光纤光学
- 格式:ppt
- 大小:5.23 MB
- 文档页数:334
---------------------------------------------------------------最新资料推荐------------------------------------------------------光纤光学课件第一章1幻灯片 1 光纤光学第一章光纤传输的基本理论 W-C Chen Foshan Univ. 幻灯片 2 1. 前言低损耗光纤的问世导致了光波技术领域的革命,开创了光纤通信的时代。
光纤在工程上的使用促使人们需要对光纤进行深入研究,形成一门新的学科光纤光学。
幻灯片 3 光纤的分类幻灯片 4 2实用光纤主要的三种基本类型 (a) 突变型多模光纤; (b) 渐变型多模光纤;(c )单模光纤横截面2a2brn折射率分布纤芯包Ait(a)输入脉冲光线传播路径~多模光纤幻灯片 5 阶跃折射率光纤剖面测量图(华工光通信研究所)3 单模光纤多模光纤幻灯片 6 光纤结构光纤(Optical Fiber)是由中心的纤芯(Core)和外围的包层(Cladding)同轴组成的圆柱形细丝。
纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。
包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。
设纤芯和包层的折射率分别为 n1 和 n2,光能量在光纤中传输的必要条件是n1n2。
幻灯片 7 主要用途:1 / 15突变型多模光纤只能用于小容量短距离系统。
渐变型多模光纤适用于中等容量中等距离系统。
单模光纤用在大容量长距离的系统。
特种单模光纤大幅度提高光纤通信系统的水平 1.55 m 色散移位光纤实现了 10 Gb/s 容量的 100 km 的超大容量超长距离系统。
色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。
偏振保持光纤用在外差接收方式的相干光系统,这种系统最大优点是提高接收灵敏度,增加传输距离。
4幻灯片 8 2.光纤的研究方法光线理论几何光学方法波动光学方法适用条件研究对象光线模式基本方程射线方程波导场方程研究方法折射/反射定理边值问题主要特点约束光线模式幻灯片 9 光线理论光线分类子午光线倾斜光线射线方程几何光学法分析问题的两个出发点数值孔径时间延迟幻灯片 10 设纤芯和包层折射率分别为 n1 和 n2,空气的折射率 n0=1,纤芯中心轴线与 z 轴一致。
光纤光学原理及应用光纤是一种能够传输光信号的细长柔软的光导纤维。
它的原理基于光的全反射现象,具有高速率、大容量、低损耗和抗电磁干扰等优势,因此在通信、医疗、工业、军事等领域有着广泛的应用。
光纤的基本构成包括纤芯、包层和包覆层。
纤芯是光信号传输的核心部分,由高折射率的物质制成;包层是围绕纤芯的一层低折射率的物质,起到光线在纤芯内的全反射作用;包覆层则是为了保护纤芯和包层而存在的。
光纤的工作原理基于光的全反射现象。
当光线从密度较大的介质射入密度较小的介质时,会发生一定的折射。
当入射角大于临界角时,光线会完全反射回原介质中。
光纤利用了这个原理,将光线完全反射在纤芯内部,从而实现光信号的传输。
光纤的应用非常广泛,其中最主要的应用领域之一就是通信。
光纤通信利用光纤传输光信号,以取代传统的电信号传输方式。
相比传统的铜缆,光纤具有更高的传输速率和更大的传输容量,可以满足现代高速宽带通信的需求。
光纤通信已经成为现代通信网络的重要组成部分。
除了通信领域,光纤在医疗领域也有着广泛的应用。
光纤光学技术可以用于内窥镜的制造,通过将光纤引入人体内部,医生可以观察和诊断患者的内部状况。
这种技术非常重要,特别是在微创手术和胃肠道检查中,可以减少患者的痛苦和创伤。
光纤还可以应用于工业和军事领域。
在工业中,光纤传感器可以用于测量和监测温度、压力和应力等参数。
这种传感器具有高精度、可靠性高和抗干扰能力强的特点。
在军事领域,光纤通信可以实现安全和高速的数据传输,同时光纤传感器也可以用于军事侦察和监测等任务。
总的来说,光纤光学原理和应用为我们提供了一种高速、大容量、低损耗和抗干扰的光信号传输方式。
光纤的应用领域非常广泛,从通信到医疗、工业和军事等领域都有着重要的作用。
随着技术的不断发展和创新,相信光纤光学技术将会在更多领域得到应用和推广。
光纤光学》《光纤光学第二章光纤光学的基本理论南开大学张伟刚教授第2 章光纤光学的基本理论2.1 引论2.2 光纤的光线理论222.3光纤的波动理论2.1引论2.1.1光线理论可以采用几何光学方法分析光线的入1.优点:的多模光纤时2.不足:2.1.2波动理论2.不足:2.1.3分析思路麦克斯韦方程光线理论波动理论2.2光纤的光线理论 2.2.1程函方程问题2.1:(r , t )z y x e z e y ex r ˆˆˆ++=G ),(t r E G G ),(t r H G G G G G G G G )0,0(0===t r E E )0,0(0===t r H H )(r G φφ=(2.1) 00ik i t E E e ϕω−+=G G (2.2)00ik i t H H e ϕω−+=G G 000)()()(000E e e E e E E ik ik ik G G G G ×∇+×∇=×∇=×∇−−−φφφik ik −−G G []φφφ00000)()(e E ik e E ×∇−×∇=φ0ik e E ik E −×∇−×∇=G G (2.3)[]φ000)((2.3)G G G G (24)[]φφφ000000)()(ik ik e H ik H e H H −−×∇−×∇=×∇=×∇(2.4) (21)(22)(25)(28)(2.1)(2.2)(2.5)(2.8)B ∂G G t E ∂−=×∇G (2.5)(26)t D H ∂∂=×∇G (2.6)G G 0=⋅∇D (2.7)(28)0=⋅∇B (2.8)(2.9)(2.10)(2.9)E D G G ε=G G (210))HB μ=(2.10) 因光纤为透明介质(无磁性),于是0μμ≈ωi t =∂∂φμωμ0000ik e H c ik H i E −−=−=×∇G G G (2.11) φεωε0ik e E i c ik E i H −==×∇G G G (2.12) 00()(2.32.3))(2.112.11))(2.42.4))(2.122.12))G G G −=−000000)(H c ik E ik E μφ×∇×∇00000)(E c ik H ik H G G G εφ=×∇−×∇1G G G ∇=−(213)00000)(E ik H c E ××∇μφ1H k E c H G G G ×∇=+×∇ε(2.13) (2.14) 0000)(ik φ()H G 0[]000200)(1)(1)(1)(E c E E E G G G G εφφφφμφ−=∇−∇⋅∇=×∇×∇000c c c μμ(2.15)λ→0000)(H c E G G μφ=×∇(2.16) 00)(E c H G G εφ−=×∇(2.17)问题2.2:(2.15)(2.16)000E H ϕϕ⋅∇=⋅∇=G G (2.18a) (218b)∇∇G G (2.18b)0E H ϕϕ⋅∇=⋅∇=G G 、、三个矢量相互垂直三个矢量相互垂直!!0E 0H ϕ∇(2.1(2.188)(2.1(2.155)r c εεμεμφ===∇00221)((2.19)22(220)με00)(n =∇φ(2.20)G G =)()(r n r ∇φ(2.21)221)G (2.21)“程函方程” ()r φ程函方程的物理意义:讨论讨论:r G ∇()φ)(r G φ∇“”n r G 场源()(2.2.2121))),,(),,(),,(),,(2222z y x n z z y x y z y x x z y x =⎥⎦⎤⎢⎣⎡∂∂+⎥⎤⎢⎡∂∂+⎥⎦⎤⎢⎣⎡∂∂φφφ(2.22)⎦⎣问题2.3:(2.2.2121))2.2.2 光线方程根据折射率分布,可由程函方程求出光程函()r Gφ为此,可从程函方程出发推导光线方程。
物理学中的非线性光学和光纤光学光学是物理学的一个重要分支,研究光的各种现象和性质,其中非线性光学和光纤光学是光学中的两个重要研究领域。
一、非线性光学非线性光学是研究光在介质中传播时,受到非线性效应影响而发生的物理现象。
在传统的线性光学中,光的传播受到介质的折射率的影响,而非线性光学中,光的传播还受到介质中的非线性响应的影响。
非线性响应是介质对于强度较高的电磁波的响应,强度较低的光束对于介质的响应可以被视为线性响应,而强度较高的光束则会引起非线性响应。
非线性响应可以分为电离、折射率、吸收、色散等方面的非线性效应。
非线性光学的研究内容包括非线性介质、非线性相位、非线性波浪等方面。
其中最常见的非线性效应是Kerr非线性效应,它是由于介质的折射率随着光强度的变化而变化引起的。
此外,还有双折射非线性效应、非线性吸收效应等。
非线性光学对于工程应用有着广泛的应用,特别是在激光器技术、光通信技术等方面,非线性光学发挥着不可替代的作用。
二、光纤光学光纤光学是研究光在光纤中的传输和控制的一个重要分支,许多现代通信技术中都涉及到了光纤光学的研究。
光纤是一种以玻璃或者高分子材料为主要材料的、具有高折射率的材料。
光可以通过光纤中的气-固界面发生全反射,在光纤中进行传输。
光纤光学研究的重点主要包括光纤传输、光波导、分布式反馈激光器等方面。
其中,分布式反馈激光器是光纤光学中的重要技术之一。
分布式反馈激光器是一种基于光纤光学原理制造的光源,具有高功率、窄带宽、单模输出等优点。
它广泛应用于光通信领域、精密测量、光谱学、制造业等领域。
总的来说,非线性光学和光纤光学都是光学中非常重要的研究领域。
伴随着科技的不断进步和发展,非线性光学和光纤光学将会有着更广泛的应用和更加深入的研究。
光纤光学字母-回复什么是光纤光学?光纤光学是一种光信号传输技术,利用光纤作为光信号的传输介质。
光纤由光导纤维构成,光信号通过光波的传播来实现信息的传输。
光纤光学是光学通信领域的关键技术之一,已广泛应用于电话通信、互联网、电视等领域。
一、光纤光学的发展历程光纤光学的发展可以追溯到19世纪末,当时科学家开始研究光的传播性质。
然而,直到20世纪60年代,光纤光学技术才逐渐成熟并开始应用于通信领域。
1970年,发明了第一根低损耗光纤。
1980年代,光纤光学通信技术得到了迅速发展,高品质、高速率的光纤通信网络开始广泛部署。
二、光纤光学的工作原理光纤光学的工作原理可以简单概括为光信号的传输和调制解调。
光信号通过光纤传输时,会发生光波的折射和反射。
光波的传输过程中,会受到多种因素的影响,如色散、衰减等。
因此,光纤的设计和制造需要考虑这些因素,以提高信号传输的质量和效率。
在光纤光学通信系统中,光信号通过发光二极管(LED)或半导体激光器产生。
光信号经过调制器调制成数字信号,然后通过光纤传输到接收端。
接收端通过接收器将光信号解调成原始的数字信号,然后再进行处理和解码。
三、光纤光学的优点光纤光学比传统的铜质电缆有许多优点。
首先,光纤光学传输的带宽更大,传输速度更快。
其次,光纤光学的信号传输不受电磁干扰的影响,更稳定可靠。
此外,光纤光学的传输距离更远,可以覆盖更大的范围。
最后,光纤光学的体积较小,更便于布线和安装。
这些优点使得光纤光学在现代通信技术中得到广泛应用。
崇尚高速和稳定的互联网、高清晰度的数字电视、高品质的电话通信等,都离不开光纤光学的支持。
四、光纤光学的应用领域光纤光学广泛应用于不同领域。
在通信领域,光纤光学用于光纤通信网络的构建,实现高速和稳定的数据传输。
在医疗领域,光纤光学被用于内窥镜和激光手术等医疗设备中,实现无创伤的检查和治疗。
在工业领域,光纤光学被用于检测设备和传感器中,实时监测温度、压力、湿度等参数。