高速铁路及动车组技术简介
- 格式:ppt
- 大小:3.17 MB
- 文档页数:24
高速铁路动车组简介(一)牵引动力及牵引方式比选1、高速列车应采用电力牵引内燃牵引和电力牵引两种牵引种类列车速度从100km/h增加到300km/h时,运行阻力约增加5倍,此时牵引列车的总功率则为100km/h时的15倍电力牵引更适宜高速列车的牵引内燃牵引是很难实现的主要原因如下:(1)目前我国功率最大的DF8内燃机车标称功率为2720kw,柴油-发电机组总重为30.87t,柴油机组平均每千瓦功率金属消耗量为11.35kg/kw。
而电力机车以 SS3为例,机车功率为4320kw,主变压器重12.4t,平均每千瓦功率金属消耗量为 2.87kg/kw。
因此牵引动力装置在轴重和轴数维持一样的条件下,电力牵引可实现更大的牵引功率。
(2)内燃牵引若实现高速牵引则必须提高柴油机功率,必然会增加柴油发电机组及辅助系统重量,最终会导致机车轴重或轴数增加。
轴重的增加对高速列车的运行是极其有害的,它增大了轮对对钢轨的冲击力,易导致钢轨的折断,并增加了轨道线路的养护维修工作量和维修费用。
若为了维持轴重不增加而增加轴数,如采用C0-C0式转向架或B0-B0-B0式转向架,或组合式机车,使转向架复杂,不利于机车的高速运行。
(3)大功率柴油机的噪音及排放的废气对环境造成严重的污染,影响旅行的舒适度,同时由于机车燃料油的储备有限,列车不能长距离行驶,需换挂机车或在站上补充燃料及水,增加了列车辅助作业时间。
电力牵引由于牵引功率的增加,对列车的质量影响很小,易实现大功率牵引,所以高速列车最佳的牵引方式为电力牵引。
2、高速铁路宜采用动车组目前我国铁路基本上采用机车牵引旅客列车的输送方式,机车和旅客列车分别整备,机车在车站联挂列车后出行,机车只在规定的交路范围内运行。
这种运行方式有以下缺点:(1)机车按规定交路行驶,中途须换挂机车,辅助作业时间延长,从而使旅行时间延长。
而动车组本身在运行中不需更换牵引动力,有效地压缩了运行时间。
(2)列车出入始发(终到)站时通过车站咽喉区每开行一对旅客列车,则占用咽喉次数达6次,造成咽喉区能力紧张。
高速动车组高速动车组是一种现代化的铁路列车,由于其高速、高效和安全的特性,成为了现代铁路运输的重要组成部分。
本文将从以下几个方面介绍高速动车组的特点、优势以及技术创新。
一、高速动车组的特点1. 高速性能:高速动车组的最大速度可达到每小时350公里以上,大大缩短了城市之间的行车时间,提高了运输效率。
2. 舒适性:高速动车组采用了先进的悬挂系统和隔音装置,减少噪音和震动,乘客在列车上可以获得更加舒适的旅行体验。
3. 安全性:高速动车组配备了先进的安全设备,如自动紧急制动系统、防撞装置和火灾报警系统等,确保列车在运行过程中的安全。
4. 环保性:高速动车组采用了先进的动力系统,如电力驱动或混合动力系统,减少了对环境的污染,降低了能源消耗。
5. 多功能配套:高速动车组车厢内配备了餐车、儿童乐园、商务会议室等多种功能区域,为乘客提供了更多选择和便利。
二、高速动车组的优势1. 提高运输效率:高速动车组的高速性能和大容量设计,可以大幅提高铁路运输的效率,减少了交通拥堵和排队时间。
2. 降低成本:高速动车组的运营成本相对较低,相比其他交通工具,高铁的运营成本更加经济实惠。
3. 促进区域发展:高速动车组连接了各个城市,促进了区域间的经济交流和发展,形成了一个更加紧密的经济圈。
4. 提高客户满意度:高速动车组提供了舒适的乘坐体验和多元化的服务,满足了旅客对于高品质出行的需求。
5. 促进旅游业发展:高速动车组连接了不同的旅游景点,方便了旅客的出行,推动了旅游业的发展。
三、高速动车组的技术创新1. 车体设计创新:高速动车组采用了轻量化材料和优化设计,使车体更加坚固而轻巧,减少了空气阻力和能耗。
2. 动力装置创新:高速动车组采用了先进的电力驱动或混合动力系统,提高了能源利用效率,减少了对环境的污染。
3. 通信信号创新:高速动车组采用了先进的通信信号系统,确保了列车之间的高精度定位和安全行车,减少了事故的发生概率。
4. 运维技术创新:高速动车组采用了先进的监测和维护技术,实现了智能化运维管理,提高了列车的可靠性和安全性。
高铁技术详解随着科技的发展,交通运输领域也在不断创新和进步。
高铁作为一种新型的交通工具,以其快速、安全、便捷的特点,受到了越来越多人的青睐。
高铁技术是指在高速铁路建设和运营中所涉及的各种技术,包括轨道、车辆、信号、通信等方面的技术。
本文将从这些方面对高铁技术进行详细解析。
一、轨道技术。
高铁的轨道技术是其基础技术之一,也是保证高铁列车安全、平稳运行的重要因素。
高铁轨道采用了混凝土轨道,其优点是强度高、耐磨损、寿命长,能够适应高速列车的运行需求。
此外,高铁轨道还采用了预应力技术,使得轨道更加坚固,能够承受更大的载荷。
同时,高铁轨道还采用了无缝轨道技术,确保了列车在高速运行时的平稳性和安全性。
二、车辆技术。
高铁车辆是高铁技术的核心之一,其设计和制造直接关系到列车的运行速度、舒适度和安全性。
高铁车辆采用了轻量化设计,采用了铝合金等轻质材料,使得列车的自重减轻,能够提高列车的运行速度和节能性能。
此外,高铁车辆还采用了空气动力学设计,减小了列车的空气阻力,提高了列车的运行速度和能效比。
高铁车辆还采用了智能控制系统,能够实现列车的自动控制和监测,提高了列车的运行安全性。
三、信号技术。
高铁的信号技术是保证列车安全运行的关键技术之一。
高铁信号系统采用了ETCS(European Train Control System)技术,实现了列车的自动控制和监测。
ETCS技术采用了无线通信技术,能够实时监测列车的位置、速度和状态,确保列车在运行过程中能够及时做出反应。
此外,高铁信号系统还采用了CBTC(Communication Based Train Control)技术,实现了列车的自动调度和运行,提高了列车的运行效率和安全性。
四、通信技术。
高铁的通信技术是保证列车运行和乘客信息传输的重要技术。
高铁列车采用了移动通信技术,能够实现列车与列车、列车与地面的实时通信。
高铁列车还采用了互联网技术,能够为乘客提供高速、稳定的网络连接,满足乘客在列车上上网、通话等需求。
高速铁路技术第一篇:高速铁路技术简介高速铁路技术是一种现代铁路交通技术,这种技术的目的在于提高铁路列车的速度和效率。
高速铁路技术发展的主要应用领域是高速列车,它们可以行驶在特殊铁路轨道上,这些轨道通常建立在平直的路线上,并且至少要达到每小时200公里以上的速度。
高速铁路技术主要包括五大方面:轨道技术、列车技术、供电技术、信号技术和通信技术。
其中轨道技术是高速铁路技术的核心。
高速铁路的轨道必须比普通铁路的轨道更加平直、更加坚固、更加稳定,以满足高速列车安全、平稳且高效的旅途需求。
同时,高速铁路列车在高速行驶时会产生较大的噪声和振动,需采取相关技术控制。
列车技术也是高速铁路技术的重要组成部分。
高速列车通常采用气动带动、轴箱承载的动力和通风系统,同时利用计算机技术控制列车的平衡性、安全性和速度。
高速铁路列车的空气动力学特性与一般列车完全不同,对列车设计、制造等方面提出了更高坚实要求。
供电技术则是高速铁路技术中另一个关键因素。
高速铁路列车速度较快,对电气化供电的要求也更高,供电系统必须能够提供充足、安全、稳定的电力,同时防止供电系统出现过载或欠压的情况。
近年来,新型磁浮列车技术正在发展中,由电磁力推动,不需要轨道,非常有前景。
信号技术和通信技术的应用,可以实现列车之间的无线互联,提高铁路交通安全性和便利性。
在高速铁路中,列车控制采用自动控制系统,通过信号设备和信息技术实现列车之间的信息互通,并能够有效的监测列车状态,提高运行效率。
总之,高速铁路技术是现代科学技术和工程技术的集大成者,它的核心是轨道技术,说明高速铁路的发展离不开新技术的引领和创新,有望成为未来铁路运输的新方向。
第二篇:全球高速铁路技术发展概述随着科学技术的发展,高速铁路技术在全球范围内得到了广泛的应用和推广。
目前,高速铁路技术应用最广泛的国家是中国、法国、德国、日本和韩国等, 此外,一些东南亚国家和中东国家也开始积极发展高速铁路。
在全球范围内,中国的高速铁路建设可谓最为迅速,在短短几十年间,中国已成为高速铁路技术应用最广泛的国家。
铁路行业的高速列车技术资料高速列车是现代铁路行业的重要组成部分,它以其快速、安全和节能环保等特点,成为人们出行和货物运输的首选方式。
为了让读者更好地了解铁路行业的高速列车技术,本文将介绍高速列车的设计理念、构造组成、运行原理以及未来发展趋势。
一、高速列车的设计理念高速列车的设计理念主要包括速度、安全和舒适性等方面。
首先,以速度为重要目标的设计使得高速列车能够以惊人的速度行驶,提高运输效率。
其次,安全是高速列车设计的核心,各种安全系统和措施确保旅客和货物的安全运输。
另外,高速列车还注重舒适性,提供舒适的座椅、空调系统以及便捷的卫生间等设施,为乘客提供良好的乘坐体验。
二、高速列车的构造组成高速列车主要由车体、动力系统、制动系统、转向系统和辅助设备等部分组成。
1. 车体:车体是高速列车的基础结构,承担着负责载荷和提供旅客舒适乘坐环境的重要任务。
车体通常采用轻量化的材料,如铝合金和复合材料,以减轻整车重量并提高车辆运行速度。
2. 动力系统:动力系统是高速列车的“心脏”,主要由电力机车或动车组组成。
电力机车通过接触网提供的电能带动车辆运行,而动车组则内置发动机和发电装置,实现自给自足的动力输出。
3. 制动系统:为了确保高速列车的安全行驶,制动系统起着至关重要的作用。
常见的制动系统有电力制动、气动制动和电子制动等,能够有效控制列车的制动力和速度。
4. 转向系统:转向系统用于控制高速列车的行进方向,包括转向架和轮对等部件。
合理的转向系统设计可以提高列车的稳定性和行驶灵活性。
5. 辅助设备:高速列车的辅助设备包括空调系统、供电系统、卫生间、车门等。
这些设备为旅客提供了良好的乘坐环境和舒适体验。
三、高速列车的运行原理高速列车的运行原理主要基于列车的动力输出和牵引力的产生。
高速列车使用电力机车或动车组提供动力,通过接触网或内置的发动机驱动车辆行驶。
列车的牵引力通过电机或柴油发动机产生,将动力传递给车轮,推动列车行驶。
机电商报/2008年/12月/8日/第A04版机床工具高速动车组5大关键技术北京交大机电学院教授、副院长刘志明按照国务院提出的“引进先进技术,联合设计生产,打造中国品牌”的总体要求和“先进、成熟、经济、适用、可靠”的技术方针,成功引进了世界一流的动车组技术,形成了CRH系列中国铁路高速动车组技术体系。
中国铁路高速动车组构成CRH1动车组由庞巴迪BSP公司制造,编组8辆、定员668人,运营时速200~250Km,牵引功率5300千瓦,不锈钢车体,轴重小于16吨。
CRH2-A型车由四方股份制造,编组8辆、定员610人,运营时速200~250km,牵引功率4800千瓦,铝合金车体轴重小于14吨。
CRH2-C型车,四方股份动车组,第61列,运行速度300公里、8辆编组、座车。
CRH3型车,由唐山工厂制造,编组8辆,定员608人,运营时速300~350公里,牵引功率8800千瓦,铝合金车体,轴重小于17吨。
CHR5型车由长客股份制造,编组8辆、定员622人,运营时速200~250公里,牵引功率5500千瓦,铝合金车体,轴重小于17吨。
车辆购置费大致预测为:2009年937.50亿元,2010年1125亿元,2011年1375亿元,2012年1562.5亿元。
到2009年上半年,即有约300列动车组(含时速250公里和350公里两种类型)将开始招标,为即将竣工的石太线、郑西线和广深珠等线路服务。
朔黄线也计划排在大秦线(2008年大批量采购)之后于2009年批量购置和谐型电力机车。
动车组关键技术分析动车组整体集成对动车组车体、转向架以及牵引变流、制动、网络控制、辅助供电、车辆连接等元素按有关参数进行合理选择设计,进而生产、组装、测试、试验的过程。
通过集成使动车组达到牵引、制动、车辆动力学、列车空气动力学、舒适性、安全性等性能要求。
这是主机厂需要掌握的关键技术。
车体技术车体技术主要包括3项:首先,动车组的高速化需要流线化、车体减重、动力分散使得车体承载了众多设备;车体保证强度、刚度与轻量化是一对矛盾。
中国高速铁路的技术特点随着中国经济的快速发展,交通需求不断增长。
为了满足人们的出行需求,并提高运输效率,中国高速铁路得到了迅猛的发展。
中国高速铁路以其快速、安全、高效的特点,成为了世界上最为发达的高速铁路网络之一、下面我们将从技术方面介绍中国高速铁路的特点。
一、列车技术1. 高速列车设计:中国高速铁路采用了Fuxing和Hexie两种型号的高速列车。
这些列车采用先进的设计,具有高度的通用性和适应性。
它们拥有流线型外观、低空气阻力和高效能电动机,从而能够在高速运行时减小阻力,提高能效。
2.列车动力:中国高速铁路使用电力驱动系统,即列车由电力系统供电。
电力驱动系统能够提供高效、可靠的动力,使列车运行平稳、安全、高速。
3.安全系统:中国高速铁路的列车配备了高度先进的安全系统,包括自动控制系统、自动保护系统和自动监测系统。
这些系统能够监测列车的运行情况,并在危险情况下采取应急措施,确保列车和乘客的安全。
二、轨道技术1.轨道设计:中国高速铁路的轨道设计采用了新型的固定轨道。
这种轨道具有优异的稳定性和耐久性,能够有效减少列车的摇晃和噪音,提供舒适的乘坐体验。
2.轨道布置:中国高速铁路采用了分离线路和双线路的布局。
分离线路意味着高速列车与其他列车之间相互独立,不会造成干扰。
双线路布局则允许列车在同一方向上进行超车,提高了运输能力。
3.施工技术:中国高速铁路的轨道施工采用了先进的技术,包括特殊的道床设计和高精度的轨道铺设。
这些技术能够提供坚固、平整的轨道,保证列车的稳定性和行驶速度。
三、信号技术1.信号系统:中国高速铁路采用了先进的自动化信号系统,包括信号灯、交通信号设备和信号距离控制器。
这些系统能够监测列车的位置和速度,并提供必要的信号指示,确保列车之间的安全距离和行驶速度。
2.通信技术:中国高速铁路使用了先进的通信技术,包括卫星通信、移动通信和无线电通信。
这些技术能够提供快速、可靠的通信手段,保证列车和控制中心之间的及时信息交流。
铁路运输中的高速铁路技术第一章:高速铁路技术概述高速铁路技术是指为实现高速铁路运输而开发的一系列技术,其目的是提高铁路的运输效率、安全性和舒适度。
高速铁路技术在全球范围内得到广泛应用,是铁路运输的重要发展趋势。
高速铁路技术包括车辆、线路、信号、通信等各个方面。
其中,车辆技术是保证高速铁路安全、快速和舒适的关键,而线路和信号技术则是实现高速铁路整体运营和调度的重要手段。
第二章:高速铁路车辆技术高速铁路车辆技术是高速铁路的核心技术之一,其发展直接影响到高速铁路的安全与舒适性。
高速铁路车辆技术包括车辆设计、制造、测试和运行等方面。
目前,高速铁路车辆采用的是动车组列车,其特点是先进的制动系统、挂钩系统和隔离垫等设备,以及高速运行所需的空气动力学外形设计和轨道附着力控制系统等。
第三章:高速铁路线路技术高速铁路线路技术是为保证高速列车的稳定快速运行而不断发展的。
高速铁路线路技术包括线路设计、建设、维修以及调试等方面。
高速铁路的线路设计需要满足高速列车的稳定性、轨道几何性、轨道载荷等要求。
同时,为保证高速铁路的长期稳定运行,需要采用新材料、新技术以及先进的监测设备,保证线路的安全性和持久性。
第四章:高速铁路信号与通信技术高速铁路信号与通信技术是为保证高速列车安全运行而不断发展的。
高速铁路信号与通信技术包括信号系统、数据通信、定位与导航、安全防护等方面。
高速铁路的信号系统需要满足高速列车的高速、精度以及高密度的运营需求。
同时,为满足安全和可靠性要求,需要采用先进的技术和设备,保证信号系统的长期稳定运行。
高速铁路通信技术应用于列车与地面控制中心之间的数据通信。
为保证高速列车的准确位置和行进速度,需要采用全球卫星定位系统、无线电通信等技术,并严格控制通信的安全性和私密性。
第五章:中国高速铁路技术发展现状中国自1997年开通的京沪高速铁路以来,高速铁路技术不断得到提升和完善。
目前,中国高速铁路已经成为全球最为发达和先进的铁路交通体系之一。
高速铁路技术简介一、概述(一)线路地理位置和径路(二)线路在国民经济与路网中的意义和作用(三)研究工作概述二、高速铁路主要技术条件铁路等级:高速铁路;正线数目:双线;运输组织模式:本线和跨线列车混合运行的客运专线模式;设计速度:设计最高运行速度350km/h,初期最高运行速度300km/h。
跨线列车运行速度200km/h及以上;列车类型:本线列车采用最高运行速度300km/h及以上的动车组;跨线列车采用最高运行速度200km/h及以上的动车组;线间距:5.0m;最小曲线半径:7000m;最大坡度:12‰;到发线有效长度:700m;牵引种类:电力;列车运行控制方式:自动控制;调度指挥方式:综合调度集中;三、高速铁路的设计特点高速铁路设计速度350km/h,初期开通运行速度300km/h,与传统铁路相比,表面上看,只是列车运行速度提高了。
但实际上,由于速度的提高,各种运行工况下的不利因素在高速条件下被放大了:行车事故的后果在高速条件下被放大了;对列车运行控制系统的安全性要求和技术难度在高速条件下提高了;弓网受流特性在高速条件下更复杂了;线路平纵断面条件和轨道不平顺对旅客乘座舒适度的影响在高速条件下更敏感了;列车运行对周围环境的影响在高速条件下增大了……。
因此,高速铁路不是列车运行速度的简单提高,也不是单项专业技术标准的简单提高,而是当代新型牵引动力、高性能轻型车辆、高质量线路、高速运行控制指挥和经营管理等方面技术进步的集中反映,它具有不同于传统铁路的技术内涵和特定要求。
高速铁路以高速、安全、准时、方便、舒适、全天候为综合优势,需要以高性能的技术装备、高质量的基础设施、高水平的运营管理和高度科学的规划布局为支撑条件。
作为高速铁路的设计,必须充分体现高速铁路的以上技术经济优势,具备高度的系统工程观念,系统地解决由于行车速度的提高而带来的一系列技术难点,确保高速列车高速、安全、舒适地运营。
1.运输组织模式高速铁路的运输组织模式与其他铁路一样,与国情、路情和沿线经济、社会条件等密切相关,具有很强的地域特征,不可能完全照搬国外现成的模式。