对称性思想的应用
- 格式:doc
- 大小:22.50 KB
- 文档页数:4
对称性在数学教学中的应用在数学教学中利用数学问题的对称性不仅有助于找到简洁优美的解法,也有利于学生思维水平的提高。
更重要的是可以在学习数学的同时欣赏数学美,正如古代哲学家普洛克拉斯曾说:“哪里有数学,哪里就有美。
”而对称美是数学美的基本内容和重要体现,因此在数学教学中,教师要有意识地揭示数学中的对称美,培养学生的美感,利用对称性提高学生解决问题的能力。
本文以例题为主,主要论述对称性在函数,几何等方面的应用,让学生充分认识对称性的作用,认识对称美。
运用对称性可以锻炼学生的思维,拓展学生的视野,丰富学生的想象,提高学习效果。
一、对称的概念“对称”一词,译自希腊语,其含义是“和谐”“美观”,原义指“在一些物品的布置时出现的般配与和谐”。
我国老一辈数学家段学复教授也说过:“对称,照字面来讲,就是两个东西相对而又相称(或者说相仿、相等)。
因此,把这两个东西互换一下,好像没动一样。
”在现实世界中,形式上和内容上的对称性,广泛地存在于客观事物之中,既有轴对称、中心对称、镜面对称等等的空间对称,又有周期、节奏和旋律的时间对称。
对称美,作为数学美的主要表现形式之一,其数学的实质就是自然物的和谐性在量和量的关系上最直观的表现,是组元的一个构形在其自同构变换群作用下具有的不变性。
从狭义上说,对称是指通常意义下的几何对称和代数对称;从广义上讲,对称还包含对偶、匀称等方面的内容,及各种数学概念、公式、定理间的对称思想。
二、函数中的对称性问题1.函数自身的对称性。
(1)利用奇偶函数的对称性解题。
众所周知,奇函数的图像关于原点对称,偶函数的图像关于y轴对称,只要掌握这些知识的内涵,就能得到处理这些问题的思路把看似复杂的问题简单化。
例1设(fx)是R上的奇函数,且(fx+3)=-(fx),当0≤时(fx)=x,求(f2008)。
解:因为y=(fx)是定义在R上的奇函数,所以点(0,0)是其对称中心,又(fx+3)=-(fx)=(f-x)=(f0-x),所以直线是y=(fx)的对称轴,故y=(fx)是周期为6的周期函数,所以(f2008)=(f6×335-2)=f(-2)=-(f3-1)=(f-1)=-(f1)=-1。
文献综述信息与计算科学对称性在积分计算中的应用在数学计算中, 积分计算是一个非常重要的部分. 早在古希腊时期数学家阿基米德在《抛物线图形求积法》和《论螺线》中, 利用穷竭法, 借助于几何直观, 求出了抛物线弓形的面积及阿基米德螺线第一周围成的区域的面积, 其思想方法是分割求和,逐次逼近. 虽然当时还没有极限的概念, 不承认无限, 但他的求积方法已具有了定积分思想的萌芽.[1] 17 世纪中叶, 法国数学家费尔玛、帕斯卡均利用了“分割求和”及无穷小的性质的观点求积, 更加接近现代的求定积分的方法. 可见, 利用“分割求和”及无穷小的方法, 已被当时的数学家普遍采用.[2]17世纪下半叶牛顿和莱布尼兹创造了微积分的基本方法. 但是, 他们留下了大量的事情要后人去解决, 首先是微积分的主要内容的扩展,其次是微积分还缺少逻辑基础. 创立于17 世纪的微积分, 主要应用于天文学、力学、几何学中的计算.[3] 而到19 世纪下半叶微积分已经发展成为一门系统、严密、完整的学科. 积分概念也趋于逻辑化、严密化,形成我们现在使用的概念. 定积分的概念中体现了分割、近似、求和的极限思想. 其中分割既是将[,]a b 任意地分成n 个小间,12,,,,,i n x x x x ∆∆∆∆L L ,其中i x ∆ 表示第I 个小区间的长度, 在每个小区间上任取一点i ξ做()i i f x ξ∆并求和()i if x ξ∆∑,这体现了求和的思想, 当区间的最大长度趋于零时, 和式的极限若存在即为()f x 在[,]a b 上的定积分. 利用定积分可以解决很多实际问题,例如求由曲线围成的平面图形的面积;求由曲线绕坐标轴旋转所得旋转体的体积;平行截面面积为已知的立体的体积;求曲线的弧长以及物理中的功、水压力等等时,()ba f x dx ⎰的积分形式也可以推广: (1) 可以把积分区间[,]ab 推广到无限区间上,如[,)a +∞ 等,或者把函数推广到无界函数,也就是广义积分. (2) 可以把积分区间[,]a b 推广到一个平面区域,被积函数为二元函数, 那么积分就是二重积分; 同样当被积函数成为三元函数、积分区域变成空间区域时就是三重积分. (3) 还可以将积分范围推广为一段曲线弧或一片曲面, 即曲线积分和曲面积分. 无论积分推广到何种形式, 它始终体现了这种分割的极限思想, 比如二重积分的概念:设(,)f x y 在有界闭区域D 上有界,(1) 分割: 将D 任意分成n 个小区域i σ∆并表示面积;(2) 近似: 在每个i σ∆上任取一点(,)i i ξη作乘积;(3) 求和取极限:若各区域直径的最大值趋于零时, 和式(,)i i if ξησ∆∑的极限存在, 即为 (,)f x y 在D 上的二重积分. 由此我们发现定积分与重积分在概念的本质上是一致的, 同样三重积分亦是如此.[4]此外,不定积分与定积分之间关系为:如果函数()F x 是连续函数()f x 在区间[,]a b 上的一个原函数,则()()()ba f x dx Fb F a =-⎰, 这是牛顿—莱布尼兹公式. 这个公式进一步揭示了定积分与被积函数的原函数或不定积分之间的联系. 它表明: 一个连续函数在区间[,]a b 上的定积分等于它的任一原函数在区间[,]a b 上的增量. 这就给求解定积分提供了一个简便而有效的计算方法. [5]积分在数学分析中有很重要的地位; 积分的计算方法有许多种, 相关文献都对其有探讨,但是对对称性的研究却很少涉及. 对称性在积分运算中有着很重要的意义, 通常可以简化计算. 本文研究了对称性在积分运算中的应用. 积分在数学分析中是相当重要的一项内容,而在计算积分的过程中,我们经常会碰到积分区域或者被积函数具有某种对称性的题型.[6] 那么, 如果我们在解题中发掘或注意到问题的对称性, 并巧妙地把它们应用到积分的计算过程中去, 往往可以简化计算过程, 收到意想不到的效果, 引起感情激荡, 造成感情上的共鸣, 更好地感知、理解数学美. 特别是对于有些题目, 我们甚至可以不用计算就可以直接判断出其结果. 在积分计算中利用对称性来解题这种方法, 是一种探索性的发现方法, 它与其他方法的不同之处主要体现在其创造性功能.[7] 下面我们举出几个对称性在积分计算中的例子, 张振强他的一篇对称性在二重积分中的应用论文中介绍如何利用对称性来计算二重积分, 并提出了通过适当改造被积函数和积分区城以利用对称性来简化计算的方法. 在一般情况下, 不仅要求积分区域D 具有对称性, 而且被积分函数对于区域D 也要具有对称性. 但在特殊情况下, 即使积分区域D 不对称, 或者关于对称区域D 被积函数不具备对称性, 也可以经过一些技巧性的处理, 使之化为能用对称性来简化计算的积分.[8]常见对称形式的二重积分的简化运算有三种, 一: 积分区域D关于坐标轴对称; 二: 分区域D关于=±对称. 在进行二重积分计算时, 善于观察被积原点对称; 三: 积分区域D关于直线y x函数和积分区域的特点, 注意兼顾被积函数的奇偶性和积分区域的对称性, 恰当地利用对称性方法解题, 可以避免繁琐计算, 使二重积分问题的解答大大简化. 刘渭川, 在他的利用对称性计算曲线积分和曲面积分, 论文中提到, 借助于(平面)空间曲线及空间曲面的直观几何意义, 利用曲线, 曲面关于坐标轴及坐标面的对称性, 探讨了对于定义在具有对称性的曲线、曲面上的奇(偶)函数, 如何利用对称性计算曲线积分及曲面积分这种积分方法使得曲线(面)积分更为简便、快捷, 同时, 也有利于避免因符号处理不当而导致的积分错误. [9]因此, 在积分计算中, 可以利用对称性来帮助求解, 不过我们在应用对称性求积分时还必须注意: 必须兼顾被积函数与积分区域两个方面, 只有当两个方面的对称性相匹配时才能利用; 对于第二型曲线积分与曲面积分, 在利用对称性时, 还需考虑路线的方向和曲面的侧, 应慎重; 合理利用轮换对称性以求简便计算. [10]参考文献[1] 王仲春等编著. 数学思维与数学方法论[M]. 北京: 高等教育出版社, 1991.[2] 王寿生等编. 130 所高校研究生高等数学入学试题选解及分析[M]. 沈阳: 辽宁科技出版社, 1988.[3] 陈仲、洪祖德编. 高等数学·研究生入学试题与典型例题选解[M]. 南京: 南京大学出版社, 1986.[4] 同济大学数学教研室主编. 高等数学[M]. 北京: 高等教育出版社, 1996.[5] 林源渠. 高等数学复习指导与典型例题分析[M]. 北京: 机械工业出版社, 2002.[6] 张云艳. 轮换对称性在积分计算中的应用[J]. 毕节师范高等专科学校学报(综合版),2002, 20(3): 90~92.[7] 龚冬保. 数学考研典型题[M]. 西安: 西安交通大学出版社, 2000.[8] 陈增政, 徐进明. 利用对称性简化被积函数是线性函数解的计算[J]. 工科数学, 1994,(10): 181.[9] D. Bennis, N. Mahdou . Strongly gornstein p rojective [J], injective, and flat modules1J PureApp l Algebra, 2007; 210: 437~445.[10] I.M , Gelfand, G.E.Shilov. Generalized functions vol. I [M]. New York: Academic Press1964.。
谈数学中的对称美与在解题中的应用吴恋,数学计算机科学学院摘要本文首先讨论了数和式中的对称美.其次运用对称思想来解决数学问题.在数学问题的解题过程中,巧妙地构造对称美,从整体上把握问题的实质,优化解题过程.先是就对称在微积分中的应用,列举了一些重要的结论及其在解题中的具体应用.再研究了几何图形中的对称美.然后讨论了数学中其它方面的对称美.特别是对称在记忆数学公式和数学方法中的应用.最后探讨了对称思想在数学教学中的应用,通过在数学教学中落实对称的数学美的思想方法,从而促进学生形成学习数学知识的良好的、积极的情感行为,更好地理解数学知识,提高学生解决数学问题的能力.关键词:对称;数学美;轮换对称性;积分区间;对称性原理;数学思想1引言1.1对称美对称性的感受逐惭成为一项美学准则,广泛应用于建筑、造型艺术、绘画以及工艺美术的装饰之中.你可以从许多中、外著名的建筑、艺术珍品中看到.天坛的建筑、天安门的建筑、颐和园长廊的建筑以及各种花瓶、古人饮酒的爵和各种花边等等是旋转对称、左右对称和平移对称的典型例子.这些对称美给人以匀称、均衡、连贯、流畅的感受,因而体现着一种娴静、稳重、庄严.在现实世界中,既有形态各异的自然对称,又有巧夺天工的人工对称,它们构成了一幅人与自然和谐的优美画卷.因此,对称是宇宙和自然界的基本属性,也是事物适应周围环境而生存发展和繁衍生息的自然规律,充分展现出事物协调环境、自我完善的、和谐的自然美.1.2数学中的对称美美,不仅存在于艺术、文学中,存在于大自然以及社会生活中,而且也存在于自然科学中,存在于数学之中.早在两千多年前,古代哲学家、数学家普洛克拉斯曾说过:“哪里有数,哪里就有美.”这就是说,数学中也充满了美的因素.作为一门科学,数学在其内容结构上和方法上都具有自身的某种美,即数学美.数学美的内容非常丰富,包括普适美、对称美、简洁美、比例美、和谐美、奇趣美等特性.其中对称性是数学美的重要特性之一,正如德国著名的数学家和物理学家魏尔所说的:“美和对称性紧密相连”.数学对称美是数学美的重要组成部分,它普遍存在于初等数学与高等数学的各个分支,在数学研究中有着重要的作用,一直是数学们长期追求的目标,有时甚至把它作为一种尺度,是数学创造与发现的美学方法之一.在数学中,不少的概念与运算,都是由人们对于“对称”问题的探讨派生出来的.数学中众多的轴对称,中心对称图形和等量关系都被赋予了平衡、协调的对称美.对于数学概念,也是一分为二地成对出现的:整-分,奇-偶,和-差,曲-直,方-圆,分解-组合,平行-交叉,正比例-反比例……,都显得那么的稳定、和谐、协调、平衡,如此地奇妙动人.2数和式的对称美2.1数的对称美在数学中,如果一个整数,它的各位数字是左右对称的,我们就称这个数是对称数.例如:1234321、123321等.对称数可以分为奇位对称数和偶位对称数.奇位对称数是指位数是奇数的对称数,奇位对称数位数最中间的那个数字称为对称轴数.偶位对称数是指位数是偶数的对称数,偶位对称数没有对称轴数.产生对称数的方法有很多种:(1) 形如11、111、1111、……的数的平方数是对称数.如:1×9+2=11 12×9+3=111 ...............123456789×9+10=1111111111(2)某些自然数与它的逆序数相加,得出的和再与和的逆序数相加,连续进行下去,也可得到对称数. 如:475475+574=1049 1049+9401=10450 10450+05401=15851 15851也是对称数.美的主要形式就是秩序,匀称和确定性,上面的几个式子就巧妙的体现了数和式中的对称美.可以看出,数学与美学是紧密相连,相辅相成的. 2.2式的对称美如果在代数式中,把任意的两个字母对换,代数式仍然保持不变,像这样的代数式就称为是对称代数式或对称式.如:223223,2,33x y z x xy y x x y xy y +++++++,互换式子中的,x y ,得到的式子仍然成立.在对称式中,字母是对称的,地位是平等的. 在二项式定理:00111222222110()n n n n k n k kn n n n n nn n n n n n n a b C a b C a b C a b C a b C a b C ab C a b -------+=+++++++中,如果把当1,2,n n =的二项式展开式的系数列成如下:11 1 12 1 13 3 1 14 6 4 1 15 10 10 5 1 16 15 20 15 6 10n C 1n C 2n C 3n Cn n C这就是著名的“杨辉三角”,它是宋朝数学家杨辉的杰作.杨辉三角是我国数学发展史上的一个成就,它反映的就是数学美的对称性.在代数学中,也存在着漂亮的对称式,如:初等对称多项式:112212131112n n n nn n x x x x x x x x x x x x x x σσσ-=+++⎧⎪=+++++⎪⎨⎪⎪=⎩, 它在解题中也有广泛的应用.其中在运用初等对称多项式解题时联系最紧密的就是根与系数的关系定理:对于n 次多项式11110()n n n n f x a x a x a x a --=++++的n 个根12,,,n x x x有如下关系:1122121311012(1)n n nn n n nn n n n a x x x a a xx x x x x x x a a x x x a ---⎧+++=-⎪⎪⎪+++++=⎪⎨⎪⎪⎪=-⎪⎩由此定理可以非常简便的求出关于多项式根的对称多项式的值.例1.设1a ,2a ,3a 是方程0876523=-+-x x x 的三个根,计算:))()((233121233222222121a a a a a a a a a a a a ++++++(*)的值.解:令3211a a a ++=σ. 3132212a a a a a a ++=σ, 3213a a a =σ, 则 561=σ,572=σ,583=σ. 再将(*)式化为初等对称多项式的多项式,得:))()((233121233222222121a a a a a a a a a a a a ++++++ =323312221σσσσσ--=-6251679. 由上面的例子可以看出,对称性在数学中是广泛存在的,数学与对称是紧密相连的.3对称美在数学中的应用3.1对称在数学解题中的应用解题是一门艺术,对称性是艺术的一个非常重要的要素,如果在解题的过程中注意到对称性,那么就可以减少一些繁琐的计算,化难为易,提高解题的效率,达到事半功倍的效果.微分与积分也是一对具有对称美的事物,而对称性的方法也是微积分计算中常用的方法.3.1.1对称在微分学中的一些结论与应用定理:(1)若(,)(,)u x y u y x =,则(,)(,)y x u x y u y x =;(2) 若(,)(,)u x y u y x =-,则(,)(,)y x u x y u y x =-.因此若求出x u ,则可直接写出y u ,xx u 与yy u 的关系,也是如此. 例2.设()xy u e x y =-,求出x u ,y u ,xx u ,yy u . 解:2()(1)xy xy xy x u e y x y e e xy y =-+=-+,223(1)(2)xy xy xy xx u e y xy y e y e xy y y =-++=-+.对称的有:2(1)xy y u e x xy =--,32(2)xy yy u e x x y x =--. 3.1.2对称在积分学中的一些结论和应用3.1.2.1在重积分计算中,经常利用多元函数的轮换对称性来解题.轮换对称性的定义:若积分区域或被积函数的表达式中,将其变量x,y,z 按下列次序:x →y;y →z;z →x 后,其表达式均不变,则称积分区域或被积函数关于变量x,y,z 具有轮换对称性. 定理1:(二重积分的坐标轮换对称性)如果区域D 的边界曲线方程是关于x,y 地位对称,(,)f x y 在D 上连续,则(,)(,)DDf x y dxdy f y x dxdy =⎰⎰⎰⎰定理2:(三重积分的坐标轮换对称性)如果有界闭区域Ω的边界曲面的方程关于x,y,z 地位对称,()f u 在Ω上连续,则()()()f x dxdydz f y dxdydz f z dxdydz ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰.由此,可以推广到:定理3:(n 重积分的坐标轮换对称性)如果n 维有界闭区域V 的边界曲面的方程关于12,,,n x x x 地位对称,()f u 在V 上连续,则112()n f x dx dxdx ⎰⎰⎰⎰=212()n f x dx dxdx ⎰⎰⎰⎰=12()nn f x dx dxdx =⎰⎰⎰⎰例3.计算三重积分2()()f x dxdydz x y z dxdydz ΩΩ=++⎰⎰⎰⎰⎰⎰,其中Ω是0,0,0x a y a z a ≤≤≤≤≤≤所围成正方形(a 为一大于0的实数).解:2222()(222)I x y z dxdydz x y z xy xz yz dxdydzΩΩ=++=+++++⎰⎰⎰⎰⎰⎰中被积函数及积分区域都有轮换对称性.所以222xd x d y d z y d x d y d zz d x d y d zΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰,xydxdydz xzdxdydz yzdxdydz ΩΩΩ==⎰⎰⎰⎰⎰⎰⎰⎰⎰,故2(36)I x xy dxdydz Ω=+⎰⎰⎰260005(36)2a a adz dy x xy dx a =+=⎰⎰⎰.3.1.2.2 利用积分区间的对称性和被积函数的奇偶性,可简化定积分的计算. 定理:设()f x 是[]b a ,上的连续函数,则通过变换x a b t =+-,可得:()baf x dx ⎰=()baf a b x dx +-⎰[]22()()a b af x f a b x dx +=++-⎰这就是积分区间的对称原理.特别地,当()()f x f a b x =+-时,有()ba f x dx ⎰22()ab af x dx +=⎰.例4.求积分2π⎰.解:由于()f x =0,2π⎡⎤⎢⎥⎣⎦上有界,且只有可去间断点2x π=,故定积分存在.由积分区间对称原理可得:原积分201121()2dx x ππ⎡⎤⎢⎥=+⎥⎥+-⎣⎦⎰220011224dx dx πππ===⎰⎰. 若被积函数是非奇非偶时,通过适当的换元或拆项等方法也可转化为对称区间的积分问题.把积分区间的对称性原理推广到二元函数积分中,可以得到结论: 结论1:设D 关于y 轴对称,则(,)Df x y dxdy ⎰⎰12(,)(,)0(,)D f x y dxdy f x y x f x y x ⎧⎪=⎨⎪⎩⎰⎰若关于变量为偶函数若关于变量为奇函数’ 其中1D 是D 的右半部分:1{(,)|(,),0}D x y x y D x =∈≥且.结论2:设D 关于x 轴对称,则(,)Df x y dxdy ⎰⎰12(,)(,)0(,)D f x y dxdy f x y y f x y y ⎧⎪=⎨⎪⎩⎰⎰若关于变量为偶函数若关于变量为奇函数’ 其中1D 是D 的上半部分:1{(,)|(,),0}D x y x y D y =∈≥且.结论3:设D 关于x 轴和y 轴均对称,且(,)f x y 关于变量x 和变量y 均为偶函数,则1(,)4(,)DD f x y dxdy f x y dxdy =⎰⎰⎰⎰其中1D 是D 在第一象限的部分:1{(,)|(,),0,0}D x y x y D x y =∈≥≥且. 结论4:设D 关于原点对称,则(,)Df x y dxdy ⎰⎰122(,)2(,),(,)(,)0(,)(,)D D f x y dxdy f x y dxdy f x y f x y f x y f x y ⎧=--=⎪=⎨⎪--=-⎩⎰⎰⎰⎰如果如果 其中1{(,)|(,),0}D x y x y D x =∈≥且,2{(,)|(,),0}D x y x y D y =∈≥且. 结论5:设D 关于直线y=x 对称,则(,)(,)DDf x y dxdy f y x dxdy =⎰⎰⎰⎰特别地,当12(,)()()f x y f x f y =时,1212()()()()DDf x f y dxdy f y f x dxdy =⎰⎰⎰⎰.例5.计算二重积分2(751)DI x x y d σ=+++⎰⎰,其中22:1D x y +≤.解:D 关于x 轴和y 轴均对称,而75x y 和分别关于变量x 和y 为奇函数,故(75)0Dx y d σ+=⎰⎰,所以:22(1)D D DI x d x d d σσσ=+=+⎰⎰⎰⎰⎰⎰212005(cos )4d r rdr πθθππ=+=⎰⎰.同样地,将它应用到三重积分中.例6.计算三重积分()x z dxdydz Ω+⎰⎰⎰,其中Ω是由曲面z =与z =.解:Ω关于坐标面x=0对称,且关于变量x 为奇函数,故0xdxdydz Ω=⎰⎰⎰.所以()x z dxdydz zdxdydz ΩΩ+=⎰⎰⎰⎰⎰⎰21240cos *sin 8d d r r dr πππθϕϕϕ==⎰⎰⎰.例10.计算三重积分222222ln(1)1V z x y z dxdydz x y z ++++++⎰⎰⎰, 其中{}222(,,)|1V x y z x y z =++≤.解:积分区域V 是以原点O(0,0,0)为中心的单位球域,所以V 关于xoy 平面对称,被积函数222222ln(1)(,,)1z x y z f x y z x y z +++=+++是关于z 的奇函数, 故由对称性知222222ln(1)01Vz x y z dxdydz x y z +++=+++⎰⎰⎰. 由上可见,在解决微积分问题时,巧妙应用对称性的观点去解题,可以使运算过程更加的快捷、流畅,计算结果更加的精确. 3.2 对称在数学中的其他应用对称是形式美的显著特征,就数学而言,不仅让枯燥抽象的数学公式变得容易记忆,而且也是数学命题证明必不可少的一种方法. 3.2.1利用对称性记忆公式在数学分析中,斯托克斯公式有一种形式表示法:sin sin sin c s Pdx Qdy Rdz ds x yz PQR αβγδδδδδδ⎛⎫⎪ ⎪++= ⎪⎪⎝⎭⎰⎰⎰ 其中P,Q,和R 为连续可微函数,S 为逐片光滑的有界双侧曲面,C 为包围S 的逐段光滑的简单闭曲线,(sin ,sin ,sin )αβγ为曲面S 在点(,,)x y z 处的单位法向量,方向为逆时针,这个公式的右边是用第一型曲面积分表示的,被积函数是一个三阶行列式.若取xy 平面上的平面区域D 作曲面S,并取上侧,则斯托克斯公式右侧的三阶行列式为001x y x yz P Q PQR δδδδδδδδδδ⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭于是斯式公式就变成了格林公式,由此可见,格林公式是斯式公式的特例. 类似地,奥式公式可表示为(sin ,sin ,sin )(,,)(,,)(,,)SVP Q R ds P Q R dv x y zδδδαβγδδδ=⎰⎰⎰⎰⎰ 其中S 是包围V 的逐片光滑曲面,P,Q,R 在S+V 上是连续可微的,(sin ,sin ,sin )αβγ为曲面S 上点(,,)x y z 处的单位法向量.不难看出,斯式公式和奥式公式都是由三个矢量(P,Q,R),(sin ,sin ,sin )αβγ,及(,,)x y zδδδδδδ所决定的. 上述一些形式上的对称性,是数学分析中追求对称形式美的有利证据.一些望而生怯的公式由于有了对称美,变得非常容易记忆了. 3.2.2数列解题中的的对称思想在数列解题中,存在着大量的对称思想,无论是等差数列还是等比数列,都含有丰富的对称之美.我们知道:只要m n p q +=+,其中,,,m n p q N ∈,就有 (ⅰ)m n p q a a a a +=+(等差数列)(ⅱ)m n p qa a a a =(等比数列)利用这个数量关系来处理有关数列问题,常常能化繁为简. 例11.(1)已知{}n a 为等差数列,且23101148a a a a +++=,求67?a a +=(2)已知{}n a 为等比数列,2435460,225n a a a a a a a >++=,求35?a a +=解:(1)∵21131067()()482()a a a a a a +++==+,∴6724a a +=(2)∵2224333465,a a a a a a a a ===,∴223355225a a a a ++= ∵20a >,∴355a a +=例12.在等差数列中,69121520a a a a +++=,求20S .解:∵691215651202()2()a a a a a a a a +++=+=+∴201202()20S a a =+=由此可以看出,如果在等差数列中,由条件不能具体的求出1a 和d ,但可以求出1a 和d 的组合式,而所求的量往往可以用这个组合式来表示,那么就用“整体代值”的方法将值求出,同样的方法也可以用在等比数列中.3.3 对称美与数学教学人们常说:“成功的教学给人以一种美的享受”.而长期以来,在数学教学中,人们总是重视基础知识和基本技能的传授与训练,而忽视了美育的渗透,不善于发现数学本身所特有的美,不注意用数学美来感染诱发学生的求知欲望,激发他们的学习兴趣,不重视引导学生发现数学美,鉴赏数学美,以致使一些学生感到数学抽象枯燥,失去学好的信心.心理学研究表明:没有丝毫兴趣的强制性学习,将会扼杀学生探求真理的欲望.因此,只有学生热爱数学,才能产生积极而又持久的求学劲头.我国数学家徐利治认为:“数学教学的目的之一是使学生获得对数学的审美能力,即能增进学生对数学美的主观感受能力.”数学的教学过程不仅仅是学生个体的认识过程和发展过程,而且也是在教师指导下的一种特殊审美过程.因此在教学过程中,应当把数学美的内容通过教学过程的设计向学生揭示出来,从而使学生认识到数学的内容是美的,并且充分运用数学美的诱发力引起学生浓厚的学习兴趣、强烈的求知欲望,使抽象、高深的数学知识得以形象化、趣味化,使学生从心理上愿意接近它、接受它,直到最终热爱它.对称美是数学中最普遍的一种美.图形的对称、式子的对称和解题方法的对称等,都能给人以匀称的美感,用对称的观点去处理数学问题,往往可以从问题的一部分联想起与此对称的另一部分,从而采取补全的方法,使之构成一种整体的对称美,使问题化繁为简,化难为易.在数学教学过程中,充分发掘教材中的对称式的美,运算中的对称美、函数中的对称美、几何图形中的对称美,激发学生对数学美的体验,使学生从数学的显性美提高到对数学隐性美的认识,从感性认识上升到理性认识,使学生对所学的知识更易于接受,便于理解,培养学生爱好数学、认识数学美的兴趣.在数学问题的求解过程中,充分运用对称的数学美的思想方法,可以使学生感受到对称美,增强求知欲,使数学问题的解决更加简捷明快,从而提高了学生的直觉思维能力和形象思维能力,开拓解题新思路,进而提高了学生解决问题的能力和对数学思想方法的领悟,使学生由此而产生学习数学的兴趣.在数学解题过程中,若能积极挖掘问题中隐含的对称性,巧妙地利用对称性,可使复杂的问题变得条理清楚,脉络分明,能化难为易、化繁为简.例如对于数列中的若干项的和或积的问题,如果能对其结构进行对称性的分析,将数学的对称美与题目的条件或结论相结合,就能构建一组互相关联的对偶式,从而确定解题的总体思路或入手方向.其实质是让美的启示、美的追求在解题过程中成为宏观指导力量,使问题的解决过程更加简洁明快.数学中蕴涵着丰富的美,除了对称美以外,还有很多.把数学美的和谐对称、简单统一等特征融贯在教学的整个过程中,可以发展学生思维的灵活性、发散性、深刻性、独创性等诸方面的能力就得到培养和提高.使学生在美的享受中,获得知识,理解知识,掌握知识.结术语数学并不等于美学,但是数学中却真实地蕴藏着丰富的美学内涵,而对数学内在美的追寻探索,又会使人们更迅速、更确切的洞悉数学的真谛.对称美是数学美的重要特征之一,对称美是一个广阔的主题,数学则是它根本.我们应该更深刻地掌握我们的所学专业知识,积极地去理解数学,学好数学,这样才能更好的走向工作岗位,取得成功.参考文献:[1]钱双平.对称性在高等数学解题中的应用---数学美学方法的应用,云南电大学报,2004,6(2):62-63.[2]马锐.数学中的对称美,昆明冶金高等专科学校学报,2004,20(2):35.[3]周齐明.在数学教学中应加强数学美的教育,六安师专学报,1999,15(4).[4]杨琴,杨联华.探求高等数学中的对称美,景德镇高专学报,2005,20(4).[5]陈自高.数学中的对称美与应用,中国科技信息,2006,(5).[6]胡本荣.从对称性看数学中的美学,达县师范高等专科学校学报,2004,14(2).[7]钱双平.对称性在高等数学解题中的应用,2004,6(2).[8]窦丹.“对称思想”对学生数学能力的培养和作用:[硕士学位论文],东北师范大学,2005.[9]赵博.数学美与中学数学教学:[硕士学位论文],武汉:华中师范大学,2004.。
辩论辩题是否应该更具对称性正方,应该更具对称性。
首先,对称性是一种美学原则,它能够让事物更加和谐、平衡。
在建筑、艺术、设计等领域,对称性被广泛应用,因为它能够给人带来美的享受。
同样,对称性也可以应用在社会和政治制度中,让人们感到公平和平衡。
其次,对称性能够减少不平等现象的发生。
在现实生活中,不对称的情况往往会导致一些人处于劣势地位,而另一些人则处于优势地位。
这种不平等会导致社会不稳定,甚至引发冲突和暴力。
因此,更具对称性的制度能够减少这种不平等现象的发生,让社会更加和谐。
此外,对称性也能够提高效率。
在一个对称的系统中,资源能够更加公平地分配,每个人都能够得到应有的权利和利益。
这样一来,人们会更加积极地投入到社会建设中,从而提高整个社会的效率和生产力。
最后,伟大的哲学家康德曾经说过,“行为的原则,只要它是普遍的,就是合乎道义的。
”这句话告诉我们,对称性是一种普遍适用的原则,它能够让社会更加合乎道义,让每个人都能够得到应有的尊重和尊严。
综上所述,更具对称性的社会制度能够让社会更加和谐、减少不平等现象的发生、提高效率,因此我们应该更具对称性。
反方,不应该更具对称性。
首先,社会中的不对称现象是不可避免的。
在现实生活中,人们的能力、财富、地位等都是不同的,这种不对称是自然而然的。
因此,强行追求对称性可能会破坏现有的秩序和稳定。
其次,对称性并不一定能够带来公平和正义。
有些人认为,对称性只是一种表面的平衡,而真正的公平和正义应该是基于个人的能力和付出来决定的。
因此,过分追求对称性可能会让社会失去活力和竞争力。
此外,社会中的不对称现象也能够带来一些好处。
比如,在经济领域,不对称信息能够促进市场的有效运作,激发创新和竞争,从而推动经济的发展。
因此,不应该一味追求对称性,而是要根据具体情况来平衡各种利益和需求。
最后,伟大的思想家尼采曾经说过,“不平等是人类社会的基础。
”这句话告诉我们,不对称现象是人类社会的本质特征,我们应该接受这种不对称,并且在不同的领域中寻求平衡和协调。
对称思想的概念对称思想是一种哲学概念,涉及到自然界、人类社会和人类心理等多个领域。
在不同的领域中,对称思想都具有相似的内涵,即平衡、和谐和对等的概念。
对称思想在人类思维方式和价值观念中产生了深远的影响,也在科学、艺术和宗教等领域中有着重要的地位。
首先,对称思想在自然界中有着重要的地位。
自然界中存在着大量的对称现象,比如植物的对称花瓣、矿物的晶体结构、动物的对称体形等等。
对称在自然界中体现了一种美感和和谐感,让人感到舒适和平衡。
在物理学中,对称也是很重要的一个概念,很多基本粒子和物理定律都表现出对称性,这为科学研究提供了很多重要的线索。
对称思想在自然界中体现了宇宙的美妙和神秘,让人不禁产生对宇宙的敬畏之情。
其次,对称思想在人类社会和文化中也起着重要的作用。
在建筑、绘画、雕塑等艺术领域中,对称构图是一种常见的手法,它能够给人以稳定感和美感。
在音乐中,对称的音乐结构也是一种常见的形式,它可以使音乐富有节奏感和和谐感。
在人类社会中,对称思想也表现为平等和正义的追求。
人们希望社会中的资源和权利能够公平地分配,人与人之间能够平等对待,这些都是对称思想在社会中的具体表现。
此外,对称思想还在人类心理和思维方式中扮演了重要的角色。
人们在面对一些复杂的情境时,常常会倾向于寻求一种平衡和对称的解决方式。
在心理学中,对称思想也被用来解释人们对美感和和谐感的追求。
人们总是希望自己的内心世界是和谐、平衡的,这种追求可以看作是对称思想在心理层面的一个体现。
总的来说,对称思想是一个跨学科的概念,它在自然界、社会文化和心理学等多个领域中都有着重要的意义。
对称思想所体现的和谐、平衡和美感,符合人类对美好生活的追求,也是人类文明发展的重要动力之一。
因此,对称思想不仅在学术研究中有价值,也对人们的生活和思维方式产生着重要影响。
在现代社会中,对称思想依然具有深远的意义。
面对日益复杂和多变的社会情境,人们更加需要对称思想所体现的和谐、平衡和正义来指导自己的行为和决策。
对称性的哲学思想对称性是一种广泛存在于物理、数学、艺术等领域中的概念。
在哲学领域中,对称性的概念也有着重要的地位。
本文将从哲学的角度探讨对称性的哲学思想。
一、对称性的定义对称性是指在某一物体、场景或系统中存在一些固定的变换规则,使得经过变换后的物体、场景或系统与原来的物体、场景或系统在某种意义下是“相似”的。
这种相似可以是形式上的,也可以是性质上的。
在物理学中,对称性是指物理规律在不同变换下保持不变的性质。
二、对称性的种类对称性可以分为几种不同的类型,其中最常见的是:1.轴对称性轴对称性是指某一物体可以被一个轴线所分割成两个相似的部分。
例如,一个圆形就具有轴对称性,因为它可以被任意一条直径轴线所分割成两个相似的部分。
2.中心对称性中心对称性是指某一物体可以被一个中心点所分割成完全相似的两个部分。
例如,一个正方形就具有中心对称性,因为它可以被任意一个对角线上的交点所分割成完全相似的两个部分。
3.平移对称性平移对称性是指某一物体在平移后与原来的物体是完全相似的。
例如,一个网格图案就具有平移对称性,因为它可以在平面上沿着任意方向平移,得到与原来完全相同的图案。
三、对称性不仅在数学、物理等自然科学领域中有着重要的地位,也在哲学领域中具有深刻的思想意义。
对称性的哲学思想可以从以下几个方面来探讨。
1.美学思想对称性在美学上具有重要的地位。
许多艺术品和建筑物都以对称性为基础,以达到美的效果。
人们普遍认为,对称性是一种“美”的形式。
同时,对称性也可以成为美感的意象,通过表现对称性,艺术作品可以传递出一种美感。
2.道德思想对称性也可以在道德领域中得到应用。
斯多菲格尔曾提出“黄金规则”:不要对别人做你不愿意别人对你做的事情。
这个规则表达了对称性,即我们应该对待别人与我们希望他们对待我们的方式相同。
这种对称性可以成为道德行为的基础。
3.认识论思想对称性也可以在认识论领域中得到应用。
很多科学理论都具有对称性,例如时间对称性、空间对称性等。
物理学中对称性原理的意义物理学中的对称性原理是指物理定律在某些变换下保持不变的特性。
这些变换可以是空间平移、时间平移、空间旋转、时间反演等。
对称性是物理学的基本思想之一,具有重要的意义。
首先,对称性原理为我们提供了判断物理现象的依据。
在没有实际测量之前,我们可以通过对称性来分析物理系统的特性。
例如,根据空间平移对称性,我们可以得出一个物理系统中的能量是守恒的结论。
这样,我们就可以在没有实际测量能量的情况下,通过对称性来推断物理现象。
其次,对称性原理对于解释和发现新的物理现象也具有重要作用。
通过对称性的分析,可以揭示出物理现象的本质和规律。
例如,研究对称性的研究者Noether 发现,轨道力学中的能量守恒和动量守恒可以通过时间平移和空间平移的对称性来解释。
这个发现揭示了动力学定律的深层次的对称性结构,为我们进一步理解力学定律提供了重要线索。
再次,对称性原理是物理学理论建立的重要基础。
对称性原理有助于建立物理学的数学框架和模型。
例如,相对论物理学的基础就是以洛伦兹变换为基础的对称性原理。
通过对称性的分析,可以推导出相对论物理学的核心方程,如爱因斯坦场方程。
这些方程不仅能够描述物理现象,也符合对称性的要求。
此外,对称性原理在现代物理学研究中的应用也非常广泛。
在高能物理中,对称性原理是研究粒子物理学的重要工具。
例如,标准模型是基于SU(3)×SU(2)×U(1)对称性原理建立的,这个对称性对于描述粒子和力的相互作用非常关键。
在凝聚态物理中,对称性的破缺和重整化也是重要的研究方向。
例如,铁磁或反铁磁材料的磁性是由于系统的自旋旋转对称性破缺导致的。
对称性的破缺使得材料具有特殊的物理性质,如磁性、超导性等。
最后,对称性原理对于物理学的统一和发展也具有重要意义。
由于不同物理学领域内的对称性是相互联系的,因此从一个领域的对称性研究中可以得到对其他领域的启示。
例如,广义相对论中的时间反演对称性与量子力学中的CPT对称性相联系,这为统一引力与量子力学提供了重要线索。
力学与对称性思想浅谈王珂阳土木工程与力学学院理论与应用力学基地班2011级摘要:对称性是现代物理学中的一个核心概念,它泛指规范对称性,局域对称性和整体对称性。
对称性思想已成为人类研究现代自然科学的一条切实可用的方法论原理。
关键词:力学,对称美,对称性思想,对称操作,不变量,变换,守恒一、引言对称性思想是在研究中通过对对称美的追求来揭示事物的本质特征和规律性的思考方法。
关于对称美和对称性的思想,几乎与人类文明有着同样的悠久的历史。
但在近代以前,对称性思想和人们对美的追求,主要是应用在艺术创作和技术创造领域中。
而在近代以来,牛顿、欧拉、拉格朗日、拉普拉斯、泊松、雅克比、哈密顿、开尔文、劳斯、黎曼、诺特、庞加莱、爱因斯坦、薛定谔、嘉当、狄拉克等人应用对称性思想对力学理论的建立,逐渐的把美学中的对称性应用在自然科学方面,从他们那个年代起,对称性美和力学就是一对亲密的伙伴。
爱因斯坦说过:“我想知道上帝是如何创造这个世界的。
对这个或那个现象这个或那个元素我并不感兴趣。
我想知道的是他的思想,其他的都只是细节问题。
”他深信,美是探求理论物理学中重要结果的一个指导原则,上帝一定会以美的方程来设计这个宇宙,如果有两个可以描述自然的方程,正确的一定是那个能激起我们审美感受的那一个。
其实审美已成为当代物理学的驱动力,科学家们已经发现了某些奇妙的东西:大自然在最基础的水平上是按美来设计的,而对称美却是一种极其重要的美,因而我们应该以对称美的思想去思考世界。
二、对称美与对称性思想何为对称性?按照韦氏字典中的注释是“均衡比例”或“由这种均衡比例产生的形状美”。
人类在长期的保存个体、繁衍种族这种极为低下的生产水平和生活水平的斗争中不断发展;随着生产水平和生活水平不断提高,逐渐发展起对美和美感的追求,并逐惭开始去思考美和探索美。
对称性就是人类对美的思考和探索之一。
人类对对称性的兴趣其实可以追朔到远古时期,从古希腊文明到现在的日常生活,从美丽的雪花、达芬奇的油画、各种漂亮的装饰图案、植物的花、叶,到令人惊叹的建筑物如鸟巢、水立方等,人们无时无刻不在感受着对称性带来的美感。
高中物理常用到的思想方法一、逆向思维法逆向思维是解答物理问题的一种科学思维方法,关于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采纳逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情形更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的成效.二、对称法对称性确实是事物在变化时存在的某种不变性.自然界和自然科学中,普遍存在着优美和谐的对称现象.利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启发和培养学生的直觉思维能力.用对称法解题的关键是敏捷地看出并抓住事物在某一方面的对称性,这些对称性往往确实是通往答案的捷径.三、图象法图象能直观地描述物理过程,能形象地表达物理规律,能鲜亮地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点.运用物理图象处理物理问题是识图能力和作图能力的综合表达.它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效.四、假设法假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立.求解物理试题常用的假设有假设物理情形,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径.在分析弹力或摩擦力的有无及方向时,常利用该法.五、整体、隔离法物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件.这时,能够把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法.六、图解法图解法是依据题意作出图形来确定正确答案的方法.它既简单明了、又形象直观,用于定性分析某些物理问题时,可得到事半功倍的成效.专门是在解决物体受三个力(其中一个力大小、方向不变,另一个力方向不变)的平稳问题时,常应用此法.七、转换法有些物理问题,由于运动过程复杂或难以进行受力分析,造成解答困难.此种情形应依照运动的相对性或牛顿第三定律转换参考系或研究对象,即所谓的转换法.应用此法,可使问题化难为易、化繁为简,使解答过程一目了然.八、程序法所谓程序法,是按时刻的先后顺序对题目给出的物理过程进行分析,正确划分出不同的过程,对每一过程,具体分析出其速度、位移、时刻的关系,然后利用各过程的具体特点列方程解题.利用程序法解题,关键是正确选择研究对象和物理过程,还要注意两点:一是注意速度关系,即第1个过程的末速度是第二个过程的初速度;二是位移关系,即各段位移之和等于总位移.九、极端法有些物理问题,由于物理现象涉及的因素较多,过程变化复杂,同学们往往难以洞悉其变化规律并做出迅速判定.但假如把问题推到极端状态下或专门状态下进行分析,问题会赶忙变得明朗直观,这种解题方法我们称之为极限思维法,也称为极端法.运用极限思维思想解决物理问题,关键是考虑将问题推向什么极端,即应选择好变量,所选择的变量要在变化过程中存在极值或临界值,然后从极端状态动身分析问题的变化规律,从而解决问题.有些问题直截了当运算时可能专门繁琐,若取一个符合物理规律的专门值代入,会快速准确而灵活地做出判定,这种方法专门适用于选择题.假如选择题各选项具有可参考性或相互排斥性,运用极端法更容易选出正确答案,这更加突出了极端法的优势.加强这方面的训练,有利于同学们发散性思维和制造性思维的培养.十、极值法常见的极值问题有两类:一类是直截了当指明某物理量有极值而要求其极值;另一类则是通过求出某物理量的极值,进而以此作为依据解出与之相关的问题.物理极值问题的两种典型解法.(1) 解法一是依照问题所给的物理现象涉及的物理概念和规律进行分析,明确题中的物理量是在什么条件下取极值,或在显现极值时有何物理特点,然后依照这些条件或特点去查找极值,这种方法更为突出了问题的物理本质,这种解法称之为解极值问题的物理方法.(2)解法二是由物理问题所遵循的物理规律建立方程,然后依照这些方程进行数学推演,在推演中利用数学中已有的有关极值求法的结论而得到所求的极值,这种方法较侧重于数学的推演,这种方法称之为解极值问题的物理—数学方法.此类极值问题可用多种方法求解:①算术—几何平均数法,即a.假如两变数之和为一定值,则当这两个数相等时,它们的乘积取极大值.b.假如两变数的积为一定值,则当这两个数相等时,它们的和取极小值.②利用二次函数判别式求极值一元二次方程ax2+bx+c=0(a≠0)的根的判别式,具有以下性质:Δ=b2-4ac0——方程有两实数解;Δ=b2-4ac=0——方程有一实数解;Δ=b2-4ac0——方程无实数解.利用上述性质,就能够求出能化为ax2+bx+c=0形式的函数的极值.十一、估算法物理估算,一样是指依据一定的物理概念和规律,运用物理方法和近似运算方法,对物理量的数量级或物理量的取值范畴,进行大致的推算.物理估确实是一种重要的方法.有的物理问题,在符合精确度的前提下能够用近似的方法简捷处理;有的物理问题,由于本身条件的专门性,不需要也不可能进行精确的运算.在这些情形下,估算就成为一种科学而又有有用价值的专门方法.十二、守恒思想能量守恒、机械能守恒、质量守恒、电荷守恒等守恒定律都集中地反映了自然界所存在的一种本质性的规律——“恒”.学习物理知识是为了探究自然界的物理规律,那么什么是自然界的物理规律?在千变万化的物理现象中,那个保持不变的“东西”才是决定事物变化进展的本质因素.从另一个角度看,正是由于物质世界存在着大量的守恒现象和守恒规律,才为我们处理物理问题提供了守恒的思想和方法.能量守恒、机械能守恒等守恒定律确实是我们处理高中物理问题的要紧工具,分析物理现象中能量、机械能的转移和转换是解决物理问题的要紧思路.在变化复杂的物理过程中,把握住不变的因素,才是解决问题的关键所在.。
对称性思想的应用
对称法是从对称性的角度研究、处理物理问题的一种思维方法,有时间和空间上的对称。
它表明物理规律在某种变换下具有不变的性质。
用这种思维方法来处理问题可以开拓思路,使复杂问题的解决变得简捷。
1. 静电场中的对称性
例1 静电透镜是利用静电场使电子束会聚或发散的一种装置,其中某部分静电场的分布如图2所示。
虚线表示这个静电场在xoy平面内的一簇等势线,等势线形状相对于ox轴、oy轴对称,等势线的电势沿x轴正向增加,且相邻两等势线的电势差相等。
一个电子经过p点(其横坐标为-x0)时,速度与ox轴平行。
适当控制实验条件,使该电子通过电场区域时仅在ox轴上方运动。
在通过电场区域过程中,该电子沿y方向的分速度vy,随位置坐标x变化的示意图是:
图2
解析:由于静电场的电场线与等势线垂直,且沿电场线电势依次降低,由此可判断ox轴上方区域y轴左侧各点的场强方向斜向左上方,y轴右侧各点的场强方向斜向左下方。
电子运动过程中,受到的电场力的水平分力沿x轴正方向,与初速方向相同,因此,电子在x方向上的分运动是加速运动,根据空间对称性,电子从x=-x0 运动到x=x0 过程中,在y轴左侧运动时间比在y轴右侧运动的时间长。
电子受到电场力的竖直分力先沿y轴负方向,后沿y轴正方
向。
因此电子在y方向上的分运动是先向下加速后向下减速,但由于时间的不对称性,减速时间比加速时间短,所以,当 x=x0 时,vy的方向应沿y轴负方向。
正确答案为d。
2. 电磁现象中的对称性
例2 (全国高考)如图3所示,在一水平放置的平板mn的上方有匀强磁场,磁感应强度的大小为b,磁场方向垂直于纸面向里。
许多质量为m带电量为+q的粒子,以相同的速率v沿位于纸面内的各个方向,由小孔o射入磁场区域。
不计重力,不计粒子间的相互影响。
下列图中阴影部分表示带电粒子可能经过的区域,其中r= 。
哪个图是正确的?()
图3
解析:由于是许多质量为m带电量为+q的粒子,以相同的速率v 沿位于纸面内的各个方向,由孔o射入磁场区域。
所以,重点是考虑粒子进入磁场的速度方向。
在考虑时,想到速度方向在空间安排上是具有”空间对称性”的,所以,本题就要在分析过程用到对称性。
①当粒子沿垂直mn的方向进入磁场时,由其所受到的“洛伦兹力”的方向可以知道,其作圆周运动的位置在左侧。
由“洛伦兹力”公式和圆周运动“向心力”公式可以得到:bqv= ,解得r= 。
所以,在左侧可能会出现以o为一点的直径为2r的半圆。
②当粒子沿水平向右的方向进入磁场时,其应该在mn的上方作圆周运动,且另外的半圆将会出现在点o的左边。
直径也是2r。
③然后,利用对称性,所有可能的轨迹将会涉及到以点o为转动点,以2r为直径从右扫到左的一片区域。
即如图4所示。
图4
3. 光学中的对称性
例3 (江苏高考)1801年,托马斯·杨用双缝干涉实验研究了光波的性质。
1834年,洛埃利用单面镜同样得到了杨氏干涉的结果(称洛埃镜实验)。
(1)洛埃镜实验的基本装置如图5所示,s为单色光源,m为一平面镜。
试用平面镜成像作图法在答题卡上画出s经平面镜反射后的光与直接发出的光在光屏上相交的区域。
图5
(2)设光源s到平面镜的垂直距离和到光屏的垂直距离分别为a 和l,光的波长为,在光屏上形成干涉条纹。
写出相邻两条亮纹(或暗纹)间距离的表达式。
解析:(1)如图6所示。
图6
(2)△x= λ
因为 d=2a,所以△x= λ。
利用对称法解题的步骤:①领会物理情景,选取研究对象;②在仔细审题的基础上,通过题目的条件、背景、设问,深刻剖析物理现象及过程,建立清晰的物理情景,选取恰当的研究对象如运动的物体、运动的某一过程或某一状态;③透析研究对象的属性、运动
特点及规律;④寻找研究对象的对称性特点。
⑤利用对称性特点,依物理规律,对题目求解。
对称法作为一种具体的解题方法,从对称性的角度去考查过程的物理实质,可以避免繁冗的数学推导,迅速而准确地解决问题。