰好走过的四个数字:2010(从某个2出发最后走完四步后又回到2,如图中箭头所示为一个舞步),且蜜蜂每一步都只能从一个正六边形移动到与之有公共边的正六边形上.蜜蜂要经过四个正六边形且所得数字依次为2010,共有 种方法.9. 在反恐游戏中,一名“恐怖分子”隐藏在10个排成一行的窗户后面,一位百发百中的“反恐精英”使用狙击枪射击这名“恐怖分子”.“反恐精英”只需射中“恐怖分子”所在的窗户就能射中这名“恐怖分子”.每次射击完成后,如果“恐怖分子”没有被射中,他就会向右移动一个窗户.一旦他到了最右边的窗户,就停止移动.为了确保射中这名“恐怖分子”,“反恐精英”至少需要射击 次.10. 如图所示,直线上并排放置着两个紧挨着的圆,它们的面积都等于1680平方厘米.阴影部分是夹在两圆及直线之间的部分.则这个圆的面积等于_________平方厘米.三、填空题Ⅲ(每题12分,共60分)11. 用1~9这9个数字各一次,组成一个两位完全平方数,一个三位完全平方数,一个四位完全平方数.那么,其中的四位完全平方数最小是 .12. 现有一块L 形的蛋糕如图所示,现在要求一刀把它切成3部分,因此只能按照如图的方式切,但不能斜着切或横着切.要使得到的最小的那块面积尽可能大,那么最小的面积为 平方厘米.13. 小李开车从甲地去乙地,出发后2小时,车在丙地出了故障,修车用了40分钟,修好后,速度只为正常速度的75%,结果比计划时间晚2小时到乙地.若车在行过丙地72千米的丁地才出故障,修车时间与修车后的速度分别还是40分钟与正常速度的75%,则比计划时间只晚1.5小时.那么,甲乙两地全程 千米.10厘米 20厘米 3014.9000名同学参加一次数学竞赛,他们的考号分别是1000,1001,1002,…9999.小明发现他的考号是8210,而他的朋友小强的考号是2180.他们两人的考号由相同的数字组成(顺序不一样),差为2010的倍数.那么,这样的考号(由相同的数字组成并且差为2010的倍数)共有对.15.小华编了一个计算机程序.程序运行后一分钟,电脑屏幕上首次出现一些肥皂泡,接下来每到整数分钟的时刻都会出现一些新的肥皂泡,数量与第一分钟出现的相同.第11次出现肥皂泡后半分钟,有一个肥皂泡破裂.以后每隔一分钟又会有肥皂泡破裂,且数量比前一分钟多1个(即第12次出现肥皂泡后半分钟,有2个肥皂泡破裂…).到某一时刻,已破裂的肥皂泡的总数恰好等于电脑屏幕上出现过的肥皂泡的总数,即此刻肥皂泡全部消失.那么在程序运行的整个过程中,在电脑屏幕上最多同时有个肥皂泡出现.2011“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 算式12345678910⨯+⨯+⨯+⨯+⨯的计算结果是 .2. 十二月份共有31天,如果某年12月1日是星期一,那么该年12月19日是星期 .(星期一至星期日用数字1至7表示)3. 右图的等腰梯形上底长度等于3,下底长度等于9,高等于4,那么这个等腰梯形的周长等于 .4. 某乐团女生人数是男生人数的2倍,若调走24名女生,则男生人数是女生人数的2倍,那么该乐团原有男女学生一共 人.5. 规定12010203=+=※...,232349=0+0+0=0※....,54567826=0+0+0+0=※......如果 15165a =※.,那么a 等于 .二.填空题(每题10分,共50分)6. 如图,蚂蚁从正方体的顶点A 沿正方体的棱爬到顶点B ,并且恰好经过正方体每个顶点一次,那么蚂蚁一共有 种不同的爬法.7. 在右图每个方框中填入一个数字,使得乘法竖式成立.那么两个乘数的和是 .8. 两个正方形如图放置,图中的每个三角形都是等腰直角三角形.若其中小正方形的边长为12厘米,那么较大正方形的面积是 平方厘.19. 如图的5×5的表格中有6个字母,请沿格线将右图分割为6个面积不同的小长方形(含正方形),使得每个长方形中恰好有一个字母,且每个字母都在小长方形角上的方格中.若这六个字母分别等于它所在小长方形的面积,那么五位数ABCDE = .10. 小人国有2011个小矮人,他们中的每个人不是戴红帽子就是戴蓝帽子.小矮人戴红帽子时说真话,戴蓝帽子时说假话;并且他们随时可以更换自己帽子的颜色.某一天,他们恰好每两人都见了一次面,并且都说对方戴蓝帽子.那么这一天他们总共最少改变了 次帽子的颜色.三.填空题(每题12分,共60分)11. 如图,一个大长方形被分成8个小长方形,其中长方形A 、B 、C 、D 、E 的周长分别是26厘米、28厘米、30厘米、32厘米、34厘米.那么大长方形的面积最大是 平方厘米.12. 如图是一个6×6的方格表,将数字1~6填入空白方格中,使得每一行、每一列数字1~6都只恰好出现一次,方格表还被粗线划分成了6块区域,每个区域数字1~6也恰好都只出现一次,那么最下面一行的 前4个数字组成的四位数ABCD 是 .13. 甲、乙两车同时从A 地出发开往B 地.出发的时候,甲车的速度比乙车的速度每小时快2.5千米.10分钟后,甲车减速了; 再过5分钟后,乙车也减速了,这时乙车比甲车每小时慢0.5千米.又过了25分钟后两车同时到达B 地.那么甲车当时速度每小时减少了 千米.14. 把同时满足下列两个条件的自然数称为“幸运数”:(1)从左往右数,第三位起,每一位的数字是它前面的两个数字的差(大数减去小数);(2)无重复数字.例如:132、871、54132都是“幸运数”;但8918(数字“8”重复)、990(数字“9”重复)都不是“幸运数”.那么最大“幸运数”从左往右的第二位数字是 .15. 一个由某些非零自然数所组成的数组具有以下的性质:(1)这个数组中的每个数(除了1以外),都可被2、3、5中的至少一个数整除.(2)对于任意非零自然数n ,若此数组中包含有2n 、3n 、5n 中的一个,则此数组中必同时包含有n 、2n 、3n 和5n .如果此数组中数的个数在300和400之间,那么此数组包含 个数.A B DC EBAACD2011“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2010年12月19日8:30—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每题8分,共40分)1. 今天是2010年12月19日,欢迎同学们参加北京第27届“数学解题能力展示”活动.那么,算式1027100121910002010++的计算结果的整数部分是 .2. 某校有2400名学生,每名学生每天上5节课,每位教师每天教4节课,每节课是一位教师给30名学生讲授.那么该校共有教师 位.3. 张老师带着一些钱去买签字笔,到商店后发现这种笔降价了25%,结果他带的钱恰好可以比原来多买25支.那么降价前这些钱可以买签字笔 支. 4. 右图为某婴幼儿商品的商标,由两颗心组成,每颗心都是由一个正方形和两个半圆拼成.若两个正方形的边长分别为40毫米、20毫米,则阴影图形的面积是 平方毫米.(π取3.14)5. 用4.02乘以一个两位整数,得到的乘积是一个整数,这个乘积的10倍是 .二.填空题(每题10分,共50分)6. 某支球队现在的胜率为45%,接下来的8场比赛中若有6场获胜,则胜率将提高到50%.那么现在这支球队共取得了 场比赛的胜利.7. 定义运算:a ba b a b ⨯♥=+,算式920102010201020102010♥♥♥♥♥♥共颗“”的计算结果是 .(题中共9个“♥”,计算顺序从左到右)8. 在△ABC 中,BD =DE =EC ,CF : AC =1 : 3.若△ADH 的面积比△HEF 的面积多24平方厘米,则△ABC 的面积是 平方厘米.9. 一个正整数,它的2倍的约数恰好比它自己的约数多2个,它的3倍的约数恰好比它自己的约数多3个.那么这个正整数是 .10. 如图,一个6×6的方格表,现将数字1~6填入空白方格中,使得每一行、每一列数字1~6都恰好出现一次.图中已经填了一些数字,那么剩余空格满足要求的填写方法一共有 种.三.填空题(每题12分,共60分)11. 有一个圆柱体,高是底面半径的3倍,将它如图分成大、小两个圆柱体.如果大圆柱体的表面积是小圆柱体的表面积的3倍,那么大圆柱体的体积是小圆柱体的体积的 倍.12. 某岛国的一家银行每天9:00~17:00营业.正常情况下,每天9:00准备现金50万元,假设每小时的提款量都一样,每小时的存款量也都一样,到17:00下班时有现金60万元.如果每小时提款量是正常情况的4倍,而存款量不变的话,14:00银行就没现金了.如果每小时提款量是正常情况的10倍,而存款量减少到正常情况一半的话,要使17:00下班时银行还有现金50万元,那么9:00开始营业时需要准备现金 万元.13. 40根长度相同的火柴棍摆成右图,如果将每根火柴棍看作长度为1的线段,那么其中可以数出30个正方形来.拿走5根火柴棍后,A ,B ,C ,D ,E 五人分别作了如下的判断: A :“1×1的正方形还剩下5个.” B :“2×2的正方形还剩下3个.”C :“3×3的正方形全部保留下来了.”D :“拿走的火柴棍所在直线各不相同.”E :“拿走的火柴棍中有4根在同一直线上.”已知这5人中恰有2人的判断错了,那么剩下的图形中还能数出 个正方形.14. 甲、乙、丙三人同时从A 出发去B ,甲、乙到B 后调头回A ,并且调头后速度减少到各自原来速度的一半.甲最先调头,调头后与乙在C 迎面相遇,此时丙已行2010米;甲又行一段后与丙在AB 中点D 迎面相遇;乙调头后也在C 与丙迎面相遇.那么AB 间路程是 米.15. 如果算式19.1220102=-+-I GHF DE ABC 中的A ,B ,C ,D ,E ,F ,G ,H ,I 表示1~9中各不相同的数字,那么五位数ABCDE = .2011年“数学解题能力展示”读者评选活动小学高年级组复试试卷(测评时间:2011年1月30日8:00—9:30)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题Ⅰ(每题8分,共40分)1. 定义一种新运算a ☆b 满足:a ☆b =b ×10+a ×2.那么2011☆130= .2. 从1999年到2010年的12年中,物价涨幅为150%(即1999年用100元能购买的物品,2010年要比原来多花150元才能购买).若某个企业的一线员工这12年来工资都没变,按购买力计算,相当于工资下降了 %.3. 右图中大圆的半径是20厘米,7个小圆的半径都是10厘米.那么阴影图形的面积是 平方厘米(π取3.14).4. 某届“数学解题能力展示”读者评选活动初试共有12000名学生参加,分为初中、小学高年级、小学中年级三个组别.小学的两个组共占总人数的1615,不是小学高年级组的占总人数的21.那么小学中年级组参赛人数为 .5. 右图是一个除法竖式.这个除法竖式的被除数是 .二.填空题Ⅱ(每题10分,共50分)6. 算式1!×3-2!×4+3!×5-4!×6+…+2009!×2011-2010!×2012+2011!的计算结果是 .7. 春节临近,从2011年1月17日(星期一)起工厂里的工人陆续回家过年,与家人团聚.若每天离厂的工人人数相同,到1月31日,厂里还剩下工人121名,在这15天期间,统计工厂工人的工作量是2011个工作日(一人工作一天为1个工作日,工人离厂当天及以后不需要统计).其中周六、日休息,且无人缺勤.那么截至到1月31日,回家过年的工人共有 人.8. 有一个整数,它恰好是它的约数个数的2011倍.这个整数的最小值是 .1 3 09. 一个新建5层楼房的一个单元每层有东西2套房;各层房号如右图所示,现已有赵、钱、孙、李、周五家入住.一天他们5人在花园中聊天:赵说:“我家是第3个入住的,第1个入住的就住我对门.”钱说:“只有我一家住在最高层.” 孙说:“我家入住时,我家同侧的上一层和下一层都已有人入住了.”李说:“我家是五家中最后一个入住的,我家楼下那一层全空着.”周说:“我家住在106号,104号空着,108号也空着.” 他们说的话全是真话.设第1、2、3、4、5家入住的房号的个位数依次为A 、B 、C 、D 、E ,那么五位数ABCDE = .10. 6支足球队,每两队间至多比赛一场.如果每队恰好比赛了2场,那么符合条件的比赛安排共 有 种.三.填空题Ⅲ(每题12分,共60分)11. 0~9可以组成两个五位数A 和B ,如果A +B 的和是一个末五位数字相同的六位数,那么A ×B 的不同取值共有 个.12. 甲、乙两人分别从A 、B 两地同时出发,在AB 间往返行走;甲出发的同时,丙也从A 出发去B .当甲、乙两人第一次迎面相遇在C 地时,丙还有100米才到C ;当丙走到C 时,甲又往前走了108米;当丙到B 时,甲、乙正好第二次迎面相遇.那么A 、B 两地间的路程是 米.13. 如右图,大正方形被分成了面积相等的五块.若AB 长为3.6厘米,则大正方形的面积为 平方厘米.14. 用36个3×2×1的实心小长方体拼成一个6×6×6的大正方体.在各种拼法中,从大正方体外的某一点看过去最多能看到 个小长方体.15. 平面上有15个红点,在这些红点间连一些线段.一个红点连出了几条线段,就在这个红点上标几.已知所有标有相同数的红点之间互不连线,那么这15个红点间最多连了 条线段.五层 四层 三层 二层一层2012“数学解题能力展示”读者评选活动五年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式50311111212012101÷÷⨯⨯的计算结果是 .2. 在右图中,BC = 10,EC = 6,直角三角形EDF 的面积比直角三角形F AB 的面积小5.那么长方形ABCD 的面积是 .3. 龙腾小学五年级共有四个班.五年级一班有学生42人,五年级二班是一班人数的76,五年级三班是二班人数的65,五年级四班是三班人数的1.2倍.五年级共有 人.4. 在右图中,共能数出 个三角形.二.填空题(每小题10分,共40分)5. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.如果2011年最后一个能被101整除的日子是ABCD 2011,那么=ABCD .6. 在右图的除法竖式中,被除数是 .7. 五支足球队比赛,每两个队之间比赛一场;每场比赛胜者积3分,负者积0分,平局则各积1分.比赛完毕后,发现这五个队的积分恰好是五个连续的自然数.设第1、2、3、4、5名分别平了A 、B 、C 、D 、E 场,那么五位数ABCDE = .8.今天是2011年12月17日,在这个日期中有4个1、2个2、1个0、1个7.用这8个数字组成若干个合数再求和(每个数字恰用一次,首位数字不能为0,例如21110与217的和是21327),这些合数的和的最小值是.三.填空题(每小题12分,共48分)9.甲、乙两人分别从A、B两地同时出发,相向而行.第一次迎面相遇在距离B地100米处,相遇后甲的速度提高到原来的2倍;甲到B后立即调头,追上乙时,乙还有50米才到A.那么,A、B间的路程长米.10.在右图中,线段AE、FG将长方形ABCD分成了四块;已知其中两块的面积分别是2cm2、11cm2,且E是BC的中点,O是AE的中点,那么长方形ABCD的面积是cm2.11.在算式2011=⨯⨯⨯+HGFEABCD中,A、B、C、D、E、F、G、H代表1~8中不同的数字(不同的字母代表不同的数字).那么四位数ABCD=.12.有一个6×6的正方形,分成36个1×1的正方形.选出其中一些1×1的正方形并画出它们的对角线,使得所画出的任何两条对角线都没有公共点,那么最多可以画出条对角线.2012“数学解题能力展示”读者评选活动六年级组初试试卷(测评时间:2011年12月17日9:00—10:00)学生诚信协议:活动期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论.我确定以下的答案均为我个人独立完成的成果.否则愿接受本次成绩无效的处罚.我同意遵守以上协议 签名:____________________一.填空题(每小题8分,共32分)1. 算式11111(97531)1226122030++++⨯的计算结果是_________.2. 将棱长为5的大正方体切割成125个棱长为1的小正方体.这些小正方体的表面积总和是原大正方体表面积的_________倍.3. 一辆玩具汽车,第一天按100%的利润定价,无人来买;第二天降价10%,还是无人买;第三天再降价360元,终于卖出.已知卖出的价格是进价的1.44倍,那么这辆玩具汽车的进价是_________元.4. 在右图中的竖式除法中,被除数为________.二.填空题(每小题10分,共40分)5. 一个电子钟表上总把日期显示为八位数,如2011年1月1日显示为20110101.那么2011年最后一个能被101整除的日子是2011ABCD ,那么ABCD =_________.6. 一个n 位正整数x ,如果把它补在任意..两个正整数的后面,所得两个新数的乘积的末尾还是x ,那么称x 是“吉祥数”.例如:6就是一个“吉祥数”;但16不是,因为11621625056⨯=,末尾不再是16.所有位数不超过3位的“吉祥数”之和是_________.7. 有一个足够深的水槽,底面是长为16厘米、宽为12厘米的长方形,原本在水槽里盛有6厘米深的水和6厘米深的油(油在水的上方).如果在水槽中放入一个长、宽、高分别为8厘米、8厘米、12厘米的铁块,那么油层的层高是_________厘米.水 油。
2015年“数学花园探秘”科普活动五年级组初试试卷A解析一、填空题Ⅰ(每小题8分,共32分)1.算式5⨯(2014-12)⨯20的计算结果是930-8302.数学小组原计划将72个苹果发给学生,每人发的苹果数量一样多,后来又有6人加入小组,这样每个学生比原计划少发了1个苹果.那么,原来有_________名学生.3.在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是_______.4.右图六角星的6个顶点恰好是一个正六边形的6个顶点.那么阴影部分面积是空白部分面积的倍.二、填空题Ⅱ(每小题10分,共40分)5.A和B是两个非零自然数,A是B的24倍,A的因数个数是B的4倍,那么A与B的和最小是________.6.珊珊和希希各有若干张积分卡.珊珊对希希说:“如果你给我3张,我的张数就是你的3倍.”希希对珊珊说:“如果你给我4张,我的张数就是你的4倍.”珊珊对希希说:“如果你给我5张,我的张数就是你的5倍.”这三句话中有一句话是错的.那么,原来希希有________张积分卡.7.将1至8填入方格中,使得数列□□,9,□□,□□,□□从第三个项开始,每一项都等于前面两项的和,那么这个数列的所有项之和是________.8.甲、乙、丙三户人家打算订阅报纸,共有5种不同的报纸可供选择,已知每户人家都订两份不同的报纸,并且知道这三户人家每两户所订的报纸恰好有一份相同,那么三户人家共有________种不同的订阅方式.三、填空题Ⅲ(每小题12分,共48分)9.如图,A、B为圆形轨道一条直径的两个端点.甲、乙、丙三个微型机器人在环行导轨上同时出发,作匀速圆周运动.甲、乙从A出发,丙从B出发;乙顺时针运动,甲、丙逆时针运动.出发后12秒钟甲到达B,再过9秒钟甲第一次追上丙时恰好也和乙第一次相遇;那么当丙第一次到达A后,再过__________秒钟,乙才第一次到达B.10.如图,分别以一个面积为169的正方形的四条边为底,做4个面积为101.4平方厘米的等腰三角形.图中阴影部分的面积是_________平方厘米.11.如果一个数的数字和与它3倍的数字和相同,却与它2倍的数字和不同,我们称这种数为“奇妙数”,那么,最小的“奇妙数”是________.12.请参考《2015年“数学花园探秘”科普活动初赛试题评选方法》作答.2015年“数学花园探秘”科普活动初赛试题答案解析1.2.3.4.5.6.7.8.9.10.11.。
迎春杯五年级试题及答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-199981.计算:+-÷2+2×--9×=2.某班女同学人数是男同学的2倍,如果女同学的平均身高是150厘米,男同学的平均身高是162厘米.那么全班同学的平均身高是厘米.3.如果两个合数互质,它们的最小公倍数是126,那么,它们的和是 .4.图中三角形共有个.5.从l,2,3,4,5,6中选取若干个数(可以只选取一个),使得它们的和是3的倍数,但不是5的倍数.那么共有种不同的选取方法.6.某城市的交通系统由若干个路口(图中线段的交点)和街道(图中的线段)组成,每条街道都连接着两个路口.所有街道都是双向通行的,且每条街道都有一个长度值(标在图中相应的线段处)一名邮递员传送报纸和信件,要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次).他合理安排路线,可以使得自己走过最短的总长度是7.如图,一个面积为2009平方厘米的长方形,被分割成了一个长方形、两个等腰直角三角形、三个梯形.已知除了阴影长方形外,其它的五块面积都相等,且B是AC的中点;那么阴影长方形的面积是平方厘米。
8.将数字4,5,6,7,8,9各使用一次,组成一个被667整除的6位数,那么,这个6位数除以667的结果是。
9.计算:1155×(4325⨯⨯+5437⨯⨯+…+109817⨯⨯+1110919⨯⨯)=名同学编为1至200号面向南站成一排.第1次全体同学向右转 (转后所有的同学面朝西):第2次编号为2的倍数的同学向右转;第3次编号为3的倍数的同学向右转;……;第200次编号为200的倍数的同学向右转;这时,面向东的同学有 名.11.有一位奥运会志愿者,向看台上的一百名观众按顺序发放编号1,2,3,……100,同时还向每位观众赠送单色喇叭.他希望如果两位观众的编号之差是质数,那么他们拿到的喇叭就是不同颜色的.为了实现他自己的愿望,他最少要准备 种颜色的喇叭.12.一些棋子被摆成了一个四层的空心方阵(下图是一个四层空心方阵的示意图).后来小林又添入28个棋子,这些棋子恰好变成了一个五层的空心方阵(不能移动原来的棋子),那么最开始最少有 个棋子.13.请将l 个1,2个2,3个3,…,8个8,9个9 填入右图的表格中,使得相同的数所在的方格都连在一起(相连的两个方格必须有公共边).现在已经给出了其中8个方格中的数,并且知道A,B,C,D,E,F,G 各不相同;那么,五位数CDEFG -----------是 .地位于河流的上游,B 地位于河流的下游.每天早上,甲船从A 地、乙船从B 地同时出发相向而行.从12月1号开始,两船都装上了新的发动机,在静水中的速度变为原来的倍,这时两船的相遇地点与平时相比变化了1千米.由于天气原因,今天(12月6号)的水速变为平时的2倍,那么今天两船的相遇地点与12月2号相比,将变化 千米.15如图,长方形ABCD 中被嵌入了6个相同的正方形.已知 AB=22厘米,BC=20厘米,那么每一个正方形的面积为 平方厘米.答案: 题号 答案 1 520 2 154 3 23 4 20 5 19 6 46 7 861 8 1434 9 651 10 8 11 4 12112。
北京迎春杯初赛试题及答案(小学组)
北京迎春杯初赛于12月3日结束,对于很多参加迎春杯的学生目前最关心得就是北京迎春杯初赛答案了,下面是北京迎春杯初赛试题及答案,包括三年级、四年级、五年级和六年级的初赛试题及答案。
北京迎春杯初赛试题及答案(小学组)
【三年级】|【北京迎春杯三年级初赛试题(含答案)】
【四年级】|【级初赛试题及答案】
【五年级】|【级)】
【六年级】|【北京迎春杯六年级初赛试题及答案】
热点推荐:小学竞赛考试时间(各种热门杯赛)
迎春杯作为北京小学生关注度最高的杯赛,每年参与度都很高。
大家提供的北京迎春杯初赛试题及答案供大家参考,北京迎春杯初赛的复赛名单、获奖信息等内容请查看【迎春杯】栏目!。
2008年(迎春杯)五年级初试试卷一、填空题Ⅰ(每题8分,共40分)1. 小华在计算3.69除以一个数时,由于商的小数点向右多点了一位,结果得24.6,这道题的除数是。
2. 下图中平行四边形的面积是1080m2,则平行四边形的周长为m。
3. 当a= 时,下面式子的结果是0?当a= 时,下面式子的结果是1?(36-4a)÷84. 箱子里装有同样数量的乒乓球和羽毛球。
每次取出5个乒乓球和3个羽毛球,取了几次之后,乒乓球恰好没有了,羽毛球还有6个,则一共取了次,原来有乒乓球和羽毛球各个。
5.在下边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数tavs = 。
二、填空题Ⅱ(每题10分,共50分)6. 一个五位数恰好等于它各位数字和的2007倍,则这个五位数是。
7. 一个等腰直角三角形和一个正方形如图摆放,①、②、③这三块的面积分别是2、8、58,则④、⑤这两块的面积差是。
8. 在纸上写着一列自然数1,2,…,98,99。
一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面。
例如第一次操作后得到4,5,…,98,99,6;而第二次操作后得到7,8,…,98,99,6,15。
这样不断进行下去,最后将只剩下一个数,则最后剩下的数是。
9. 甲、乙二人要从网上下载同一个100兆大小的软件,他们同时用各自家中的电脑开始下载,甲的网速较快,下载速度是乙的5倍,但是当甲下载了一半时,由于网络故障出现断网的情况,而乙家的网络一直正常。
当甲的网络恢复正常后,继续下载到99兆时(已经下载的部分无需重新下载),乙已经下载完了,则甲断网期间乙下载了兆。
10. 如图,5×5方格被分成了五块;请你在每格中填入1、2、3、4、5中的一个,使得每行、每列、每条对角线的五个数各不相同,且每块上所填数的和都相等。
现有两个格子已分别填入1和2,请在其它格子中填上适当的数,则是。
三、填空题Ⅲ(每题12分,共60分)11. 在右图的每个方框中填入一个数字,使得除法算式成立。
北京市2009年“数学解题能力展示”评选活动五年级初试试题一、填空题Ⅰ(每题8分,共40分)1.计算:82.54+835.27-20.38÷2+2×6.23-390.81-9×1.03= .【答案】520【解析】凑整思想。
通过对题目的整理一级运算先算出来,然后凑整。
原式=82.54+835.27-10.19+12.46-390.81-9.27=(82.54+12.64)+(835.27-9.27)-(10.19+390.81)=95+826-401=5202.某班女同学人数是男同学的2倍,如果女同学的平均身高是150厘米,男同学的平均身高是162厘米.那么全班同学的平均身高是厘米.【答案】154【解析】由于女同学人数是男同学的2倍,所以将男同学人数看做一份,则女同学就有2份,男女生共3份。
(150×2+162)÷3=1543.如果两个合数互质,它们的最小公倍数是126,那么,它们的和是.【答案】23【解析】126=2×32×7,由于两个互质的数的最小公倍数是两数的乘积,即这两个合数之积是126,所以只能是14和9,和为23。
4.右图中三角形共有个.【答案】20【解析】数图形,先分类。
一、由1个不可分割的三角形构成的有7个;二、由2个不可分割的三角形构成的三角形有6个;三、由3个不可分割的三角形构成的三角形有4个;四、由5个不可分割的三角形构成的三角形有2个;五、由7个不可分割的三角形构成的三角形有1个;一共有三角形7+6+4+2+1=20个。
5.从1,2,3,4,5,6中选取若干个数,使得它们的和是3的倍数,但不是5的倍数.那么共有种不同的选取方法.【答案】19【解析】取出的和的可能为3、6、9、12、18、21。
和为3的有1+2、3,共2种;和为6的有1+5、2+4、1+2+3、6,共4种;和为9的有3+6、4+5、1+2+6、1+3+5、2+3+4,共5种;于所有数之和为21,所以和为12与和为9的情况相同(和为12的数即为除和为9之外的数)共5种,同理3的情况相同,共2种,和为21的有1种,因此共有2+4+5+5+2+1=19种。
2014年“迎春杯”竞赛试题(五年级)一、填空.(每空3分,共45分.)1.(6分)甲、乙两数的和是13.2,甲数的小数点向右移动一位正好等于乙数,甲数是,乙数是.2.(3分)一个三角形的一条高是2厘米.如果高增加6厘米,底不变,则面积增加12平方厘米,原三角形的面积是平方厘米.3.(3分)王强买了6个本子和4支铅笔共付了9.2元,周军买了同样的3个本子和1支铅笔,共付了3.8元.那么买一个本子和一支铅笔应共付元.4.(3分)某商店一种牌子的袜子售价为每双4.86元,现在开展促销活动,袜子“买五送一”,现在一双袜子实际价格是元.5.(6分)已知(□+△)×0.3=4.2,而且△÷0.4=12,则△=,□=.6.(6分)一个两位数取近似值后是3.8,这个数最大是,最小是.7.(6分)丁小乐上周练习了4天慢跑,他一天中最远跑了3.3千米,最短跑了2.4千米.那么可以推算出这4天,丁小乐最多跑了千米,最少跑了千米.8.(3分)五名裁判给一名体操运动员评分,如果去掉一个最高分后平均分是9.46分,如果去掉一个最低分后平均分是9.66分,那么最高分比最低分多了分.9.(3分)甲、乙两数的积是1.6,如果甲数扩大5倍,乙数也扩大5倍,那么,甲、乙两数的积是.10.(3分)小明和小红拿出同样多的钱合买作业本,结果小明拿了8本,小红拿了12本,这样,小红就给小明1.1元.每本作业本的单价是元.11.(3分)暑假小明去游园,遇到了甲、乙、丙、丁四位同学,小明和四位同学都握了手,甲和3个人握了手,乙和2个人握了手,丙和1个人握了手,那么丁和个人握了手.二、解答题(共1小题,满分12分)12.(12分)计算.9.5×10112.5×8.838.4×187﹣15.4×384+3.3×165.29×73+52.9×2.7.三、解决问题.(共43分.)13.(6分)已知篮球、足球、排球平均每个36元.篮球比排球每个贵10元,足球比排球每个贵8元,每个足球多少元?14.(6分)如图,在三角形ABC中,线段EC的长度是线段BE的2倍,线段CD的长度是线段AD的2倍,已知三角形BDE的面积是14平方厘米,那么三角形ABC的面积是多少平方厘米?15.(6分)一辆摩托车以平均每小时20千米的速度行完60千米的路程,在回来的时候,它的平均速度是每小时30千米,这辆摩托车在整个来回的旅程中,平均速度是多少?16.(6分)张师傅以1元4个苹果的价格买进苹果若干个,又以2元5个苹果的价格把这些苹果卖出,如果他要赚得15元的利润,那么他必须卖出苹果个.17.(6分)实验小学统计五(1)班数学考试成绩,平均分是87.26分.复查试卷时,发现把明明的成绩98分误看成89分计算,经重新计算后,该班平均成绩是87.44分,问该班有多少学生?18.(6分)已知如图中每个小正方形的边长是4厘米,求阴影部分的面积?19.(7分)王明放学回家,距家门300米时,妹妹和小狗一齐向他奔来,王明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停往返于王明与妹妹之间.当王明与妹妹相距10米时,小狗一共跑了多少米?2014年“迎春杯”竞赛试题(五年级)参考答案与试题解析一、填空.(每空3分,共45分.)1.(6分)甲、乙两数的和是13.2,甲数的小数点向右移动一位正好等于乙数,甲数是 1.2 ,乙数是12 .【解答】解:甲数:13.2÷(10+1)=13.2÷11=1.2乙数:1.2×10=12.答:甲数是1.2,乙数是12.故答案为:1.2,12.2.(3分)一个三角形的一条高是2厘米.如果高增加6厘米,底不变,则面积增加12平方厘米,原三角形的面积是 4 平方厘米.【解答】解:设三角形的底为a厘米a×(2+6)÷2﹣2a÷2=124a﹣a=123a=12a=4;原三角形的面积是4×2÷2=4(平方厘米)答:原三角形的面积是4平方厘米.故答案为:4.3.(3分)王强买了6个本子和4支铅笔共付了9.2元,周军买了同样的3个本子和1支铅笔,共付了3.8元.那么买一个本子和一支铅笔应共付1.8 元.【解答】解:一支铅笔的钱数:(9.2﹣3.8×2)÷2,=1.6÷2,=0.8(元),一个本子的钱数:(3.8﹣0.8)÷3,=3÷3,=1(元),买一个本子和一支铅笔共付的钱数:0.8+1=1.8(元),故答案为:1.8.4.(3分)某商店一种牌子的袜子售价为每双4.86元,现在开展促销活动,袜子“买五送一”,现在一双袜子实际价格是 4.05 元.【解答】解:4.86×5÷6=24.3÷6=4.05(元)答:现在一双袜子实际价格是 4.05元.故答案为:4.05.5.(6分)已知(□+△)×0.3=4.2,而且△÷0.4=12,则△= 4.8 ,□=9.2 .【解答】解:因为△÷0.4=12,所以△=0.4×12=4.8;因为(□+△)×0.3=4.2,所以△+□=4.2÷0.3=14,所以□=14﹣4.8=9.2.故答案为:4.8、9.2.6.(6分)一个两位数取近似值后是3.8,这个数最大是 3.84 ,最小是3.75 .【解答】解:一个两位数取近似值后是3.8,这个数最大是3.84,最小是3.75.故答案为:3.84、3.75.7.(6分)丁小乐上周练习了4天慢跑,他一天中最远跑了3.3千米,最短跑了2.4千米.那么可以推算出这4天,丁小乐最多跑了12.3 千米,最少跑了10.5 千米.【解答】解:丁小乐最多跑了:3.3×3+2.4=9.9+2.4=12.3(千米)丁小乐最少跑了:2.4×3+3.3=7.2+3.3=10.5(千米)答:丁小乐最多跑了12.3千米,最少跑了10.5千米.故答案为:12.3、10.5.8.(3分)五名裁判给一名体操运动员评分,如果去掉一个最高分后平均分是9.46分,如果去掉一个最低分后平均分是9.66分,那么最高分比最低分多了0.8 分.【解答】解:9.66×4﹣9.46×4=(9.66﹣9.46)×4=0.2×4=0.8(分);答:最高分比最低分多了0.8分.故答案为:0.8.9.(3分)甲、乙两数的积是1.6,如果甲数扩大5倍,乙数也扩大5倍,那么,甲、乙两数的积是40 .【解答】解:1.6×(5×5)=1.6×25=40答:甲、乙两数的积是40.故答案为:40.10.(3分)小明和小红拿出同样多的钱合买作业本,结果小明拿了8本,小红拿了12本,这样,小红就给小明1.1元.每本作业本的单价是0.55 元.【解答】解:1.1÷[(12﹣(8+12)÷2],=1.1÷[12﹣10],=1.1÷2,=0.55(元);答、:每本作业本的单价是0.55.故答案为:0.55.11.(3分)暑假小明去游园,遇到了甲、乙、丙、丁四位同学,小明和四位同学都握了手,甲和3个人握了手,乙和2个人握了手,丙和1个人握了手,那么丁和 2 个人握了手.【解答】解:如果两两之间都握手那么每人需要握4次,小明和四位同学握了手,包括了丁和丙;丙和1个人握手,他只和小明握了手,没和甲握;甲和3人握了手,只有一人没握,那就只和丙没握,他和乙、丁都握了手;乙和2个人握了手,是和甲以及小明握的手,没和丁握手.由此可见:丁只和甲、小明两个人握了手.故答案为:2.二、解答题(共1小题,满分12分)12.(12分)计算.9.5×10112.5×8.838.4×187﹣15.4×384+3.3×165.29×73+52.9×2.7.【解答】解:(1)9.5×101=9.5×(100+1)=9.5×100+9.5×1=950+9.5(2)12.5×8.8=12.5×8×1.1=100×1.1=110(3)38.4×187﹣15.4×384+3.3×16=38.4×187﹣154×38.4+3.3×16=38.4×(187﹣154)+3.3×16=38.4×33+3.3×16=38.4×33+33×1.6=(38.4+1.6)×33=40×33=1320(4)5.29×73+52.9×2.7=52.9×7.3+52.9×2.7=52.9×(7.3+2.7)=52.9×10=529三、解决问题.(共43分.)13.(6分)已知篮球、足球、排球平均每个36元.篮球比排球每个贵10元,足球比排球每个贵8元,每个足球多少元?【解答】解:(36×3﹣10﹣8)÷3+8=(108﹣18)÷3+8=30+8=38(元)答:每个足球38元.14.(6分)如图,在三角形ABC中,线段EC的长度是线段BE的2倍,线段CD的长度是线段AD的2倍,已知三角形BDE的面积是14平方厘米,那么三角形ABC的面积是多少平方厘米?【解答】解:由题意,线段BC的长度是线段BE的3倍,三角形ABC的高是三角形BDE的高的倍,∴三角形ABC的面积是三角形BDE的面积的倍,∵三角形BDE的面积是14平方厘米,∴三角形ABC的面积是14×=63平方厘米,答:三角形ABC的面积是63平方厘米.15.(6分)一辆摩托车以平均每小时20千米的速度行完60千米的路程,在回来的时候,它的平均速度是每小时30千米,这辆摩托车在整个来回的旅程中,平均速度是多少?【解答】解:60×2÷(60÷20+60÷30)=120÷(3+2)=120÷5=24(千米/时)答:这辆摩托车在整个来回的旅程中,平均速度是24千米/时.16.(6分)张师傅以1元4个苹果的价格买进苹果若干个,又以2元5个苹果的价格把这些苹果卖出,如果他要赚得15元的利润,那么他必须卖出苹果100 个.【解答】解:15÷(2÷5﹣1÷4)=15÷(0.4﹣0.25),=15÷0.15,=100(个);答:他必须卖出苹果100个.故答案为:100.17.(6分)实验小学统计五(1)班数学考试成绩,平均分是87.26分.复查试卷时,发现把明明的成绩98分误看成89分计算,经重新计算后,该班平均成绩是87.44分,问该班有多少学生?【解答】解:(98﹣89)÷(87.44﹣87.26)=9÷0.18=50(人)答:该班有学生50人.18.(6分)已知如图中每个小正方形的边长是4厘米,求阴影部分的面积?【解答】解:长方形的面积(4×4)×(2×4)=128(平方厘米)左上空白三角形的面积4×(2×4)÷2=16(平方厘米)右上空白三角形的面积4×4÷2=8(平方厘米)右下空白三角形的面积4×(4×4)÷2=32(平方厘米)阴影部分的面积128﹣16﹣8﹣32=72(平方厘米)答:阴影部分的面积是72平方厘米.19.(7分)王明放学回家,距家门300米时,妹妹和小狗一齐向他奔来,王明和妹妹的速度都是每分钟50米,小狗的速度是每分钟200米,小狗遇到王明后用同样的速度不停往返于王明与妹妹之间.当王明与妹妹相距10米时,小狗一共跑了多少米?【解答】解:王明和妹妹的相遇时间是:(300﹣10)÷(50+50)=2.9分钟小狗跑的时间,就等于王明和妹妹相距10米时所用的时间,小狗跑了:200×2.9=580米,答:当王明与妹妹相距10米时,小狗一共跑了580米.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/5 18:04:24;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。
北京市2008年“数学解题能力展示”评选活动五年级初试试题一、填空题1(每题8分,共40分)1. 小华在计算3.69除以一个数时,由于商的小数点向右多点了一位,结果得 24.6,这道题的除数是 ___________ .【答案】1.5.【解析】商的小数点向右多点了一位是24.6,所以正确的商是2.46,所以除数是369吃.46=1.52. 右图中平行四边形的面积是 ____________________ 1080m 2,则平行四边形的周长为m.【答案】216.【解析】根据平行四边形面积公式可求平行四边形边长分别为:1080吃2.5=48 ; 1080 +18=60,所以周长为(48+60 )X 2=2163. _______________ 当a= 时,下面式子的结果是 0?当a= 时,下面式子的结果是__________________ 1?(36 - 4a )十 8【答案】a=9, a=7.【解析】解方程(36 — 4a )-8=0得a=9 ;解方程(36 — 4a )-8=1得a=7.每次取出5个乒乓球和3个羽毛球,取了几次之后,乒乓球没有了,羽毛球还有 6个,则一共取了 __________ 次,原来有乒乓球和羽毛球各 ____________ 个.【答案】3次,15个【解析】取一次箱子里的羽毛球就多 2个,一共多了 6个所以取了 3次;两种球各有5 X 3=15(或3$+6=15 )4.箱子里装有同样数量的乒乓球和羽毛球5. 在右边的竖式中,相同字母代表相同数字,不同字母代表不同数字,则四位数昇I V ?L+ ¥ t £ tt't V t_Etavs = _________【答案】1038【解析】根据个位a+t=t 知a=0 ,又根据最高位s+v=t 向前进一知t=1 ,因为v+s=t 也要向前进一所以 v=3 , 所以 s=8,tavs =1038二、填空题n (每题 10分,共50分) 6.一个五位数恰好等于它各位数字和的2007倍,则这个五位数是 _________________ .【答案】36126或54189【解析】这个五位数等于各位数字之和乘以2007 , 2007是3, 3 , 223,三个数字之积,所以这个五位数 是9的倍数,各位数字之和也是9的倍数(一个数是 9的倍数,那么它的各位数字之和也是9的倍数,)所以这个五位数可能是 2007 X9, 2007 X18 , 2007 >27 , 2007 X 36…… 容易得出:2007 X18和2007 X27符合题目.7. 一个等腰直角三角形和一个正方形如图摆放,①,②,③这三块的面积分别是 两块的面积差是 _____________【答案】8【解析】由①的面积是2,且①为等腰直角三角形,得到①的边长为2同理②和④也均为等腰直角三角形, 且②的边长为4,则长方形的宽为6,由①+③=60得到长方形的面积, 则长方形的长为10 所以④的直角边长为 8,④的面积为32,⑤的面积为100-60=40,则④⑤面积差为 8.8.在纸上写着一列自然数 1, 2,…,98, 99. 一次操作是指将这列数中最前面的三个数划去,然后把这三个数的和写在数列的最后面 •例如一次操作后得到 4, 5,…,98, 99, 6;而两次操作后得到 乙8,…,98, 99, 6, 15.这样不断进行下去,最后将只剩下一个数,则最后剩下的数是 ___________________ .2, 8, 58,则④,⑤这【答案】4950【解析】观察规律发现,最后一个数字即为1到99的和,为4950.9.甲、乙二人要从网上下载同一个 100兆大小的软件,他们同时用各自家中的电脑开始下载,甲的网速较快,下载速度是乙的 5倍,但是当甲下载了一半时,由于网络故障出现断网的情况,而乙家的网络一直 正常.当甲的网络恢复正常并继续下载到 99兆时(已下载的部分不必重新下载),乙已经下载完了,则甲断 网期间乙下载了 _________ 兆.【答案】80.2 【解析】解法一:当甲下载50兆,此时乙下载了 10兆,后来甲下载后面的 49兆时,乙下载了 9.8兆,所以中间甲停止下载的过程中,乙下载了100-10-9.8=80.2 兆.解法二:整体考虑,甲下载 99兆的过程中,乙一直在下载,乙应该下载:99越=19.8 ,其余部分都是在甲停止下载的时候乙下载的,所以是 100-19.8=80.2,就得到了答案.【答案】14523【解析】因为每行的5个数均不相等, 所以每行都有1、2、3、4、5,整个表25个数之和为5( 1+2+3+4+5 ), 又分成的5块上所填数之和都相等,所以每块上的数字之和应为1+2+3+4+5=15 。
【详解】:
方法一:多位数计算,算出结果918273645,求得各位数字和为45。
方法二:由于计算过程没有产生进位或借位,故结果的数字和是
⨯-⨯+⨯-⨯+⨯-⨯+⨯-⨯+⨯= 99887766554433221145
【详解】:
首先判断出第一,第二,第三,第四排第一个数均为1(如图1)
进而求出两个乘数的末尾数字(如图2),这时经测试发现A可取4和5,由题意要求最小则两个乘数分别为143和17,求和得160.
【详解】:
奇偶性问题1-8八个数4奇4偶,上下两组各4个数同时满足相邻和为偶数,唯一情况为上下另组数分别同奇同偶。
即上面4个为奇数,下面4个为偶数或者上面4个为偶数,下面4个为奇数。
所以上下4组数和都是奇数,即它们的平均数都不是整数。
所以有4个不是整数。
【详解】:
等腰直角三角形,面积等于斜边高的平方。
过C 点做斜边AB 的垂线,交AB 于点E ,由于BD-AD=2得到DE=1 根据勾股定理,222225124CE CD DE =-=-= 所以24ABC
S
=
【详解】:
首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格。
逆推得出唯一图形。
相加求和为150。
【详解】:
有休息间隔的追及问题和工程问题,直接用平均的速度进行计算容易产生错误。
此题可列表解决,假设甲一小时走5m,乙一小时走2m,列表如下:
5.5*60=330分钟
【详解】:
体育比赛得分问题,首先算出比赛一共10场,总分在20到30分之间。
五位数ABCDE是15的倍数,利用整除性可知,E可为0或者5,考虑到E最小,如果E=5,总分最小为8+7+6+5+5=31分,不成立,所以E=0,即第五名4场全负积0分。
第五名负四场,则平局最多为6场,总分最少为24分。
又考虑到分数和为3的倍数,总分可能情况为30,27,24。
对三种情况分别讨论:
(1)总分30分:
即无平局情况,那么前四名队伍得分只可能为9,6,3分。
不能在只有两个重复的情况下凑出30。
所以总分30分情况不存在。
(2)总分27分:
经测试,存在9+8+5+5=27,满足题目分数要求,且四个队7场胜3场负,恰好满足第五队的4场负,所以此为一解,比赛3场平局。
(3)总分24分:
在24分情况下,只有前四名只能各胜1场平2场,但不满足只有两队得分相同。
所以总分24分情况不存在。
综上,唯一存在总分27分情况下,比赛中共有3场平局。
【详解】:
正三角形组成两种四边形,平行四边形和梯形。
平行四边形要求偶数个三角形,而此题为2013个正三角形,所以一定构成梯形。
那么在构造的梯形中,相邻层数间都差2个三角形,且都是奇数个,则可以构造一个梯形:第一次层有:2a+1个三角形;最后一层有2b+1个三角形,则有层数为b-a+1层。
利用等差数列求和公式得:(2a+1+2b+1)*(b-a+1)/2=2013
化简得(b+a+1)*(b-a+1)=2013
再考虑这个梯形上底长:a;下底长b+1;腰为:b-a+1;则周长可列为:3b-a+3
由于2013=3*11*61,考虑到要想周长最小,即b尽量大,a尽量小
取b+a+1=61,b-a+1=33,得a=14,b=46。
带入得最小周长3b-a+3=127
【详解】:
如图延长BA和EF交于点O,并连接AE
由正六边形的性质,我们可知
1
3
ABCM CDEN EFAK
S S S
===六边形面积
根据容斥原理,重叠部分三个三角形面积和等于阴影部分面积,且因为对称,AKP CMQ ENR三个三角形是一样的,有KP=RN,AP=ER,RP=PQ ,,则,
由鸟头定理可知道3
综上可得:PR=2KP=RE,那么由三角形AEK是六边形面积的,且
S
三角形
++S
三角形 E
S
三角形S
六边形
=47 ,所以阴影面积为473141
【详解】:
四位数中,各个位数不重复的情况下,和可以为9,16,25。
且因为完全平方数的约数为奇数个,则可以是9,25两种情况。
9的情况下,该数为a形式,因为a为质数,经测试可取a=17,得符合要求四位数2601 25的情况下,该数为a5形式,故a取任何质数不能满足条件。
所以符合题意要求的四位数为2601.。