斜拉桥计算书
- 格式:pdf
- 大小:4.31 MB
- 文档页数:173
斜拉桥计算摘要本设计根据设计任务要求,依据现行公路桥梁设计规范,兼顾技术先进,安全可靠,适用耐久,经济合理的原则,提出了预应力混凝土双索面双塔斜拉桥、预应力混凝土连续刚构、变截面连续梁桥三个比选桥型。
综合各个方案的优缺点并考虑与环境协调,把预应力混凝土双索面双塔斜拉桥作为推荐设计方案。
进行结构细部尺寸拟定,并利用Midas6.7.1建模,进行静活载内力计算、配筋设计及控制截面应力验算、变形验算等。
经验算表明该设计计算方法正确,内力分布合理,符合设计任务的要求。
独塔斜拉桥方案斜拉桥方案造型美观,气势宏伟,跨越能力强,55米的主塔充分显示其高扬特性,拉索的作用相当于在主梁跨内增加了若干弹性支撑,从而减小了梁内弯矩、梁体自重,从而减小梁体尺寸。
施工技术较成熟。
斜拉桥设计与计算第1部分总体设计第 1节斜拉桥概述斜拉桥是一种桥面体系受压、支承体系受拉的结构,其桥面体系由加劲梁构成,其支承体系由钢索组成。
上世纪70年代后,混凝土斜拉桥的发展可分成三个阶段:第一阶段:稀索,主梁基本上为弹性支承连续梁;第二阶段:中密索,主梁既是弹性支承连续梁,又承受较大的轴向力;第三阶段:密索,主梁主要承受强大的轴向力,又是一个受弯构件。
近年来,结构分析的进步、高强材料的施工方法以及防腐技术的发展对大跨斜拉桥的发展起到了关键性的作用。
斜拉桥除了跨径不断增加外,主梁梁高不断减小,索距减少到10m以下,截面从梁式桥截面发展到板式梁截面。
混凝土斜拉桥已是跨径200m~500m范围内最具竞争力的桥梁结构。
(一)技术指标1,路线等级:公路一级,双向四车道:2,设计车速:100km/h;3,桥面宽:1.5m(拉索区)+0.5m(防撞护栏)+0.5m(过渡带)+7.5m(行车道)+ 0.5m(过渡带)+0.5m(防撞护栏)+1m(隔离带) +0.5m(防撞护栏) +0.5m(过渡带)+7.5m(行车道)+0.5m(过渡带)+0.5m(防撞护栏)+1.5m(拉索区)。
第二章 斜拉桥的计算第一节 结构分析计算图式斜拉桥是高次超静定结构,常规分析可采用平面杆系有限元法,即基于小位移的直接刚度矩阵法。
有限元分析首先是建立计算模型,对整体结构划分单元和结点,形成结构离散图,研究各单元的性质,并用合适的单元模型进行模拟。
对于柔性拉索,可用拉压杆单元进行模拟,同时按后面介绍的等效弹性模量方法考虑斜索的垂度影响,对于梁和塔单元,则用梁单元进行模拟。
斜拉桥与其它超静定桥梁一样,它的最终恒载受力状态与施工过程密切相关,因此结构分析必须准确模拟和修正施工过程。
图2-1是一座斜拉桥的结构分析离散图。
图2-1斜拉桥结构分析离散图第二节 斜拉索的垂度效应计算一、等效弹性模量斜拉桥的拉索一般采用柔性索,斜索在自重的作用下会产生一定的垂度,这一垂度的大小与索力有关,垂度与索力呈非线性关系。
斜索张拉时,索的伸长量包括弹性伸长以及克服垂度所带来的伸长,为方便计算,可以用等效弹性模量的方法,在弹性伸长公式中计入垂度的影响。
等效弹性模量常用Ernst 公式,推导如下:如图2-2所示,q 为斜索自重集度,m f 为斜索跨中m 的径向挠度。
因索不承担弯矩,根据m 处索弯矩为零的条件,得到:22111cos 88m T f q l ql α⋅==⋅ 2cos 8m ql f Tα= (2-1)图2-2 斜拉索的受力图式索形应该是悬链线,对于m f 很小的情形,可近似地按抛物线计算,索的长度为:lf l S m 238⋅+= (2-2) 223228cos 324m f q l l S l l Tα∆=-=⋅= 2323cos 12d l q l dT Tα∆=- (2-3) 用弹性模量的概念表示上述垂度的影响,则有:()3322321212cos f dT l lT E d l A Aq l L σαγ=⋅==∆ (2-4) 式中:/T A σ=,q A γ=,cos L l α=⋅为斜索的水平投影长度,f E :计算垂度效应的当量弹性模量。
第三章斜拉桥计算①斜拉桥(或者其他桥梁)的计算分类:总体分析局部分析②局部应力分析方法③斜拉桥总体分析的特点a.考虑垂度效应的斜拉索弹性模量修正问题;b.考虑成桥索力可优化的成桥状态确定问题;c. 考虑施工分阶段进行,索力反复可调、施工方便、成桥达到设计内力目标和线形目标的施工张拉力和预拱度确定问题。
3、斜拉索等效弹模与斜拉索水平投影长、斜拉索应力的关系第二节斜拉桥合理成桥状态3.2.1 成桥恒载索力的初拟斜拉桥的设计存在一个通过优化成桥索力来优化斜拉桥成桥内力的合理成桥受力状态确定问题:斜拉桥主梁、主塔受力对索力大小很敏感;而斜拉索索力可以调节。
国内外学者探索出了多种方法:简支梁法、恒载平衡法、刚性支承连续梁法、最小弯曲能量原理法、最小弯矩法、内力平衡法(或应力平衡法)、影响矩阵法、用索量最小法。
讲授:李传习成桥恒载索力的初拟的方法•简支梁法–方法的定义:选择合理的成桥索力,使主梁在成桥状态的恒载弯矩与以拉索锚固点为主梁支点的简支梁的恒载弯矩一致。
(图)–特点:对于不对称结构,塔的弯矩难以照顾,所得结果难以应用。
–适应情况:已用得不多。
•恒载平衡法–方法:主跨斜拉索索力根据简支梁法确定;边跨斜拉索索力根据塔承受的不平衡水平力为零的条件确定;边跨的压重根据简支梁法确定。
–特点:主梁成桥恒载弯矩与简支梁相同;主塔恒载弯矩为零。
–适应情况:用得较多,适用范围较广。
•刚性支承梁法–方法:选择合理的成桥索力,使主梁在成桥状态的恒载弯矩与以拉索锚固点为主梁支点的连续梁的恒载弯矩一致(图)。
–特点:对于不对称结构,塔的弯矩难以照顾;索力跳跃性可能很大,不均匀。
–适应情况:已用得不多。
讲授:李传习成桥恒载索力的初拟的方法(续1)•最小弯曲能量原理法–方法(定义):以弯曲应变能最小为目标函数。
最初该法只适应于恒载索力优化,无法考虑活载和预应力的影响;将该法与影响矩阵结合后,这个缺点得到了克服。
此方法所得结果中一般弯矩均比较小,但两端索力不均匀,如人为调整易使受力状态调乱。
┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊摘要本设计根据设计任务要求,依据现行公路桥梁设计规范,兼顾技术先进,安全可靠,适用耐久,经济合理的原则,提出了预应力混凝土双索面独塔斜拉桥、预应力混凝土连续刚构、中承式拱桥三个比选桥型。
综合各个方案的优缺点并考虑与环境协调,把预应力混凝土双索面独塔斜拉桥作为推荐设计方案。
进行结构细部尺寸拟定,并利用Midas6.7.1建模,进行静活载内力计算、配筋设计及控制截面应力验算、变形验算等。
经验算表明该设计计算方法正确,内力分布合理,符合设计任务的要求。
关键词:预应力混凝独塔斜拉桥成桥合理状态结构分析AbstractAccording to the design assignment and the present Highway Bridge Specifications, after preliminary analysis, three types of bridge are presented, they are single-pylon Prestressed concrete cable-stayed bridge, prestressed concrete continuous rigid frame and through type steel tube with concrete arch. After comparing their characters comprehensively, the prestressed Prestressed concrete cable-stayed bridge are selected as the main design scheme for further analysis. Through create model and run structural analysis, get the effect in the action of dead load, live load,and then calculate the effect in the beam for designing prestressed steel and the checking computation of key section intension, stress, living load distortion, The conclusion can be drawn that the design is up to the assignment.Key word:prestressed concrete;single-pylon cable-stayed bridge;rational dead load state ; structure analysis .┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第一部分方案比选第一章方案构思与比选第1节桥位处地形,地质等资料桥位处的地形,地质条件见图1。
XX大桥劲性骨架受力计算书1、工程概况xx市滨xx大道(xx大桥~xx路段)工程x标段XX大桥主桥桥型为斜独塔单索面混合梁斜拉桥,主桥结构体系采用塔、梁、墩固结体系,长345m,孔跨布置为(60+65+220)m,其中主跨长220米,边跨长125米,边跨设一个辅助墩。
主墩桩基为16根,直径2.5米的钻孔桩,矩形承台尺寸为2465cm(长)×2050cm(宽) ×500cm(厚)。
下塔墩采用单箱双室截面,墩顶截面横向宽800cm,纵向长1252cm;墩底截面横向宽1650cm,纵向长1905cm。
上塔柱采用钢筋混凝土结构,箱形截面,塔高约98m(桥面以上),塔顶高程为+123.377m,纵向倾斜角为75o。
由于塔柱所处场地限制、塔柱倾斜等原因,塔柱施工通过使用劲性骨架,可以在满足结构受力的前提下提供足够的施工面和确保施工进度;并确保塔柱外形美观,质量优良。
2、劲性骨架设计劲性骨架作为塔柱施工导向、钢筋定位、模板固定之用,也是上塔柱斜拉索钢套管定位安装必不可少的。
劲性骨架由∠75×10、∠50×6等边角钢和[6.3槽钢组成,整个骨架由加劲柱(小断面桁架)、平联、斜撑组成。
加劲柱的截面为70×70cm,采用4根∠75×10角钢作立柱,∠50×6作辅助连接形成小断面桁架。
下塔柱底部平面布置十九个小断面桁架,间距分别为3.1m 和3.69m,加劲柱随塔柱上升逐步收分。
小断面桁架间采用[6.3槽钢作平联和斜拉形成整体,平联竖向间距为1.5m。
塔柱内劲性骨架分节段预制,每节高度初定为4.5m,再实地焊接连成整体。
第一节是固定在塔座顶面埋设的预埋件上,劲性骨架就位后,立即将劲性骨架底口焊牢在承台预埋件上,上口则临时固定在围堰上。
单榀劲性骨架柱安装就位后,通过平联和斜拉连接成整体。
取结构受力状态最为不利的最底层单榀加劲柱计算。
劲性骨架平面布置示意图劲性骨架立面布置示意图1劲性骨架立面布置示意图23、材料特性钢材的材料特性:泊松比:μ=0.3弹性模量: E=210GPa剪切模量: G=81GPa线膨胀系数:a=1.2×10-5密度:ρ=7850Kg/m3截面特性:编号名称杆件型号规格(㎜)截面面积(㎝2)理论重量(㎏/m)惯性矩I(㎝4)回转半径i(㎝)抗弯模量W(㎝3)1 立杆角钢L75×75 ×1014.126 11.089 71.98 2.26 13.642 辅助拉杆角钢L50×50×65.688 4.465 13.05 1.52 3.683 平联斜拉槽钢[63×40 ×4.88.45 6.63 51.2 2.46 16.3单榀劲性骨架立柱平面图4、荷载计算塔柱劲性骨架向内侧倾斜,此时钢筋对劲性骨架将产生水平分力,施工过程中最不利的情况就是安装定位一片骨架,骨架底面连接还未焊死,绑扎完骨架两侧的钢筋,骨架未联成整体,同时考虑风荷载和钢筋水平分力同侧的时候为最不利。
摘要主梁是斜拉桥的重要基本承载构件之一,主梁的强度、刚度和稳定性直接影响到全桥的刚度和稳定性。
该桥是双塔双索面预应力混凝土斜拉桥,主梁采用等截面肋板梁,主梁采用悬臂现浇施工。
本文运用平面杆系有限元法,计算斜拉桥的初始索力,并通过计算来确定恒载作用下的主梁的内力和变形以及索塔内力,应用能量法来调整斜拉索恒载张力,使主梁和索塔的内力都达到较优的状态;同时对主梁进行了运营阶段的强度和稳定性的计算,计算成桥状态下的索力和主梁在各种荷载作用下的内力和变形。
对斜拉索锚固区,配置U型预应力钢束来平衡斜拉索的强大的水平分力,其预留孔道采用预埋波纹管,以减小钢束的摩阻损失。
但该计算仅仅是斜拉桥设计的一部分,通过本设计为将来设计大跨度桥梁打下一定的基础。
关键词:预应力混凝土主梁斜拉桥;斜拉索;悬臂施工法;刚性支承连续梁;应力ABSTRACTGirder is an important elementary load supportive part of cable stayed bridge. The intensity and rigidity and stability of girder influence the rigidity and stability of the whole bridge directly. JiuJiang Bridge is a prestressing concrete cable-stayed bridge. which has two towers and two planes of cable. The beam is slab girder which section is all the same. The method of construction of midspan is hang arm pouring. In this paper I use plane bar system finite elements method, to calculate the original force of each cable, to calculate the force and deflection of both girder and girder, using energy method to regulate the force of cables under dead load, and to analyse the rigidity and stability of cable stayed bridge girder in service phase, including the force of each cable and the force and flexibility of girder under several different loads. I use PT-PLUS plastic corrugated pipes to reduce frictional loss. This is only one part of computation in the design of cable stayed bridge, yet this design pave the way for my future work and study.KEYWORDS:prestressed concrete cable-stayed bridge;stay cable;cantilever construction;the rigid accepts continuous beam ;stress目录摘要 (i)第一章概述 (1)1.1 工程背景 (1)1.2 桥位地形、地质、气象、水文概述 (1)1.2.1 地形、地质 (1)1.2.2 水文 (1)1.2.3 气象 (2)1.2.4 区域地质构造 (2)第二章桥梁概况及方案比选 (3)2.1 桥梁概况 (3)2.2 设计资料 (3)2.2.1 技术指标 (3)2.2.2 材料参数 (3)2.3 方案比选 (4)2.4 桥梁总体布置 (5)第三章计算模型及结构计算参数 (7)3.1 顺桥向计算模型 (7)3.1.1 模型说明 (7)3.2 结构计算参数 (8)3.2.1 材料参数 (8)3.2.2 结构几何尺寸的确定 (9)第四章索力优化 (10)4.1 概述 (10)4.1.1 静力方面 (10)4.1.2 动力方面 (10)4.2 拉索优化理论 (10)4.2.1 斜拉桥索力调整理论 (10)4.2.2 刚性支承连续梁法 (11)4.2.3 影响矩阵法 (14)第五章结构计算 (19)5.1 各种参数的计算及取值 (19)5.1.1 恒载计算参数 (19)5.1.2 斜拉索的设计弹性模量 (19)5.1.3 活载计算参数 (20)5.2 恒载内力计算 (21)5.3 内力影响线计算 (24)5.4 活载内力计算 (29)5.5 徐变应力和收缩荷载 (32)5.6 荷载内力组合 (32)5.6.1 承载能力极限状态 (33)5.6.2 正常使用极限状态 (34)第六章配筋计算 (38)6.1 控制截面钢束面积估算 (38)6.1.1 按强度要求估算 (38)7.1.2 按施工和使用阶段的应力要求估算 (38)6.2 钢束布置 (40)6.2.1 钢束布置原则 (40)第七章预应力损失及有效预应力计算 (42)7.1 控制截面几何特性 (42)7.2 预应力损失方式 (43)7.2.1 预应力钢筋与管壁间摩擦引起的应力损失()1sσ (43)7.2.2 锚具变形、钢筋回缩和接缝压缩引起的应力损失()2sσ (44)7.2.3 混凝土弹性压缩所引起的预应力损失()4sσ (44)7.2.4 钢筋松弛引起的应力损失(5sσ) (45)7.2.5 混凝土收缩和徐变引起的应力损失(6sσ) (46)7.3 钢束预应力损失估算 (47)第八章配束后主梁内力计算及强度验算 (50)8.1 内力计算及内力组合 (50)8.2 强度验算 (53)8.2.1 求受压区高度(中性轴位置) (53)8.2.2 强度计算 (53)第九章施工方案设计 (56)9.1 斜拉桥施工的理论计算 (56)9.1.1 施工计算的一般原则 (56)9.1.2 施工计算的方法 (57)9.2 斜拉桥施工的控制与调整 (58)9.2.1 施工管理 (58)9.2.2 施工测试 (58)9.3 斜拉桥施工方案设计 (59)结论 (60)参考文献 (61)致谢 (62)第一章概述1.1工程背景早在悬索桥出现的同时,工程师就提出了斜拉桥的概念。
筑龙网WW W.ZH UL ON G.COM某斜拉桥施工挂篮设计计算书1 概况某斜拉桥为某路高架桥中跨越某铁路的一座大型桥梁,其主跨米,为砼П型结构。
由于跨越某铁路,而施工期间又不能影响某线的运行,故施工只能采用悬臂施工,其施工节段为6.3m。
本挂篮就是为此桥П梁的悬臂施工而设计的。
根据本桥的结构特点和施工特点,挂篮为三角挂篮,其由以下几个主要部分组成。
(1)主桁系统:由主梁、立柱、斜拉钢带组成单片主桁,共4片,横向由前、后上横梁、平联、门架连接;(2)П梁顶板底模平台:由纵梁和下横梁组成整体平台,分前、后底模平台;(3)П梁纵、横梁底模平台:由支撑梁和横向底模支架组成整体平台,横向底模支架采用桁架形式;(4)吊挂系统:由前上横梁,前后吊挂精轧螺纹钢筋组成;(5)外导梁系统:由外导梁、锚固滑行设备等组成,为底模平台滑道设备;(6)走行系统:由前后支腿、滑板及滑道组成,为主桁系统的滑行设备;(7)平衡及锚固系统:由锚固部件、锚固筋、配重等组成,以便挂篮在灌注砼和空载行走时,具有必要的稳定性。
2 计算依据(1) 某市某路跨某铁路斜拉桥施工设计图;(2) 某市某路跨某铁路斜拉桥施工挂篮方案设计图; (3) 《公路桥涵设计通用规范》(JTJ021-89);(4) 《公路桥涵钢结构及木结构设计规范》(JTJ025-85); (5) 《公路桥涵施工技术规范》(JTJ041-2000)。
3 计算说明根据本挂篮的结构特点,设计计算中采用以下假定和说明。
(1)由于挂篮的主桁系统和底模系统仅通过吊挂系统(精轧螺纹钢)相连,故计算按各自的子结构进行计算,子结构为前底模平台,后底模平台,纵、横梁底模平台和主桁体系;筑龙网WW W.ZH UL ON G.CO M(2)计算顺序为先对前、后底模平台和纵、横梁底模平台进行结构计算,得出各吊点的支撑反力,然后把此支撑反力作为外力对主桁体系进行各项计算;(3)纵、横梁底模平台中横向底模支架为四片桁架,纵向为支撑梁,荷载传递为先有间隔60~70㎝的方木承受直接荷载,然后传递给底模支架,纵向支撑梁相对于横向的底模支架,其刚度很小,对底模支架的横向约束很弱,所以计算均对底模支架进行,底模支架可以按照各自的桁架体系进行平面计算。