龙驭球《结构力学Ⅰ》(第3版)辅导系列-第16~18章【圣才出品】
- 格式:pdf
- 大小:2.98 MB
- 文档页数:74
目 录第一部分 名校考研真题第1章 绪 论第2章 结构的几何构造分析第3章 静定结构的受力分析第4章 影响线第二部分 课后习题第1章 绪 论第2章 结构的几何构造分析第3章 静定结构的受力分析第4章 影响线第三部分 章节题库第1章 绪 论第2章 结构的几何构造分析第3章 静定结构的受力分析第4章 影响线第四部分 模拟试题龙驭球《结构力学Ⅰ》(第3版)配套模拟试题及详解第一部分 名校考研真题第1章 绪 论本章不是考研复习重点,暂未编选名校考研真题,若有最新真题会在下一版中及时更新。
第2章 结构的几何构造分析一、判断题图2-1所示体系的几何组成为几何不变体系,无多余约束。
( )[厦门大学2011研]图2-1二、选择题1.图2-2所示平面体系的几何组成是( )。
[浙江大学2010研]A .几何不变,无多余约束 B .几何不变,有多余约束C .几何常变D.几何瞬变图2-2图2-3错【答案】如图2-1(b ),分别视ABD 和基础为刚片Ⅰ和Ⅱ,两刚片通过链杆AC 、BE 和D 处的支座链杆相连,三根链杆相交于一点O ,故该体系为几何瞬变体系。
【解析】A【答案】如图2-3所示,把大地看成刚片3,刚片1和2形成瞬铰(1,2),刚片1和3形成瞬铰(1,3),刚片2和3形成无穷远处瞬铰(2,3),三个铰不共线,因此是无多余约束的几何不变体系。
【解析】2.图2-4(a )所示体系的几何组成是( )。
[武汉大学2012研、郑州大学2010研、华南理工大学2007研、河海大学2007研]A .无多余约束的几何不变体系B .几何可变体系C .有多余约束的几何不变体系D.瞬变体系图2-4三、填空题1.图2-5所示体系是几何________变体系,有________个多余约束。
[重庆大学2006研]图2-52.如图2-6(a )所示体系的几何组成为________体系。
[南京理工大学2011研]图2-6A【答案】鉴于刚片与构件可以等效互换,所以可将图2-4(a )所示体系替换为图2-4(b )所示体系,然后通过依次去除C 支座链杆与CE 杆、D 支座链杆与DE 杆所组成的二元体,以及二元体A-E-B 后,可知原体系为无多余约束的几何不变体系。
第2章 结构的几何构造分析2.1 复习笔记一、几何构造分析的几个概念1.几何不变体系和几何可变体系在不考虑材料应变的条件下,体系的位置和形状是不能改变的,该体系称为几何不变体系,否则称为几何可变体系。
2.自由度(1)表述1一个体系运动时能产生的独立运动方式的个数称为自由度的个数。
(2)表述2一个体系运动时可以独立改变的坐标数目为自由度的个数。
注:凡是自由度的个数大于零的体系都是几何可变体系。
3.约束与多余约束(1)约束:减少体系自由度的装置。
一个支杆相当于一个约束;一个铰相当于两个约束;一个刚结点相当于三个约束。
(2)多余约束:不能减少体系自由度的约束。
一个体系有多个约束时,只有非多余约束对体系的自由度有影响。
4.瞬变体系与常变体系(1)一个几何可变体系发生微小的位移后,在短暂的瞬时转换成几何不变体系,称为瞬变体系;(2)如果一个几何可变体系可以发生大位移,则称为常变体系。
注1:瞬变体系仍属于可变体系,是可变体系的特例。
可变体系包含瞬变体系与常变体系。
注2:一般来说,在任一瞬变体系中必然存在多余约束,即瞬变体系既是可变体系,又是有多余约束的体系。
5.瞬铰两根不平行的链杆连接两个刚片,两杆的延长线交于点O,则两杆的约束相当于在O 点起一个铰的作用,这个铰称为瞬铰。
(1)在某刚片发生微小转动时,此刚片的瞬时运动与此刚片在O点用铰与另一刚片相连接时的运动情况完全相同;(2)在刚片运动的过程中,与两根链杆相应的瞬铰也随着在改变。
6.无穷远处的瞬铰(1)两根平行的链杆连接两个刚片,瞬铰在无穷远处。
此时,刚片可以有瞬时平动。
(2)射影几何中关于∞点和∞线的四点结论:①每个方向有一个∞点;②不同方向有不同的∞点;③各∞点都在同一∞线上;④各有限点都不在∞线上。
二、平面几何不变体系的组成规律——铰结三角形规律1.三个点之间的连接方式整体,且没有多余约束。
2.一个点与一个刚片之间的连接方式一个刚片与一个点用两根链杆相连,且三个铰不在一直线上,则组成几何不变的整体,且没有多余约束。
第3章静定结构的受力分析3.1 复习笔记本章详细论述了各类静定结构的受力分析过程与步骤,包括静定平面桁架、静定多跨梁、静定平面刚架、组合结构和三铰拱,介绍了隔离体的最佳截取方法,以及静定结构内力计算的虚位移法。
重视静定结构的基本功训练,有助于培养驾驭基本原理解决复杂问题的能力,为超静定结构的分析与求解打下坚实基础。
一、静定平面桁架桁架由杆件铰接而成,其杆件只承受轴力,杆件截面上应力分布均匀,主要承受轴向拉力和压力,因而能够充分发挥材料的作用,经常使用于大跨度结构中。
1.桁架的类别与组成规律(见表3-1-1)表3-1-1 桁架的类别与组成规律2.桁架杆件内力的求解方法(见表3-1-2)表3-1-2 桁架杆件内力的求解方法二、梁的内力计算的回顾1.截面内力分量符号规定如图3-1-1(图中所示方向为正方向)所示:(1)轴力以拉力为正;(2)剪力以绕微段隔离体顺时针转向为正;(3)在水平杆件中,当弯矩使杆件下部受拉(上部受压)时,弯矩为正。
图3-1-12.截面法(见表3-1-3)表3-1-3 截面法3.荷载与内力之间的微分关系(1)在连续分布的直杆段内,取微段dx为隔离体,如图3-1-2所示。
图3-1-2(2)由平衡条件导出微分关系为(Ⅰ)4.荷载与内力之间的增量关系(1)在集中荷载处,取微段为隔离体,如图3-1-3所示。
图3-1-3(2)由平衡条件导得增量关系为5.荷载与内力之间的积分关系如图3-1-4所示,结合式(Ⅰ)可得梁的内力积分公式,积分公式及其几何意义见表3-1-4。
图3-1-4表3-1-4 内力的积分公式及几何意义6.分段叠加法作弯矩图(1)分段叠加法步骤①求支反力:根据整体受力平衡求出支座反力;②选取控制截面:集中力作用点、集中力偶作用点的左右两侧、分布荷载的起点和终点都应作为控制截面;③求弯矩值:通过隔离体平衡方程求出控制截面的弯矩值;④分段画弯矩图:控制截面间无荷载作用时,用直线连接即可;控制截面间有分布荷载作用时,在直线连接图上还需叠加这一段分布荷载按简支梁计算的弯矩图。
第6章力法一、选择题1.图6-1所示结构的弯矩图轮廓是(选项见图)()。
[浙江大学2012研]图6-1【答案】A【解析】B项,将支座位移分成正对称和反对称两种情况来分析,在Δ/2正对称位移作用下,弯矩图为0;在Δ/2反对称位移作用下,弯矩图为反对称。
CD两项,根据竖杆的弯矩图判断出CD两项的两柱都有水平方向的剪力且方向相同,但由于原结构上无荷载作用,不满足∑=0F。
x2.设图6-2所示结构在荷载作用下,横梁跨中产生正弯矩。
现欲使横梁跨中产生负弯矩,应采用的方法是()。
[哈尔滨工业大学2012研]A.减小加劲杆刚度及增大横梁刚度B.增大加劲杆刚度及减小横梁刚度C.增加横梁刚度D.减小加劲杆刚度图6-2【答案】B【解析】本题关键在于中间的竖杆。
当竖杆EA→0时,相当于没有竖杆,这时水平杆为简支梁,跨中弯矩为正弯矩;当竖杆EA→∞时,相当于刚性支座杆,这时水平杆为双跨梁,跨中弯矩为负弯矩。
因此增大劲杆刚度会使跨中产生负弯矩;同样如果减小横梁刚度,也就相当于劲杆的刚度相对增加了。
3.图6-3(a)、(b)所示两结构(EI=常数),右端支座均沉降Δ=1,两支座弯矩关系为()。
[西南交通大学2009研]A.M B>M DB.M B=M DC.M B<M DD.MB=-M D图6-3【答案】C【解析】画出6-3(a)、(b)两图对应的图及支座位移引起的位移图,分别见图6-3(c)、(d)、(e)、(f),对应的力法方程分别为δ11X1+Δ1C=0和。
两式系数的关系为:,[因为图乘时图6-3(c)中斜杆的长度大于图6-3(e)中相应直杆的长度],因此,而,所以M B<M D。
二、填空题1.原结构及温度变化(E 1I1,)下的M图如图6-4所示,若材料的有关特性改为(E2I2,),且/=1.063,E1I1/E2I2=1.947,以外侧受拉为正,则M B=________。
[天津大学2008研]图6-4【答案】61.84kN·m【解析】根据已知条件得:,因此M B缩小为原来的2.07倍,即M B2=128/2.07=61.84kN·m。
第1章绪论1.1复习笔记一、结构力学的学科内容和教学要求1.结构建筑物、工程设施中承受和传递荷载而起骨架作用的部分。
从几何角度上可分为杆件结构、板壳结构、实体结构三类。
2.结构力学研究内容(1)结构力学的研究对象,主要是杆件结构;(2)结构力学的研究任务,是根据力学原理研究在外力和其他外界因素作用下结构的内力和变形,结构的强度、刚度、稳定性和动力反应,以及结构的组成规律和受力性能;(3)结构力学的研究方法,包含理论分析、实验研究和数值计算三个方面;(4)结构力学的基本方程,包含力系的平衡方程或运动方程、变形与位移间的几何方程和应力与变形间的物理方程(本构方程)。
3.能力培养包括分析能力、计算能力、自学能力、表达能力。
二、结构的计算简图和简化要点1.结构的计算简图计算中需要寻求一个简化的图形来代替实际结构,这个图就称为结构的计算简图。
它的确定原则:(1)从实际出发,即要反映结构的主要受力特征;(2)分清主次,略去细节,以便于计算。
2.简化要点(1)结构体系,常略去次要空间约束,简化为平面结构计算;(2)杆件用轴线简化,杆件间的连接区用结点表示,杆长用结点间距离表示,荷载作用点也转移到轴线上;(3)杆件间的连接区,根据实际情况简化为铰结点或刚结点;(4)结构和基础连接,一般简化为滚轴支座、铰支座、定向支座、固定支座;(5)材料性质,一般简化为连续、均匀、各向同性、完全弹性或弹塑性的材料;(6)荷载,均简化为作用在杆件轴线上,分为集中荷载和均布荷载。
三、杆件、杆件结构、荷载的分类1.杆件通常分为梁、拱、桁架、刚架、组合结构。
2.杆件结构(1)根据空间特性,分为平面结构和空间结构;(2)根据计算特性,分为静定结构、超静定结构。
3.荷载(1)根据作用时间,分为恒载和活载;(2)根据作用性质,分为静力荷载和动力荷载。
四、学习方法(1)加——广采厚积,织网生根(博学);(2)减——去粗取精,弃形取神(学识);(3)问——知惑解惑,开启迷宫(学问);(4)用——实践检验,多用巧生(学习);(5)创新——觅真理立巨人肩上,出新意于法度之中(读破)。
第16章结构的极限荷载16.1 复习笔记一、概述1.弹性设计方法以许用应力为依据确定截面的尺寸或进行强度验算的作法。
缺点:没有考虑材料的塑性特性,不经济。
2.塑性设计方法考虑材料塑性变形,确定结构破坏时所能承担的荷载,以此为依据得到容许荷载的方法。
3.基本假设(1)材料是理想的弹塑性材料;(2)满足平面截面假定;(3)忽略剪力和轴力对极限弯矩的影响。
二、极限弯矩、塑性铰和极限状态1.极限弯矩和极限状态以图16-1理想弹塑性材料的矩形截面梁处于纯弯矩状态为例:图16-1图(b ):弹性阶段,弯矩M 为:——屈服弯矩;图(c ):弹塑性阶段,部分为弹性区;图(d ):塑性流动阶段,。
弯矩M 为:——极限弯矩。
2.塑性铰塑性铰:弯矩达到极限弯矩时的截面。
塑性铰的特点(与机械铰的区别):(1)普通铰不能承受弯矩,塑性铰能够承受弯矩; (2)普通铰双向转动,塑性铰单向转动; (3)卸载时,机械铰不消失,当时,塑性铰消失;(4)随荷载分布而出现于不同截面。
3.破坏机构当结构在荷载作用下形成足够多的塑性铰时,结构(整体或局部)就会变成几何可变体系。
称这一可变体系为破坏机构,简称机构。
u qq注意事项:(1)不同结构在荷载作用下,成为机构,所需塑性铰的数目不同; (2)不同结构,只要材料、截面积、截面形状相同,极限弯矩一定相同;(3)材料、截面积、截面形状相同的不同结构,不一定相同。
三、超静定梁的极限荷载1.超静定梁的破坏过程和极限荷载的特点静定梁:只要一个截面出现塑性铰,梁就成为机构,丧失承载力以致破坏。
超静定梁:具有多余约束,必须出现足够多的塑性铰,才能使其成为机构,丧失承载力以致破坏。
以图16-2等截面梁来说明。
图16-2图(b )为弹性阶段()的M 图,A 截面弯矩最大;后,塑性区在Aσ=⋅u s u M W u q附近形成并扩大,在A截面形成第一个塑性铰,M图如(c)图;继续增加,荷载增量引起的弯矩增量图相应于简支梁的弯矩图,如图(d),第二个塑性铰出现在C截面,梁变成机构。
第3章静定结构的受力分析一、判断题1.图3-1所示桁架杆件AB、AF、AG内力都不为零。
()[厦门大学2007研]图3-1【答案】错【解析】本题为静定结构,根据静定结构的性质:在荷载作用下,如果仅靠结构某一局部就能够平衡外荷载时,则仅此局部受力,其余部分没有内力。
知杆件AB、AF、AG内力都为零。
2.图3-2所示桁架,各杆EA为常数,仅AB杆有轴力,其他杆的轴力为零。
()[天津大学2007研]图3-2【答案】错【解析】本题是一对平衡力作用在超静定部分ADBC 上,故整个超静定部分ADBC 都会产生内力。
倘若本题为静定桁架,则只有AB 杆受力。
3.若某直杆段的弯矩为0,则剪力必定为0;反之,若剪力为0,则弯矩必定为0。
( )[中南大学2005研]【答案】错【解析】由弯矩和剪力的微分关系Q dMF dx可知,剪力为零,但弯矩不一定必为零。
比如,受纯弯曲的杆段。
二、选择题1.如图3-3所示结构在所示荷载作用下,其支座A 的竖向反力与支座B 的反力相比为( )。
[郑州大学2010研、哈尔滨工业大学2008研]A .前者大于后者B.二者相等,方向相同C.前者小于后者D.二者相等,方向相反图3-3【答案】B【解析】直接对C点列力矩方程∑M C=0即可判断。
2.图3-4所示结构,当高度h增加时,杆件1的内力()。
[南京理工大学2012研]A.增大B.减小C.不确定D.不变【答案】D【解析】根据K形结点的特性,因结构是对称的,荷载也是对称的,所以各杆件的内力是对称的,所以杆件1、2均为零杆,与结构高度h增加与否无关。
图3-43.图3-5所示对称三铰拱截面C的轴力已知为F NC=48kN(压),则矢高f应等于()。
[清华大学2003研]A.4m B.4.5m C.4.8m D.5m图3-5【答案】D【解析】先求得B支座竖向反力为50kN,后求出相应简支梁跨中弯矩为240kN·m,再用相应简支梁跨中弯矩除以轴力(水平推力)48kN,于是得到矢高f应等于5m。