《等腰三角形》导学案
- 格式:doc
- 大小:237.50 KB
- 文档页数:5
13.3.1.2等腰三角形的判定导学案一.知识回顾1、等腰三角形的定义符号语言:2、等腰三角形的性质性质1 等腰三角形的两个底角(简写成)符号语言:性质2 等腰三角形顶角、底边上的、底边上的互相重合(简写成)即等腰三角形是轴对称图形符号语言:二.知识探究△ABC中,∠B=∠C,那么AB=AC成立吗?请说明理由。
已知:求证:∠B和∠C以及AB和AC有何特征?归纳:等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角的边也简写成()符号语言:在△ABC中∵∠B=∠C∴=三.巩固练习△ABC中,∠A=36°,∠3=36°,∠C=72°,则∠1= ,∠2= ,图中有等腰三角形变式1∠A=36°,AB=AC,BD平分∠ABC,则图中有等腰三角形变式2∠A=36°,AB=AC,BD平分∠ABC,过点D作DE∥BC,则图中有等腰三角形例题例1求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形例2已知等腰三角形底边长为a,底边上的高为h,作出这个等腰三角形四.小结五.能力提升1.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方向是北偏东60°,此时轮船与小岛P的距离是2.在△ABC中,∠ABC和∠ACB的平分线相交于点F,过点F作DE∥BC,分别交AB,AC于D,E(1)证明△DFB为等腰三角形(2)图中还有等腰三角形吗?请指出来(3)证明:△ADE的周长=AB+AC(4)若F是∠ABC的平分线和外角ACG的平分线的交点,其他条件不变,猜想DE,DB,CE 之间有何数量关系,说明理由。
2.2等腰三角形一、学习目标:1.了解等腰(边)三角形的概念,理解等腰三角形的轴对称性。
2.会用等腰三角形的概念和轴对称性解决简单几何问题。
二、自主学习 1. 仔细阅读课本第53---54页,完成下面问题(1)在右边的图形的相应位置上依次标上“腰,底边,底角,顶角”这些名称。
作出等腰三角形ABC 的对称轴。
(2)如图,点D 在AC 上,AB=AC ,AD=BD 。
你能在图中找到几个等腰三角形?说出每个等腰三角形的腰、底边和顶角。
(3) 叫做等边三角形,有 条对称轴,2.等腰三角形的两边长为6和7,则周长为 ;若是3和7则周长为。
三、合作探究1. 如图所示,在△ABC 中,AB=AC ,AP 是△ABC 的角平分线。
(1)BC 与AP 有怎样的位置关系?(2)若D ,E 分别是AB ,AC 上的点,且AD=AE ,则点D ,E 关于AP 对称吗?DE 与AP 有怎样的位置关系?请说明理由。
【注】利用等腰三角形的轴对称性,从图形的变换的角度来探索的图形规律,也是研究图形的一种重要思想方法。
2.如图,AD 是等腰△ABC 的角平分线,E ,F 分别是腰AB ,AC 上的点,请分别作出E ,F 关于AD 的对称点。
【注】进一步巩固等腰三角形的对称性,作法多样)3.求证:等腰三角形两腰上的中线相等已知:求证:证明:E A DB PC 底边 顶角 腰 等腰三角形 B C BBC四、巩固提升1.等腰三角形的周长为10cm ,一边长是4cm ,则另两边长分别为 。
2.已知等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数是 。
3.已知等腰三角形ABC 一腰上的中线BD 把它的周长分成9cm 和6cm 两部分,求底边BC 的长(提示:可设腰AB=x ,底边BC=y ,列方程组求解)五、拓展思考有一个等腰三角形,三边长分别是3x -2,4x -3,6-2x ,求这个等腰三角形的周长。
感谢您的阅读,祝您生活愉快。
等腰三角形(一)导学案
【教学目标】
1. 教学知识点
(1)等腰三角形的概念。
(2)等腰三角形的性质。
(3)等腰三角形的概念及性质的应用。
2. 能力训练要求
(1)经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点。
(2)探索并掌握等腰三角形的性质。
【教学重点】
1. 等腰三角形的概念及性质。
2. 等腰三角形性质的应用。
【教学难点】
等腰三角形三线合一的性质的理解及其应用。
【教学方法】
探究归纳法。
【教学过程】
i.提出问题,创设情境
1. 复习轴对称和轴对称图形的知识。
2. 三角形是轴对称图形吗?什么样的三角形是轴对称图形?ii .导入新课,合作探究。
12.3.1等腰三角形(二)【学习目标】1、掌握等腰三角形的判定方法,并能灵活运用解决实际问题;2、通过独立思考,交流讨论,发展推理能力和运用数学知识解决实际问题的能力; 学习重点:等腰三角形的判定方法学习难点:等腰三角形的判定和性质的区别,等腰三角形的判定的应用。
【教学过程】 一、展示目标1. 掌握等腰三角形的判定方法2. 利用等腰三角形的判定方法 (1) 证明相关问题(2) 辅助以尺规作图手段作等腰三角形 二、自主学习自学课本51-53页内容,完成下列要求:1. 通过预习,思考51页内容后,你有哪些方法证明“等角对等边”这一结论?小组交流,互相探讨。
2. 阅读例2,注意在证明一个三角形为等腰三角形时,关键就是找这个三角形中两条边相等或两角相等。
3. 学习例3的内容,边看边操作,体会已知底边和底边上的高,用尺规作等腰三角形的方法。
4. 自学15分钟后展示。
三、展示交流1. 已知△ABC 中,∠B =∠C ,求证:AB =AC2 等腰三角形的判定方法:如果 ,那么 ,简写成“ ”3. 已知线段BC 和BC 上的高AD ,BC =4cm ,AD =3cm ,求作等腰三角形ABC4. 如下图,∠A=36°, ∠C= 72° ∠DBC=36°.分别计算∠BDC 、∠ABD 的度数,并说明图中有哪些等腰三角形。
四、拓展提升如图,AC 和BD 相交于O ,且AB ∥DC ,OA=OB, 求证:OC=OD五、总结交流 谈谈本节课的收获 六、课后学习 1、作业布置A 组:习题12.3 2、5、6、B 组:P 52 练习2、3 2、预习内容:课本53--54页。
1331等腰三角形【目标导航】1.掌握等腰三角形的概念、性质及其应用.2.经历作(画)出等腰三角形的过程,从轴对称的角度去体会等腰三角形的特点.3.通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.【预习引领】1.r库严户,库二*巻剧肉上」EC需F也特宜?2.等腰三角形是轴对称图形吗?请找出它的对称轴.3.等腰三角形的两底角有什么关系?4.顶角的平分线所在的直线是等腰三角形的对称轴吗?5.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?【要点梳理】1.是等腰三角形.2.等腰三角形的性质:性质1(等边对等角);性质2互相重合.3.如图,在△ ABC 中,AB=AC,点D 在AC 上,BD=BC=AD .求:△ ABC 各角的度数.【课堂操练】、填空题1.在△ ABC 中, AB=AC .若/ A=50°,则/ B=°, / C=°;若/ B =45 ° 则/ A = ° / C=°;若/ C =60 ° 则/ A = ° / B=° ;若/ A =/B ,则/ A = ° / C=°.2. 等腰三角形的一个角是30°,则它的底角是.3.等腰三角形的周长是24 cm , —边长是6 cm ,则其他两边的长分别是.4.在△ ABC 中,AB=AC , 若 AD 平分/ BAC ,贝U ADBC , BDCD .5.等腰三角形一腰上的高与另一腰的夹角为 60°则这个等腰三角形的顶角是.&如图,在△ ABC 中,/ C=90° AB 的垂直平分线交 BC 于点D ,垂足为E ,/ CAD=2/ B ,则/ B=° 9•如图所示,在^ ABC 中,AD 丄BC 于D ,请你添加一个条件,就可以确定△ ABC是等腰三角形,你添加是.6.已知等腰三角形的腰长比底边多 2cm ,并且它的周长为16cm .这个等腰三角形的边长是. 7.如图,在△ ABC 中,AC=BC , BD 是/ ABC 的平分线,且 BD = DC ,则/ C8题)的度数(第 7题)B(第9题)(第10题)10.如图,在△ ABC中,AB=AC,DE是AB的对称轴,△BCE的周长为14, BC=6,则AB的长为.、解答题1.如图,△ ABC是等腰直角三角形(AB=AC,/ BAC=90°,AD是底边BC上的高,标出/ B、/ C、/ BAD、/ DAC的度数,图中有哪些相等线段?2.如图,在△ ABC 中,AB=AD=DC,/ BAD=26° 求/ B 和/C 的度数.3.如图,在^ ABC 中,AB=AC,D 是BC 上一点,/ BAD=40° E 是AC 上一点, AE=AD.求/ EDC的度数.4 .已知:如图,在△ ABC 中,AB=AC ,AD 是外角/ CAE 的平分线. 求证:AD // BC .5.已知:如图,在△ ABC 中,AB=AC ,点M 、N 在BC 上,且BM=CN . 求证:AM=AN .【课后操练】1.女口图,D 、E 在 BC 上,AD=BD , AE=CE , / ADE=45° / AED=110°,贝U/ B=,2.如图,点 D 在 AC 上, AB=BD=DC ,/ C=40°,则/ ABD=°.D/ C=.BDE (第 13.—等腰三角形的两边之比是1: 2,周长是15 cm,则它的底边长是cm, 一腰长是cm.4.已知一个等腰三角形两个内角的度数之比为1:4,则这个等腰三角形顶角的度数为.5.等腰三角形的一个外角是100°它的顶角的度数是.6.已知:如图,在△ ABC中,AB=AC,点D、E分别在相交于点0,且BO=CO.求证:BE=CD.AB、AC 上,BE、CD7.如图,在△ ABC 中, AB=AC, BD=BC, AD=DE=EB . 求/ A的度数.C8 已知:如图在△ ABC中,/ ACB = 90°CD是AB边上的高,AE分别交CB、CD于点E、F,且求CE=CF. 证:AE平分/ BAC.9.已知:在△ ABC中,AB=AC, AD丄BC于点D , E是AD延长线上一点,求证:BE=CE.C10.已知:如图,AD是^ABC的角平分线,点E在AB上,且AE =AC, EF // BC 交AC 于点F.求证:EC平分/ DEF .C。
《等腰三角形》导学案一、学习目标1.探索并证明等腰三角形的两个性质.2.能运用等腰三角形的性质证明两个角相等或两条线段相等。
3.结合等腰三角形性质的探索与证明,体会轴对称在研究几何问题中的应用。
重点:探索并证明等腰三角形性质.难点:性质1证明中辅助线的添加和等腰三角形的“三线合一”的性质的理解及应用。
二、教学过程利用多媒体展示实物图片,引入等腰三角形的课题。
活动1:动手做一做学生观察剪纸得到的等腰三角形,明确相关概念。
活动2:把剪出的等腰三角形ABC沿折痕对折,观察它是否是轴对称图形?找出其中重合的线段和角.活动3:观察剪得的等腰三角形,结合活动2得到的结论大胆猜想并验证:猜想1:猜想2:思考与讨论:如何论证以上猜想的正确性?如何用几何语言表达?几何语言:性质1∵,∴75°,它的另外两个角为_____。
⒉等腰三角形一个角为70°,它的另外两个角____ 。
⒊等腰三角形一个角为110°,它的另外两个角为____ 。
证明:∵△ABD≌△ACD(已证)(1)∴BD=CD∴AD是BC边上的(2)∴∠BAD =∠CAD∴AD是∠BAC的(3)∴∠ADB =∠ADC∴∠ADB =∠ADC=90°∴AD是BC边上的∴AD是△ABC 的BC边的中线,又是∠BAC的角平分线,还是BC边上的高线。
几何语言(1)∵AB=AC,AD是角平分线,∴、(2)∵AB=AC,AD是中线,∴、(3)∵AB=AC,AD⊥BC,∴、归纳总结上述论证得到的结论:等腰三角形的性质1等腰三角形的性质21BD=BC=AD,求△练习:如图,在等腰三角形ABC中,AB=AC,,AD⊥BC于D,DE⊥AB于E,DF⊥AC于F,则DE与DF相等吗?.请说明理由.三、课堂小结:学生谈收获,教师小结。
性质1 : 等腰三角形的两个底角相等(简称“等边对等角”,前提是在同一个三角形中。
)性质2 : 等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
13.3.1 等腰三角形(1)导学案一、知识梳理1. 什么是等腰三角形?等腰三角形是指具有两条边长相等的三角形。
在等腰三角形中,两个底角(即底边两边所对的角)相等,而顶角(即顶点所对的角)则不一定等于底角。
2. 等腰三角形的性质•等腰三角形的两个底角相等。
•等腰三角形的两边相等的边称为底边,不相等的边称为腰。
•等腰三角形的底边上的高相等。
•等腰三角形的顶角(顶点所对的角)等于底角。
二、解题技巧1.判断等腰三角形判断一个三角形是否为等腰三角形,需要满足其两边相等的条件。
在实际操作中,可以通过测量三角形的边长,或者通过已知条件得出两边相等的结论。
2.利用等腰三角形的性质解题当我们已知一个三角形为等腰三角形时,可以利用其性质来解题。
例如,可以利用顶角和底角相等的性质,解出其他角的大小;或者利用底边上的高相等的性质,求解其他边的长度。
三、例题分析示例一:已知△ABC 为等腰三角形,AC = BC,∠ACB = 70°,求∠ABC 和∠ACB 的度数。
解析:由已知可得,∠ACB = 70°。
由等腰三角形的性质可知,∠ABC = ∠ACB = 70°。
所以,∠ABC 和∠ACB 的度数均为70°。
示例二:在△ABC 中,AB = AC,∠ABC = 40°,∠ACB = 60°,求∠BAC 的度数。
解析:由已知可得,∠ABC = 40°,∠ACB = 60°。
由等腰三角形的性质可知,∠ABC = ∠ACB。
设∠BAC = x°,根据三角形内角和定理可得:∠ABC + ∠ACB + ∠BAC = 180°。
代入已知的数值,得到:40° + 60° + x° = 180°。
解方程可得 x = 80°。
所以,∠BAC 的度数为80°。
四、巩固练习1.已知△ABC 为等腰三角形,AB = AC,∠BAC = 100°,求∠ABC 和∠ACB 的度数。
13.3.1 等腰三角形(第一课时)导学案班级:姓名:13.3.1 等腰三角形(第一课时)导学案【学习目标】1、记住等腰三角形的性质.2、能运用等腰三角形的性质进行证明和计算.3、观察等腰三角形的对称性、发展形象思维【学习重点】等腰三角形的性质及应用.【学习难点】等腰三角形的性质的证明.【教学过程】(一)【创设情境,引入课题】教师预先做出各种几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.让同学们抢答哪些是轴对称图形,提问什么是轴对称图形,什么样的三角形才是轴对称图形.引入今天所要讲的课题——等腰三角形.我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.(二)【探究新知,练习巩固】【问题1】如图,把一张长方形的纸按图中虚线对折,并剪去阴影部分,再把它展开,得到的△ABC有什么特点?有两边相等的三角形叫做等腰三角形,相等的两边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角.如图,在△ABC中,若AB=AC,则△ABC 是等腰三角形,AB,AC是腰,BC是底边,∠A是顶角,③∵AB=AC,AD⊥BC (已知)∴(三线合一)等腰三角形的性质2:(简写成“”)(三)【概括提炼,课堂小结】小结:(1)等边对等角;(2)等腰三角形的三线合一;(3)等腰三角形常用辅助线作法(作底边上的高、作底边上的中线、作顶角的平分线).(四)【当堂达标,拓展延伸】1、在△ABC中,AB=AC,(1)如果∠A=70°,则∠C=_______,∠B=_______(2)如果∠A=90°,则∠B=_______,∠C=________(3)如果有一个角等于120°,则其余两个角分别是多少度?(4)如果有一个角等于55°,则其余两个角分别是多少度?2.在△ABC中,AB=AC,∠BAC=40°,BC=10,点D是BC上的一点.(1) 若BD=5,则∠ADC=,∠BAD= .(2) 若∠BAD=∠CAD,则∠ADC=,BD= .(3) 若∠BDA=90°,则∠DAC=,BD=3、如图(4),在△ABC中,AB=AD=DC,∠BAD=26°,求∠B 和∠C的度数4、在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC 各角的度数.5、如图,点D,E在△ABC的边BC上,AB=AC,AD=AE,求证BD=CE(五)【课后反思】你还有哪些疑问?审编人:李庄中学李银环桑落墅镇中学胡金萍。
《等腰三角形》第一课时学案青州市东夏初级中学高春燕学习目标: 1.了解等腰三角形概念,理解等腰三角形的性质;2.运用等腰三角形的概念及性质解决相关问题。
学习重点:等腰三角形的概念及性质。
学习难点:等腰三角形“三线合一”性质的理解与应用学习方法:自主----合作------精讲-----巩固一.自主学习:自主预习课本P12----P13完成下列问题:(一)1、的三角形叫等腰三角形,2、相等的两边叫,另一边叫。
两腰的夹角叫,腰和底边的夹角叫。
3、如图,在△ABC中,AB=AC,标出各部分名称。
(二)等腰三角形是轴对称图形吗?试采用下图方法,探究图△ABC有什么发现?二.合作探究(各小组同学讨论,集体完成下列题目)(一)如图,在△ABC中,AB=AC,∠B AC=60°,AD是BC边上的高线,(1)求∠ADC的度数;(2)求∠ BAD 、∠B 、∠C的度数。
(二)在△ABC中,如果三角形的三边相等,你能发现什么结论?结论:1.2.。
练习:如图:点B、C、D、E、F在∠MAN的边上,∠A=15°,AB=BC=CD=DE=EF,求∠MEF的度数。
三、精讲点拨1.如图,在△ABC中,AB=AC,AD=BD=BC,则∠A多少度。
2.如图,AB=AC,BD⊥AC于D,求证:∠DBC= 1/2∠A。
四.课堂小结同学们通过这节课的学习你收获了什么?五.达标检测•1、若等腰三角形的周长为29cm,一条边长为 9cm,则这个等腰三角形的腰长为;•2、如图,在等腰三角形ABC中,AC=BC,腰AC的中垂线EF 交BC于E,交AC于F,已知△ABC的周长为11,AC=4cm,则△ABE 的周长是;A B3.一等腰三角的一个角是另一个角的2倍,则此三角形的各角的度数分别是多少?4.如图,是房梁的一部分,其中BC⊥AC,∠A=30°,AB=7.4,点D是AB的中点,DE⊥AC,垂足为E,求BC,DE的长.BDA CEA BCDEFMNCCB。
12.3.1《等腰三角形》导学案班级姓名学习目标:1.根据等腰三角形的轴对称性得出并掌握等腰三角形的等边对等角、“三线合一”的性质;2.会利用等腰三角形的性质解决简单问题.学习重、难点:等腰三角形性质的探究及简单应用.学习过程:1、动手操作把一张长方形的纸按图中虚线对折,然后沿实线剪开,再把它展开,得到等腰三角形.2、猜想性质(1)剪出的等腰三角形是否为轴对称图形?它的对称轴在哪里?(2)将等腰三角形沿折痕对折,观察重合的线段和角,你有什么发现?猜想:3、证明性质猜想1:等腰三角形的两个底角相等已知:△ABC中,AB=AC求证:∠B= C证明:由性质1的证明过程,你能不能证明出猜想2呢?4、巩固性质:(1)如图.在△ABC 中,如果AB=AC,那么∠________=∠_______;(2)如图.在△ABC 中, AB=AC,点D 在BC 上.如果∠BAD=∠CAD,那么 AD ⊥BC , BD=CD.如果BD=CD,那么∠________=∠_______, _______⊥______;如果AD ⊥BC,那么_______________, _____________.5、课堂练习:(1)如图,在下列等腰三角形中,分别求出其它两角的度数.(2)等腰三角形一个角为130°,它的另外两个角为 .(3)等腰三角形一个角为80°,它的另外两个角为 。
(4)想一想:现在工人师傅要加固人字形屋顶,他们通过测量找到了横梁BC 的中点D ,然后在A 、D 两点之间钉上一根木桩,理由.(5)思考:已知等腰三角形的一个底角是顶角的2倍,你能求出这个等腰三角形的底角和顶角的度数吗?(6)如图,在△ABC 中,AB=AC,点D 在AC 上,且BD=BC=AD,求△ABC 各角的度数.6.学习体会:AB C D。
等腰三角形导学案一、学习目标1、经历探索等腰三角形的性质的过程,掌握等腰三角形的轴对称性、等腰三角形“三线合一”、等腰三角形的两个底角相等等性质。
2、经历探索等边三角形的轴对称性和内角性质的过程,掌握这个性质,并会作出合理的说明。
3、掌握已知底边和底边上的高用尺规作等腰三角形的方法。
二、学习重点、难点重点:等腰三角形与等边三角形的性质难点:等腰三角形的性质的运用三、学习过程(一)情境导入瓦工师傅盖房时,看房梁是否水平,有时就用一块等腰三角板放在梁上,从顶点系一重物,如果系重物的绳子正好经过三角板底边的中点,房梁就是水平的。
为什么?你想知道其中的奥秘吗?学了本节后你将恍然大悟。
(二)自主学习自学课本P13——P16“挑战自我”,解答下列问题:1.我们知道等腰三角形是轴对称图形,它底边上的高线所在的直线式它的对称轴,如2.等边三角形是轴对称图形吗?它有几条对称轴?等边三角形是等腰三角形吗?它与等腰三角形相比有何特别之处?3.如图,∠B=∠C,AB=3.6cm,则AC=————————.(三)合作探究探究点一:等腰三角形的性质例1 等腰三角形中有一个角为80º.求另外两个角的度数.总结:AB C探究点二:等边三角形的性质例2 试说明“等边三角形的每个内角都等于60º”小组合作:用一张正方形的纸折出一个等边三角形.探究点三:尺规作等腰三角形例3 已知一个等腰三角形的底边和腰,你能作出这个三角形吗?如果一直底边和底边上的高呢?(四)练习达标1. 等腰三角形的两边长分别是6cm、3cm,则该等腰三角形的周长是()A. 9 cmB. 12 cmC. 12 cm或15 cmD. 15 cm2. 等腰三角形的一个角为30º,则它的底角为()A. 30ºB. 75ºC. 30º或75ºD. 15º3如图,在ΔABC中,D、E是BC边上的两点,且AD=BD=DE=AE=CE,求∠B、∠BAC的度数.(五)课堂小结这一节你学会了什么?(六)拓展提升1.如图所示,∠B=∠C ,ADΔADC的周长为30cm,那么AD2、如图,ΔABC为等边三角形,∠1=∠2=∠3ΔDEF为等边三角形.四. 作业。
$13.3.1等腰三角形〔二〕导学案$13.3.1等腰三角形〔二〕导学案$13.3.1等腰三角形〔二〕导学案$13.3.1等腰三角形〔二〕导学案$13.3.1等腰三角形〔二〕导学案五、课堂小测〔约5分钟〕:如图,AD ∥BC ,BD 平分∠ABC . 求证:AB=AD .第4课时 “斜边、直角边〞DCAB1.理解并掌握三角形全等的判定方法——“斜边、直角边〞.(重点)2.经历探究“斜边、直角边〞判定方法的过程,能运用“斜边、直角边〞判定方法解决有关问题.(难点)一、情境导入舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.(1)你能帮他想个方法吗?(2)如果他只带了一个卷尺,能完成这个任务吗?工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的〞,你相信他的结论吗?二、合作探究探究点一:应用“斜边、直角边〞判定三角形全等如图,∠A =∠D =90°,E 、F 在线段BC 上,DE 与AF 交于点O ,且AB=CD ,BE =CF .求证:Rt △ABF ≌Rt △DCE .解析:由题意可得△ABF 与△DCE 都为直角三角形,由BE =CF 可得BF =CE ,然后运用“HL 〞即可判定Rt △ABF 与Rt △DCE 全等.证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .∵∠A =∠D =90°,∴△ABF与△DCE 都为直角三角形.在Rt △ABF 和Rt △DCE 中,∵⎩⎪⎨⎪⎧BF =CE ,AB =CD ,∴Rt △ABF ≌Rt △DCE (HL).方法总结:利用“HL 〞判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.探究点二:“斜边、直角边〞判定三角形全等的运用 【类型一】 利用“HL 〞判定线段相等如图,AD ,AF 分别是两个钝角△ABC 和△ABE 的高,如果AD =AF ,AC =AE .求证:BC =BE .解析:根据“HL 〞证Rt △ADC ≌Rt △AFE ,得CD =EF ,再根据“HL 〞证Rt △ABD ≌Rt △ABF ,得BD =BF ,最后证明BC =BE .证明:∵AD ,AF 分别是两个钝角△ABC 和△ABE 的高,且AD =AF ,AC =AE ,∴Rt △ADC ≌Rt △AFE (HL).∴CD =EF .∵AD =AF ,AB =AB ,∴Rt △ABD ≌Rt △ABF (HL).∴BD =BF .∴BD -CD =BF -EF .即BC =BE .方法总结:证明线段相等可通过证明三角形全等解决,作为“HL 〞公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角〞这个隐含的条件.【类型二】 利用“HL 〞判定角相等或线段平行如图,AB ⊥BC ,AD ⊥DC ,AB =AD ,求证:∠1=∠2.解析:要证角相等,可先证明全等.即证Rt △ABC ≌Rt △ADC ,进而得出角相等.证明:∵AB ⊥BC ,AD ⊥DC ,∴∠B =∠D =90°,∴△ABC 与△ACD 为直角三角形.在Rt △ABC 和Rt △ADC 中,∵⎩⎪⎨⎪⎧AB =AD ,AC =AC ,∴Rt △ABC ≌Rt △ADC (HL),∴∠1=∠2.方法总结:证明角相等可通过证明三角形全等解决.【类型三】 利用“HL 〞解决动点问题如图,有一直角三角形ABC ,∠C =90°,AC =10cm ,BC =5cm ,一条线段PQ =AB ,P 、Q 两点分别在AC 上和过A 点且垂直于AC 的射线AQ 上运动,问P 点运动到AC 上什么位置时△ABC 才能和△APQ 全等?解析:此题要分情况讨论:(1)Rt △APQ ≌Rt △CBA ,此时AP =BC =5cm ,可据此求出P 点的位置.(2)Rt △QAP ≌Rt △BCA ,此时AP =AC ,P 、C 重合.解:根据三角形全等的判定方法HL 可知:(1)当P 运动到AP =BC 时,∵∠C =∠QAP =90°.在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =BC ,PQ =AB ,∴Rt △ABC ≌Rt △QPA (HL),∴AP =BC =5cm ;(2)当P 运动到与C 点重合时,AP =AC .在Rt △ABC 与Rt △QPA 中,∵⎩⎪⎨⎪⎧AP =AC ,PQ =AB ,∴Rt △QAP ≌Rt △BCA (HL),∴AP =AC =10cm ,∴当AP =5cm 或10cm 时,△ABC 才能和△APQ 全等.方法总结:判定三角形全等的关键是找对应边和对应角,由于此题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.【类型四】 综合运用全等三角形的判定方法判定直角三角形全等如图,CD ⊥AB 于D 点,BE ⊥AC 于E 点,BE ,CD 交于O 点,且AO 平分∠BAC .求证:OB =OC .解析:BE ⊥AC ,CD ⊥AB 可推出∠ADC =∠BDC =∠AEB =∠CEB =90°,由AO 平分∠BAC 可知∠1=∠2,然后根据AAS 证得△AOD ≌△AOE ,根据ASA 证得△BOD ≌△COE ,即可证得OB =OC .证明:∵BE ⊥AC ,CD ⊥AB ,∴∠ADC =∠BDC =∠AEB =∠CEB =90°.∵AO 平分∠BAC ,∴∠1=∠2.在△AOD 和△AOE 中,∵⎩⎪⎨⎪⎧∠ADC =∠AEB ,∠1=∠2,OA =OA ,∴△AOD ≌△AOE (AAS).∴OD =OE .在△BOD 和△COE 中,∵⎩⎪⎨⎪⎧∠BDC =∠CEB ,OD =OE ,∠BOD =∠COE ,∴△BOD ≌△COE (ASA).∴OB =OC .方法总结:判定直角三角形全等的方法除“HL 〞外,还有:SSS 、SAS 、ASA 、AAS.三、板书设计“斜边、直角边〞1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边〞或“HL〞.2.方法归纳:(1)证明两个直角三角形全等的常用方法是“HL〞,除此之外,还可以选用“SAS〞“ASA〞“AAS〞以及“SSS〞.(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边〞时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习稳固所学的新知识.。
第六课时 13.3.1等腰三角形(1)【学习目标】1、了解等腰三角形的概念,掌握等腰三角形的性质; 2、会运用等腰三角形的概念及性质解决相关问题。
【学习重点】等腰三角形性质的探索及应用【学习难点】等腰三角形性质的应用 一、学前准备1、下列图形不一定是轴对称图形的是( ) A 、圆 B 、长方形 C 、线段D 、三角形2、怎样的三角形是轴对称图形?答:3、有两边相等的三角形叫 ,相等的两边叫 ,另一边叫 ; 两腰的夹角叫,腰和底边的夹角叫 4、如图,在△ABC 中,AB=AC ,标出各部分名称 5、用一张长方形的纸剪一个等腰三角形。
二、探索思考 (一)1、操作、实践: 将你剪得等腰三角形,照图折叠,找出其中重合的线段和角,填入右表:2、根据上表你能得出哪些结论?并将你的结论与同学交流。
3、请用学过的知识证明以上结论。
(二)归纳:等腰三角形的性质:(1)等腰三角形的 。
(简写成“ ”) 符号语言:如图1∵ ∴(2)等腰三角形的 、 、 相互重合(简写成“ ”)符号语言①:如图2∵ , ∴ 符号语言②:如图2∵ , ∴ 符号语言③:如图2∵ , ∴ 练习1、填空:(1)等腰三角形一个底角为70°,它的顶角为 . (2)等腰三角形一个角为70°,它的另外两个角为三、典例分析例2:如图所示,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.例2:如图3,在△ABC 中,AB=AC ,点D 、E 在BC 上,且AD=AE.,求证:BD=CE四、当堂反馈1、(1) 等腰三角形的一边长为3cm ,另一边长为4cm,则它的周长是 ; (2) 等腰三角形的一边长为3cm ,另一边长为8cm,则它的周长是 。
2、在△ABC 中,AB =AC ,(1)如果∠A =70°,则∠C =_______,∠B =_______ (2)如果∠A =90°,则∠B =_______,∠C =________ (3)如果有一个角等于120°,则其余两个角分别是 度 (4)如果有一个角等于55°,则其余两个角分别是 度3、如图(3)所示,△ABC 是等腰直角三角形(AB =AC ,∠BAC =90°),AD 是底边BC 上的高, 标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?4、如图,在△ABC 中,AB =AD =DC ,∠BAD =26°,求∠B 和∠C 的度数.五、学习反思(请你对照学习目标,谈一下这节课的收获及困惑。
精选全文完整版(可编辑修改)13.3.1 等腰三角形的性质一,学习目标:1 了解等腰三角形的有关概念;2 通过操作,观察、分析、归纳得出等腰三角形性质;3 理解并运用等腰三角形性质。
二,教学过程(1)学习目标,了解等腰三角形的有关概念第一次自学,时间2min,要求:1, 看课本78页,找到等腰三角形的有关概念。
2动手在练习本上画出一个等腰三角形。
第一次自学检测,时间3min。
(1)有______相等的三角形叫做等腰三角形。
(2)在等腰三角形中,相等的两边都叫做_____,另一边叫做_____ ,两腰的夹角叫做_____ ,腰和底边的夹角叫做_____。
(3)等腰三角形一腰为3cm,底为4cm,则它的周长是_____cm。
(4)等腰三角形的一边长为3cm,另一边长为4cm,则它的周长是_____cm。
(5)等腰三角形的一边长为3cm,另一边长为8cm,则它的周长是_____cm。
(2)学习目标,通过动手操作,观察、分析、归纳得出等腰三角形性质1第二次自学,时间5min,要求:1, 看课本78页,完成做一做2,熟悉定理,等边对等角。
3,看例1的解题过程。
第二次自学检测,时间5min。
1,等腰三角形一个底角为75°,它的另一个底角为____。
2,等腰三角形一个底角为70°,它的另外两个角为_________3,等腰三角形一个角为100°, 它的另外两个角为____________ 4,等腰三角形有一个角是80°,它的顶角是____________________(3)学习目标,理解并运用“三线合一”第三次自学,时间5min,要求:1, 看课本80页,熟悉“三线合一”2,理解例2的解题过程3,简单认识等边三角形。
第三次自学检测,时间5min。
(1)等腰三角形的顶角的______、底边上的____、底边上的____互相重合。
(三线合一)《1》∵AB=AC,BD=CD(已知)∴《2》∵AB=AC,∠BAD=∠CAD (已知)∴《3》∵AB=AC,AD⊥BC (已知)∴当堂训练(10min)一,判断下列语句是否正确(1)等腰三角形的角平分线、中线和高互相重合。
八年级上册《等腰三角形》导学案2.1等腰三角形学习目标:、掌握等腰三角形的概念及等腰三角形有关边、角的名称。
根据条会作等腰三角形。
2、理解等腰三角形的轴对称性及对称轴的情况。
学习重点:等腰三角形的轴对称性。
学习难点:理解等腰三角形的轴对称性(例题)学习过程:一、预习准备、你还记得三角形的概念:2、你学习过哪些类型的三角形:3、你在日常生活中中看到过有两条边相等的三角形吗?请举例:4、等腰三角形的概念:并在下图中写出相应的边角名称、如图,点D在A上,AB=A,AD=BD。
你能在图中找到几个等腰三角形?说出每个等腰三角形的腰、底边和顶角。
二、合作学习、等腰三角形的两边分别是2和,则它的周长是多少?2、知线段a,b(如图)(1)用直尺和圆规做等腰三角形AB,使AB=A=b,B=a;(2)它的周长是多少?3、在上图的基础上,画出等腰三角形AB的顶角平分线AD,然后沿着AD所在的直线把△AB对折,你发现了什么?由此,你得出了什么结论?三、应用举例:例、如图,在△AB中,AB=A,D、E分别是AB、A上的点,且AD=AE。
AP是△AB的角平分线。
点D、E关于AP对称吗?DE与B平行吗?请说明理由。
四、巩固练习、如图,AD是等腰三角形AB的角平分线,E、F分别是AB,A上的点,请分别作出E、F关于AD的对称点。
总结:2、等腰三角形的底边长为7,一腰上的中线把周长分为两部分,其差为3,则等腰三角形的腰长为多少?3、等腰三角形一腰长的中线将它的周长分成1和16两部分,求等腰三角形的底边长。
思考:在平面内,分别用3根,根,6根火柴棒首尾顺次相接,能搭成什么形状的三角形?通过尝试,完成下面的表格。
7根火柴棒呢?8根呢?你发现了什么规律?完成书中表格(P2)五.作业.作业本(2)2.预习22节内容六、后反思。
《等腰三角形》导学案
导学活动过程教学目标:
知识与能力
1、了解等腰三角形的边角定义。
2、理解并掌握等腰三角形的基本性质,并会利用相关性质
解决简单的几何证明和实际问题。
过程与方法
1、经历运用剪纸法探究等腰三角形的定义的过程,培养动
手操作能力、观察能力、抽象归纳能力。
2、经历实例思考和推证等腰三角形的判定定理的过程,培
养灵活运用定理进行证明和解决简单实际问题的能力。
情感、态度和价值观
1、经历通过探究发现规律的过程,感受数学学习的乐趣,
激发数学学习的兴趣。
2、经历通过应用等腰三角形的相关性质解决实际问题的过
程,体会数学与现实的密切联系,感受数学的应用价值,培养应用意识。
教学重点、难点
重点:等腰三角形的定义,等腰三角形的性质和应用
难点:等腰三角形性质的发现
教学设计:
一、多媒体展示如下问题,请学生探究
形集体研
讨与个
式个人备课案补充
导学活动过1、按照上图所示的操作步骤,请学生两人一组用手中的白
纸、剪刀进行操作。
2、学生可能的回答:
(1)剪出是一个三角形,有两个相同的三角形构成。
(2)剪出的图形是一个轴对称图形,沿着对称轴折叠,两个小三角形可以完全重合。
(3)两个小三角形是全等三角形。
等等
3、教师肯定学生的表现,总结出如下有关等腰三角形的概
念,引出本节课的主题------等腰三角形。
有两边相等的三角形叫做等腰三角形
二、探究等腰三角形的性质
1、教师强调前面有学生已经指出等腰三角形是轴对称图形,为了验证这一说法,请学生把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,填入下表:
重合的线段重合的角
3、填完之后,提问:你能发现等腰三角形的性质吗?请学
生根据上表形成有关等腰三角形性质的猜想。
4、师生共同分析,讨论总结出等腰三角形的性质。
(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰△的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).
5、教师提示:由上面的操作过程获得启发,我们可以通过作出三角形ABC的对称轴,得到两个全等三角形,从而利用三角形的全等证明这些性质。
6、鼓励学生独立思考,请学生上黑板证明,师生共同分析讨论,教师作总结发言,给出问题的证明过程。
形
式个人备课
集体研
讨与个
案补充
7、多媒体展示如下例题
例1、如图,在△ABC 中 ,AB=AC ,点D 在AC 上,且 BD=BC=AD ,求△ABC 各角的度数。
请学生尝试解答。
解:∵AB=AC ,BD=BC=AD ,
∴∠ABC=∠C=∠BDC ,∠A=∠ABD (等边对等角)
设∠A=x,则∠BDC= ∠A+ ∠ABD=2x,
从而∠ABC= ∠C= ∠BDC=2x,
于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°,
在△ABC 中, ∠A=36°,∠ABC=∠C=72° 教师提醒学生注意书写过程中需要注意的问题
三、运用等腰三角形的性质解决问题 1、多媒体展示思考题。
如图,位于在海上A 、B 两处的两艘救生船接到O 处遇险船只的报警,当时测得∠A=∠B .如果这两艘救生船以同样的速度同时出发,•能不能大约同时赶到出事地
点(不考虑风浪因素)?
A
B
C D A
B
形
式
个人备课
集体研
讨与个
案补充
2、出示例2求证:如果三角形一个外
角的平分线平行于三角形的一边,那
么这个三角形是等腰三角形.
注意命题的证明格式,请学生尝试自己证明。
3、出示例3
如图(1),标杆AB的高为5米,为了将它固定,需要
由它的中点C•向地面上与点B距离相等的D、E两点拉两条
绳子,使得D、B、E在一条直线上,量得DE=4米,•绳子
CD和CE要多长?
(1)
E
D
C
A
B
(2)
E
D
C
B
M
N
注意分析应用
四、小结巩固
五、作业:课本P81 1、2、3题.
反思
2
1
E
D
C
A
B。