基于模糊理论的图像边缘检测
- 格式:ppt
- 大小:909.00 KB
- 文档页数:17
基于模糊推理的边缘检测算法作者:赵新秋秦昆阳冯斌贺海龙来源:《中国测试》2018年第05期摘要:针对传统模糊推理边缘检测算法存在抗噪性能差、边缘为非单像素边缘等缺点.提出一种基于模糊推理的边缘检测新方法。
首先根据全向小波变换获得4个方向的小波变换幅值,并将该幅值作为模糊推理系统输入;然后通过比较解模糊之后的值和自适应阈值得到二值边缘图像,再细化边缘得到最终边缘图像。
实验结果表明:与传统微分算法和模糊推理算法相比,该算法对图像中噪声和伪边缘的抑制以及边缘提取的完整性都具有很好的效果。
关键词:边缘检测;小波变换;模糊推理;自适应阈值;边缘细化文献标志码:A 文章编号:1674-5124(2018)05-0001-050引言图像的边缘包含着图像的重要信息,主要产生在图像纹理、颜色、阴影变化的区域。
目前,边缘检测已经成为了计算机视觉的重要组成部分,主要应用在地理、军事、医学、机器人和模式识别等领域。
边缘检测的主要方法包括:基于数学形态学的边缘检测算法;基于微分算子的边缘检测算法,如Robert、Sobel、LoG、Prewitt等。
但是基于形态学的算法由于结构元素存在单一性,具有边缘点丢失的缺点:基于微分算子的边缘检测算法对噪声过于敏感,在含有噪声的情况下边缘检测效果很差。
传统模糊推理边缘检测算法具有边缘检测准确及一定的抗噪性能,在不同的领域得到了较好的应用。
在传统模糊推理边缘检测算法中,用局部方差、邻域像素差值作为模糊系统输入,受噪声影响较大,阈值需要人为设定,得到的边缘图像为非单像素边缘。
本文针对以上所提问题,将全向小波变换和自适应阈值引入到传统模糊推理边缘检测中,最终利用边缘细化算法实现边缘细化操作,该算法较传统算法具有较好的检测效果。
1传统模糊推理边缘检测算法分析1.1基于模糊推理的边缘检测模糊推理边缘检测算法主要包括以下3个过程。
1)模糊化:提取图像的相关特征(梯度、像素差值等)作为模糊系统的输入,选择合适的输入隶属度函数,将得到的相关特征量的精确值映射为对应输入模糊子集的隶属度。
基于小波的模糊聚类图像边缘检测的开题报告一、选题背景图像边缘检测一直是数字图像处理领域的重要研究方向之一,其主要目的是在图像中定位出目标物体的轮廓,便于后续的图像分析、特征提取及目标识别等任务。
传统的边缘检测算法,如Canny算法、Sobel算法等是基于梯度和拉普拉斯等函数进行边缘检测,虽然它们能够获得较好的边缘效果,但对噪声的鲁棒性较差,会产生大量的误检结果,在复杂背景下效果也十分有限。
因此,研究者们开始探索新的边缘检测方法,其中基于小波的模糊聚类图像边缘检测方法备受关注。
该方法通过运用小波变换的多分辨率特性,将图像从不同分辨率下进行分解,获取到不同尺度下的图像信息,进而利用模糊聚类的方法对不同尺度下的图像进行分割,提取出其中的边缘信息,最终将不同尺度下的边缘信息进行融合,得到最终的边缘检测结果。
这种方法具有较好的抗噪能力和对复杂背景的适应性,同时能够保留图像的细节信息,因此具有很大的应用潜力。
二、研究内容和目标本课题旨在利用基于小波的模糊聚类方法,研究图像边缘检测算法,主要包括:1. 研究小波变换的基本理论原理,掌握小波变换的常用方法及其多分辨率特性,实现小波变换对图像进行分解和重构。
2. 研究模糊聚类的基本原理,掌握常见的模糊聚类算法及其优缺点,在此基础上实现基于模糊聚类的图像分割。
3. 基于小波变换和模糊聚类方法,设计图像边缘检测算法,分析其原理和优点,并对算法进行优化和改进。
4. 使用MATLAB软件实现所设计的算法,并在不同场景下进行测试,并将测试结果与传统的图像边缘检测算法进行比较和分析。
5. 最终目标为提出一种准确、高效、鲁棒性强的基于小波的模糊聚类图像边缘检测算法,并为其在实际应用中提供一定的理论和技术支持。
三、研究思路和方法1.学习小波变换理论,掌握小波变换的基本过程,实现小波分解和重构,并利用MATLAB软件进行相关实验。
2.学习模糊聚类的基本理论,比较不同的模糊聚类算法及其优劣,选择一种适合本课题的模糊聚类方法,并实现基于模糊聚类的图像分割算法,并利用MATLAB软件进行相关实验。