第六章 静电场中的导体与电介质
- 格式:ppt
- 大小:1.94 MB
- 文档页数:99
第八章 静电场中的导体和电介质§8-1 静电场中的导体一、静电感应 导体的静电平衡条件 1、静电感应2、导体静电平衡条件(1)导体的静电平衡:当导体上没有电荷作定向运动时称这种状态为导体的静电平衡。
(2)静电平衡条件 从场强角度看:①导体内任一点,场强0=E;②导体表面上任一点E与表面垂直。
从电势角度也可以把上述结论说成:①⇒导体内各点电势相等;②⇒导体表面为等势面。
用一句话说:静电平衡时导体为等势体。
二、静电平衡时导体上的电荷分布 1、导体内无空腔时电荷分布如图所示,导体电荷为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε导体静电平衡时其内0=E,∴ 0=∙⎰s d E S, 即0=∑内S q 。
S 面是任意的,∴导体内无净电荷存在。
结论:静电平衡时,净电荷都分布在导体外表面上。
2、导体内有空腔时电荷分布 (1)腔内无其它电荷情况如图所示,导体电量为Q ,在其内作一高斯面S ,高斯定理为:∑⎰=∙内S Sq s d E 01ε 静电平衡时,导体内0=E∴ 0=∑内S q ,即S 内净电荷为0,空腔内无其它电荷,静电平衡时,导体内又无净电荷∴空腔内表面上的净电荷为0。
但是,在空腔内表面上能否出现符号相反的电荷,等量的正负电荷?我们设想,假如有在这种可能,如图所示,在A 点附近出现+q ,B 点附近出现-q ,这样在腔内就分布始于正电荷上终于负电荷的电力线,由此可知,B A U U >,但静电平衡时,导体为等势体,即B A U U =,因此,假设不成立。
结论:静电平衡时,腔内表面无净电荷分布,净电荷都分布在外表面上,(腔内电势与导体电势相同)。
(2)空腔内有点电荷情况如图所示,导体电量为Q ,其内腔中有点 电荷+q ,在导体内作一高斯面S ,高斯定理为∑⎰=∙内S Sq s d E 01ε 静电平衡时0=E, ∴ 0=∑内S q 。
又因为此时导体内部无净电荷,而腔内有电荷+q , ∴ 腔内表面必有感应电荷-q 。
静电场中的导体和电介质引言在物理学中,静电场是指当电荷处于静止状态时周围存在的电场。
导体和电介质是静电场中两种常见的物质类型。
理解导体和电介质在静电场中的行为对于理解静电现象和应用静电学原理具有重要意义。
本文将介绍导体和电介质在静电场中的特性和行为,包括导体的电荷分布和电场分布、导体内部电场为零的原因,以及电介质的电极化和电介质的介电常数。
导体导体的电荷分布在静电场中,导体具有特殊的电荷分布特性。
由于导体中的自由电子可以在导体内自由移动,一旦一个导体与其他带电体接触,自由电子将重新分布以达到平衡。
导体的外部表面电荷会分散在整个表面上,使得导体表面的电场强度为零。
这意味着在静电平衡条件下,导体表面任意一点的电势相等。
导体内部的电场分布特性在导体内部,电场强度为零。
这是由于自由电子可以在导体内自由移动,当导体中存在电场时,自由电子会沿着电场方向移动,直到达到平衡。
这种现象称为电荷迁移。
因此,导体内部的自由电子的运动将产生一个等量但相反方向的电场,导致导体内部的电场强度为零。
这也是为什么导体内部没有电场线存在的原因。
电介质电极化现象电介质是一种不易导电的物质,而其在静电场中的行为与导体有着显著不同。
当一个电介质暴露在静电场中时,电介质分子会发生电极化现象。
电极化是指电介质分子在电场作用下产生偶极矩。
在电场的作用下,电介质分子会发生形状变化,正负电荷分离,产生一个平均不为零的电偶极矩。
这种电极化现象可以分为两种类型:取向极化和感应极化。
取向极化是指电介质分子的取向方向在电场的作用下发生变化,而感应极化是指电场作用下导致电介质分子内部正负电荷的相对移动。
电介质的介电常数电介质的介电常数是描述电介质在电场中的响应特性的重要参数。
介电常数是一个比值,代表了电介质在电场力下的相对表现。
介电常数决定了电介质的极化程度和电场中的电场强度。
电介质的介电常数大于1,意味着电介质对电场的屏蔽效果更明显。
在实际应用中,通过选择合适的电介质和调整电场强度,可以改变静电场的分布和效果,用于电容器、绝缘材料等相关领域。
第六章 静电场中的导体与电介质§6-1 导体和电介质【基本内容】一、导体周围的电场导体的电结构:导体内部存在可以自由移动的电荷,即自由电子。
静电平衡状态:导体表面和内部没有电荷定向移动的状态。
1、导体的静电平衡条件(1)导体内部场强处处为零0E =v内; (2)导体表面的场强和导体表面垂直。
2、静电平衡推论(1) 静电平衡时,导体内部(宏观体积元内)无净电荷存在; (2) 静电平衡时,导体是一个等势体,其表面是一个等势面。
3、静电平衡时导体表面外侧附近的场强E σε=4、静电平衡时导体上的电荷分布(1) 实心导体:电荷只分布在导体表面。
(2)空腔导体(腔内无电荷):内表面不带电,电荷只分布在导体外表面。
(3)空腔导体(腔内电荷代数和为q ):内表面带电q -,导体外表面的电荷由电荷的守恒定律决定。
5、静电屏蔽 封闭金属壳可屏蔽外电场对内部影响,接地的金属壳可屏蔽内电场对外部的影响。
二、电介质与电场 1、电介质的极化(1)电介质的极化:在外电场作用下,电介质表面和内部出现束缚电荷的现象。
(2)极化的微观机制电介质的分类:(1)无极分子电介质——分子的正、负电荷中心重合的电介质;(2)有极分子电介质——分子的正、负电荷中心不重合的电介质。
极化的微观机制:在外电场作用下,(1)无极分子正、负电荷中心发生相对位移,形成电偶极子,产生位移极化;(2)有极分子因有电偶矩沿外电场取向,形成取向极化。
2、电介质中的电场(1)电位移矢量 D E ε=v v其中ε——电介质的介电常数,0r εεε=,r ε——电介质的相对介电常数。
(2)有电介质时的高斯定理0SD dS q ⋅=∑⎰vv Ñ,式中0q ∑指高斯面内自由电荷代数和。
【典型例题】【例6-1】 三个平行金属板A 、B 和C ,面积都是200cm 2,A 、B 相距4.0mm ,A 、C 相距2.0mm ,B 、C 两板都接地,如图所示。
第6章 静电场中的导体与电介质一、基本要求1.掌握导体静电平衡的条件和静电平衡条件下导体的性质,并能利用静电平衡条件解决有关问题。
2.理解电容的定义,掌握典型电容器电容的计算方法。
3.了解电介质极化的微观机制,理解电介质对静电场的影响。
掌握介质中静电场的基本规律,掌握应用介质中的高斯定理求解介质中静电场的电位移矢量和电场强度的计算方法。
4.理解静电场能量的概念,能计算一些对称情况下的电场能量。
二、知识框架三、知识要点 1.重点 (2)电介质中的高斯定理及其应用。
1C ++n C ++d 0L =⎰E l 保守场Sd q ⋅=∑⎰⎰D S 静电场能量密度:1四、基本概念及规律1.导体的静电平衡条件及其性质(1)导体的静电平衡条件 导体内部电场强度处处为零,即 0=内E (2)导体处于静电平衡时的性质 ① 导体是等势体,导体表面是等势面。
② 导体表面的场强处处与导体表面垂直,导体表面附近的场强大小与该处导体表面的面密度σ成正比,即0 E e nσε=表面 ③ 电荷只分布在导体外表面。
(3)静电屏蔽 在静电平衡条件下,空腔导体内部电场不受外部电场的影响,接地空腔导体内部与外部电场互不影响,这种现象称为静电屏蔽。
2.电容C(1)孤立导体的电容 Vq C =电容的物理意义:使导体每升高单位电势所需的电量。
(2)电容器的电容 BA V V qC -=(3)电容器两极板间充满电介质后的电容 0C C r ε= 其中C 0是两极板间为真空时的电容,r ε是电介质的相对介电常数。
(4)几种常见电容器的电容① 平行板电容器 dSC r εε0=② 同心球形电容器 AB BA rR R R R C -=επε04 (R B >R A )③ 同轴圆柱形电容器 AB rR R lC ln 20επε= (R B >R A ) (5)电容器的串并联① 电容器串联后的总电容3211111C C C C ++=+…+nC 1② 电容器并联后的总电容 C = C 1+ C 2 + C 3+ … + C n 3.电介质中的静电场(1)电极化强度 电介质中任一点的电极化强度等于单位体积中所有分子的电偶极矩的矢量和,即 iV∆∑P P =① 对于各向同性的电介质 00(1)r e εεχε-=P =E E 其中1-=r e εχ称为电介质的极化率。
§6.4 电介质及其极化一、电介质的电结构电介质是通常所说的绝缘体,其主要特征是它的分子中电子被原子核束缚的很紧,介质内几乎没有自由电子,其导电性能很差,故称为绝缘体.它与导体的明显区别是,在外电场作用下达静电平衡时,电介质内部的场强不为零.电介质中每个分子都是一个复杂的带电体系,它们分布在线度为10-10m数量级的体积内.在考虑介质分子受外电场作用或介质分子在远处产生电场时,都可认为其中的正电荷集中于一点,称为正电荷中心,而负电荷集中于另一点,称为负电荷中心,它们可看成电偶极子.据介质中正、负电荷中心在正常情况下是否重合将电介质分为两类:有极分子电介质和无极分子电介质.像氢(H2)、氦(He)等,在正常情况下,它们内部的电荷分布具有对称性,它们分子的正、负电荷中心重合,其固有电矩为零,这类分子称为无极分子;象氯化氢(HCl)、水(H2O)等,在正常情况下,它们内部的电荷分布不对称,因而分子的正、负电荷中心不重合,存在固有电矩,这类分子称为有极分子.但由于分子热运动的无规则性,在物理小体积内的平均电偶极矩仍为零,因而也没有宏观电偶极矩分布(对外不显电性).二、电介质的极化当无极分子电介质处在外电场中时,由于分子中的正负电荷受到相反方向的电场力的作用,因而正负电荷中心将发生微小的相对位移,从而形成电偶极子,其电偶极矩沿外电场方向排列起来,使∑p i≠0,见图 6.6(a).这时,沿外电场方向电介质的前后两侧面将分别出现正负电荷.但这些电荷不能在介质内自由移动,也不能离开电介质表面,称其为束缚电荷.这种在外电场作用下,使介质呈现束缚电荷的现象,称为电介质的极化现象.无极分子的上述极化则称为位移极化.当有极分子电介质放在外电场中时,各分子的电偶极子受到外电场力偶矩的作用,都要转向外电场的方向排列起来,也使∑p i≠0.但由于分子的热运动,这种分子电偶极子的排列不可能十分整齐.然而从总体上看,这种转向排列的结果,使电介质沿电场方向前后两个侧面也分别出现正负电荷,见图 6.6(b).这也是一种电介质的极化现象,称为有极分子电介质的取向极化.当然,有极分子也存在位移极化,只是有极分子的取向极化起主导作用.综上所述,不论是无极分子电介质,还是有极分子电介质,在外电场中都会出现极化现象,产生束缚电荷.三、电极化强度矢量为了描述电介质的极化程度,引入电极化强度矢量P ,其定义为Vp V P i ∆→∆=∑ϖϖ0lim (6.22) 即电极化强度矢量P 是单位体积内分子电矩矢量和.当外电场越强时,极化现象越显著,单位体积内的分子电矩矢量和就越大,极化强度P 就越大.反之,外电场越弱,极化现象不显著,单位体积内的分子电矩矢量和就越小.可见,电极化强度矢量P 可以用来描述电介质的极化程度.式(6.22)给出的极化强度是点的函数,一般来说,介质中不同点的电极化强度矢量P 不同.但对于均匀的无极分子电介质处在均匀的外电场中,np P = ,其中n 是介质单位体积内的分子数, p 是极化后电介质每个分子的电矩矢量.在国际单位制中,电极化强度矢量P 的单位为库仑/米2(C/m 2)§6. 5 电位移矢量 有介质时的高斯定理一、极化强度与束缚电荷的关系由于束缚电荷是电介质极化的结果,所以束缚电荷与电极化强度之间一定存在某种定量关系.为方便讨论,现以无极分子电介质为例来讨论,考虑电介质内某一小面元 dS ,设其电场E 的方向(因而P 的方向)与dS 的法线方向成θ角(如图6.7所示),由于E 的作用,分子的正负电荷中心将沿电场方向拉开距离l .为简化分析,假定负电荷不动,而正电荷沿E 的方向发生位移 l .在面元dS 后侧取一斜高为l ,底面积为dS 的体元dV .由于电场E 的作用,此体元内所有分子的正电荷中心将穿过dS 面到前侧去.以q 表示每个分子的正电荷量,则由于电极化而越过dS 面元的总电荷为S d P qnldS qndV dq ϖϖ⋅=θ==cos ' (6.23)式中n 是单位体积的分子数.那么由于极化穿过有限面积S 的电荷为 ⎰⎰⋅=SS d P q ϖϖ'若S 是封闭曲面,则穿过整个封闭曲面的电荷 ⎰⎰⋅=Sout S d P q ϖϖ'因为电介质是电中性的,据电荷守恒定律,则得由电介质极化而在封闭面内净余的束缚电荷为).('int 246⎰⎰⋅-=-=S out Sd P q q ϖϖ (6.24)若在(6.23)式中,dS 是电介质的表面,而n e ϖ是其外法向单位矢,则(6.23)式就给出了在介质表面由于电介质极化而出现的面束缚电荷σ'为n n P e P P dSdq =⋅=θ==σϖϖcos '' (6.25) 式(6.24)和式(6.25)就是由于介质极化而产生的束缚电荷与电极化强度的关系.从(6.24)可以看出,在均匀外电场中,均匀电介质内部的任何体元内都不会有净余束缚电荷,束缚电荷只能出现在均匀电介质的表面,但对非均匀电介质,电介质内部也有束缚电荷分布.二、电介质中的高斯定理 电位移矢量D有电荷就会激发电场,所以电介质中某点的总电场E 应等于自由电荷和束缚电荷分别在该点激发的场强'E E ϖϖ和0的矢量和,即'E E E ϖϖϖ+=0 (6.26)考虑了由于电介质的极化而出现的束缚电荷,介质也可以看成真空.现我们把真空中电场的高斯定理推广到电介质的电场中,则有)'(int q q S d E S+ε=⋅⎰⎰01ϖϖ 其中q 是闭面S 内的自由电荷代数和, int 'q 是闭面S 内的束缚电荷代数和.由于介质中的束缚电荷难以测定,为此把上式中的束缚电荷int 'q 用可测的物理量P 来表示,把(6.24)式代入上式并运算得 q S d P E S=⋅+ε⎰⎰ϖϖϖ)(0定义电位移矢量P E D ϖϖϖ+ε=0 (6.27)在国际单位制中D 的单位同于P 的单位为C/m 2 .引入电位移矢量后高斯定理便为 q S d D S=⋅⎰⎰ϖϖ (6.28)这便是电介质中的高斯定理.它是静电场的基本定理之一.它表明,电位移矢量D 的闭面通量等于闭面内的自由电荷代数和,与束缚电荷无关.同于E 的高斯定理,当电荷具有某种对称性时,选择适当的高斯面,可很容易求出电位移矢量D ,进而便可求出电场强度E 的分布.电位移矢量D 的定义式(6.27)给出了电位移矢量D 与电场强度E 及电极化强度P 的关系,这一关系称为介质的性能方程.对于各向同性线性电介质,实验指出,介质中每一点的极化强度P 与该点的总电场强度E 成正比且方向相同,即E P ϖϖ0χε= (6.29)式中χ为电极化率,它只与电介质中各点的性质有关,对于均匀介质χ便是常量,此时电位移矢量E E E D r ϖϖϖϖε=εε=χ+ε=001)( (6.30)其中r ε称为相对介电常数,ε称为绝对介电常数(也叫电容率)可见,对于各向同性均匀电介质,D 与E 有简单的正比关系,当0ε=ε时,就回到了真空情形.所以在上章介绍的好些关系中,将0ε换为ε就可将其推广到各向同性均匀电介质中来.比如库仑定律在无穷大各向同性均匀电介质中的形式为r r q q F ϖϖ32141πε= 再如,两极板间是介电常数为ε的平行板电容器的电容为dS C ε= 例6.3如图6.8所示,半径为R 的球型导体,带电量为Q,相对电容率为r ε、厚度为R 的电介质球壳同心的包围着导体球,求电场、电势在空间的分布规律.解:由于带电系统的球对称性,E 将是球心O 至场点的距离r 及各区间介质的相对电容率的函数,应用电介质中的高斯定理式(6.28)易得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>πε<<επε<=)()()()(R r r Q R r R rQ R r r E r 242402020ϖ E 的方向沿径向.由结果可知,由于电介质极化而出现的束缚电荷所激发的电场E' 削弱了原来的电场E 0,因而介质中的总场强E 比没有电介质时的场强E 0 为小.由电势与场强的关系可得电势的分布当r>2R 时, rQ dr r Q V r 020144πε=πε=⎰∞当R<r<2R 时, )(R R r Q dr r Q dr r Q V r r R Rrr 2121144402202202+ε-επε=πε+επε=⎰⎰∞ 当 r<R(即导体内) 时,其电势等于导体球面的电势)(11803+επε=rR Q V 作业(P142):6.16。