2016学年初二下册《反证法》知识点归纳:例题解析
- 格式:doc
- 大小:0.49 KB
- 文档页数:1
《反证法和放缩法》知识清单一、反证法反证法是一种间接证明的方法。
当我们要证明一个命题成立时,如果直接证明比较困难,那就可以考虑使用反证法。
反证法的基本思路是先假设命题的结论不成立,即提出与命题结论相反的假设。
然后,从这个假设出发,通过一系列正确的逻辑推理,得出矛盾的结果。
这个矛盾可以是与已知条件矛盾、与定理或公理矛盾、或者是自相矛盾。
由于推理过程是正确的,所以产生矛盾的原因只能是假设不成立,从而证明原命题的结论是正确的。
例如,证明“在一个三角形中,至少有一个内角小于或等于60 度”。
我们先假设三角形的三个内角都大于 60 度,那么三个内角之和就会大于 180 度,这与三角形内角和定理(三角形内角和为 180 度)矛盾,所以假设不成立,原命题成立。
反证法的一般步骤可以总结为:1、提出反设:假设命题的结论不成立。
2、推出矛盾:从反设出发,通过推理得出矛盾。
3、肯定结论:由于矛盾的出现,说明反设错误,从而证明原命题的结论正确。
反证法在数学证明中有着广泛的应用,尤其是在证明一些存在性、唯一性、否定性的命题时,往往能起到意想不到的效果。
二、放缩法放缩法是不等式证明中一种常用的方法。
其基本思想是将不等式中的某些项进行放大或缩小,从而使不等式变得更加简单,易于证明。
放缩的依据通常是不等式的基本性质、已知的不等式、函数的单调性等。
比如,要证明不等式\(A < B\),我们可以先将\(A\)适当放大得到\(A' \),使得\(A' < B\)易于证明;或者将\(B\)适当缩小得到\(B' \),使得\(A < B' \)易于证明。
常见的放缩技巧有:1、舍去或加上一些项,如:\(\frac{1}{n(n + 1)}<\frac{1}{n^2}\)。
2、将分子或分母放大(或缩小),如:\(\frac{1}{n} <\frac{1}{n 1}\)(\(n > 1\))。
3、利用基本不等式进行放缩,例如:若\(a, b\)均为正数,则\(a + b \geq 2\sqrt{ab}\)。
八年级反证法知识点反证法是一种论证方法,在数学、逻辑学、哲学以及其他领域中都得到广泛应用。
其基本思想是通过否定一个命题的逆否命题来证明原命题的正确性。
在八年级数学中,学生要学习如何应用反证法解决一些问题。
本文将介绍八年级反证法知识点,帮助学生更好地掌握这一方法。
初步了解反证法反证法的思路是假设所要证明的命题P不成立,然后推出一个矛盾的结论,进而证明命题P成立。
或者说,反证法是采用反面求证的方法,即证明“不是P”来间接证明“是P”。
例如,在证明“若a是偶数,则a²也是偶数”的时候,可以采用反证法:假设a是偶数但a²不是偶数,则a²为奇数。
但是,偶数的平方一定是偶数,与假设矛盾,因此可证明原命题成立。
如何运用反证法?反证法需要具备以下几个步骤:1. 先假设所要证明的命题P不成立,并推出一些合法的结论。
2. 分析这些结论是否有矛盾之处。
3. 如果这些结论存在矛盾,则说明所假设命题不成立,原命题P成立。
4. 如果这些结论不存在矛盾,则说明所假设的命题成立,而原命题P不成立。
举个例子,如果要用反证法证明“n²为偶数,则n也是偶数”,那么可以首先假设n是奇数。
因为奇数的平方还是奇数,所以n²也是奇数,而偶数的定义是2的倍数,不可能是奇数,因此推出结论矛盾,得证原命题成立。
需要注意的是,在运用反证法的时候,如果所得出的结论不够严密或存在漏洞,那么不能得出最终结论。
为了提高证明的严密性,可以结合其他证明方法进行运用。
例题1. 证明:不存在无理数x和y,使得x² - 2y² = 3。
解答:假设存在无理数x和y,满足x² - 2y² = 3。
考虑对这个方程两侧同时取立方根,得:x³ - 6xy² - 3y³ = 0。
注意到x和y都是无理数,而立方根是唯一的,因此x³也是无理数。
同理,3y³也是无理数。
2016学年初二下册《反证法》知识点归纳:
例题解析
附加例题解析(独立完成小组交流):
例1说出下面的反面的假设
(1) 直线与圆只有一个交点。
(2) 垂直于同一条直线的两条直线平行。
(3) 一个三角形中不能有两个钝角。
例2试使用反证法证明下列结论
(1) 求证:两直线相交只有一个交点。
(2) 求证:在一个三角形中,至少有一个内角小于或等于60deg;
为大家推荐的反证法知识点归纳,大家仔细阅读了吗?更多知识点总结尽在。
初二下册数学《二次根式的加减法》知识点巩固
八年级下册数学第四章知识点:相似三角形。
反证法——证明命题为真命题的杀手锏反证法在目前的高中教材中虽较显见,但也是教材中证明真命题的一种重要方法。
教材中第一次使用反证法是在“不等式的基本性质”一小节中证明不等式的基本性质八时用到。
第二次用到是在立体几何中证明两直线是异面直线。
反证法首先假设某命题不成立(即在原命题的题设下,结论不成立),然后推理出明显矛盾的结果,从而下结论说假设不成立,原命题得证。
反正法的基本原理就是原命题与其逆否命题是同真同假的两个命题。
为什么说反证法是证明真命题的杀手锏呢?如今,高考的证明题一般都是代数问题(函数、数列等),几何证明题几乎不可能考,所以证明题现在转战代数题。
而高中代数不像几何那样有一套完整的公理、判定定理和性质定理(当然这一套现在也减负减掉了,这也是证明题不考几何题主因),在高中代数里我们判定一个事实的依据只能是概念的定义,而很多结论仅根据定义从正面往往无法推理,这个时候反证法祭出往往就能解决。
例一.证明:tan1°是无理数分析:拿到这个问题我们首先要搞明白何为无理数——无限不循环小数,不能写作两整数之比。
已知什么呢,tan30°=1/√3是无理数。
所以这个问题的证明用反证法就容易了。
证明:假设tan1°不是无理数,则tan1°是有理数。
因为tan2°=2tan1°/(1-(tan1°)^2),所以tan2°也是有理数,同理可推得tan4°、tan8°、tan16°、tan32°也都是有理数,又因为tan30°=tan(32°-2°)=(tan32°-tan2°)/(1+tan32°*tan2°),所以tan30°是有理数与tan30°=1/√3是无理数矛盾因此,tan1°是无理数。
初中数学竞赛辅导资料(初二18)反证法甲内容提要1. 反证法是一种间接的证明方法。
它的根据是原命题和逆否命题是等价命题,当一个命题不易直接证明时,釆取证明它的逆否命题。
2. 一个命题和它的逆否命题是等价命题,可表示为:A →B A B →⇔ 例如 原命题:对顶角相等 (真命题)逆否命题:不相等的角不可能是对顶角 (真命题)又如 原命题:同位角相等,两直线平行 (真命题)逆否命题:两直线不平行,它们的同位角必不相等 (真命题)3. 用反证法证明命题,一般有三个步骤:① 反设 假设命题的结论不成立(即假设命题结论的反面成立)② 归谬 推出矛盾(和已知或学过的定义、定理、公理相矛盾)③ 结论 从而得出命题结论正确例如: 求证两直线平行。
用反证法证明时① 假设这两直线不平行;② 从这个假设出发,经过推理论证,得出矛盾;③从而肯定,非平行不可。
乙例题例1两直线被第三条直线所截,如果同位角相等,那么这两直线平行已知:如图∠1=∠2 A 1 B 求证:AB ∥CD 证明:设AB 与CD 不平行 C 2 D 那么它们必相交,设交点为M D这时,∠1是△GHM 的外角 A 1 M B ∴∠1>∠2 G这与已知条件相矛盾 2 ∴AB 与CD 不平行的假设不能成立 H∴AB ∥CD C例2.求证两条直线相交只有一个交点证明:假设两条直线相交有两个交点,那么这两条直线都经过相同的两个点,这与“经过两点有且只有一条直线”的直线公理相矛盾,所以假设不能成立,因此两条直线相交只有一个交点。
(从以上两例看出,证明中的三个步骤,最关键的是第二步——推出矛盾。
但有的题目,第一步“反设”也要认真对待)。
例3.已知:m 2是3的倍数,求证:m 也是3的倍数证明:设m 不是3的倍数,那么有两种情况:m=3k+1或m= 3k+2 (k 是整数)当 m=3k+1时, m 2=(3k+1)2=9k 2+6k+1=3(3k 2+2k)+1当 m=3k+2时, m 2=(3k+2)2=9k 2+12k+4=3(3k 2+4k+1)+1即不论哪一种,都推出m 2不是3的倍数,这和已知条件相矛盾,所以假设不能成立。
反证法
1.反证法
【知识点的认识】
反证法:假设结论的反面成立,在已知条件和“否定结论”这个新条件下,通过逻辑推理,得出与公理、定理、题设、临时假设相矛盾的结论或自相矛盾,从而断定结论的反面不能成立,即证明了命题的结论一定正确,这种证明方法就叫反证法.
【解题思路点拨】
用反证法证题时,首先要搞清反证法证题的方法,其次注意反证法是在条件较少,不易入手时常用的方法,尤其有否定词或含“至多”“至少”等词的问题中常用.使用反证法进行证明的关键是在正确的推理下得出矛盾,这个矛盾可以是与已知矛盾,或与假设矛盾,或与定义、公理、定理、事实矛盾等.
1.证明思路:肯定条件,否定结论→推出矛盾→推翻假设,肯定结论
2.反证法的一般步骤:
(1)分清命题的条件和结论;
(2)作出与命题结论相矛盾的假设;
(3)由假设出发,应用正确的推理方法,推出矛盾的结果;
(4)断定产生矛盾的原因,在于开始所作的假设不真,于是原结论成立,从而间接地证明命题为真.
1/ 1。
点击“反证法”(全文)一、知识归纳1. 用反证法证明命题的一般步骤如下:①反设:假设命题的结论不成立,即假设结论的反面成立;②归谬:从假设出发,经过推理论证,得出矛盾;③结论:由矛盾判定假设不正确,从而肯定命题的结论正确.2. 反证法一般常用于有下述特点的命题的证明:①结论本身以否定形式出现;②结论是“至少”“至多”“唯一”“都是”等形式;③结论涉及“存在或不存在”,“有限或无限”等形式;④结论的反面比原结论更具体或更易于证明.二、学习要点1. 用反证法证题的关键是“反设”,对一些特殊结论的反设见下表:2. 反证法证题的难点是如何引出“矛盾”,用反证法证明命题“若p则q”时,引出矛盾的形式有下面三个方面:①由假设结论q不成立,经过推理论证得到条件p不成立,即与原命题的条件矛盾,这种情况实际上是证明了命题的“逆否命题”正确;②由假设结论q不成立,经过推理论证得到结论q成立,即由“非q为真”推出了“q为真”,形成了自相矛盾;③由假设结论q不成立,经过推理论证得到一个恒假命题,即与某个“公理、定义、定理、性质”矛盾,或与某个显然的概念、结论矛盾.但在实际应用时,究竟如何引出矛盾必须根据命题本身的数学内容进行探索,有时很难事先估计如何引出矛盾或是否能用反证法证明成功,正是由于这些难点,所以在高考中反证法出现得较少.3. 反证法的逻辑依据.反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”.在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”.反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假.再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真.所以反证法是以逻辑思维的基本规律和理论为依据的,反证法是可信的.本文就反证法思想在解题中的应用加以分类解析,旨在探索题型规律,揭示解题方法.三、应用1. 在简易逻辑中的应用.例1设x,y∈R ,P:x+y≠8,q:x≠2或y≠6,则p是q的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件分析:直接判断总感觉模凌两可,若从反证法的思想考虑逆否命题,简洁清晰.解析:因为“?劭q∶x=2 且y=6”是“?劭p∶x+y=8 ”的充分不必要条件,所以p是q充分不必要条件.点评:在简易逻辑中,当原问题是否定形式的命题,且直接证明或求解较为困难时,考虑逆否命题可化难为易,简洁清晰.2. 在平面向量中的应用.例2. 设A1,A2,A3,A4,A5是空间中给定的5个不同的点,则使 + + + + = 成立的点M的个数为()A. 0B. 1C. 5D. 10分析:先用向量加法意义说明这样的点是存在的,再用反证法证明这样的点是唯一的.解析:由 + + + + = ,得 = ( + + + + ),由向量加法法则知存在这样的点M;下面用反证法证明点M的个数是唯一的,假设满足条件的点除M外还有点N,那么 + + + += ……①,+ + + + = ……②,①-②得5 = ,则N点与M 点重合,与假设矛盾.所以满足条件的点M只有一个.点评:涉及唯一性问题的证明时,利用反证法可以有效的突破解题困境,使问题处理的简洁流畅.3. 在数列中的应用.例3. 已知数列{an}和{bn}满足:a1= ,an+1= an+n-4,bn=(-1)n(an-3n+21),其中为实数,n为正整数.(1)对任意实数,证明数列{an}不是等比数列;(2)略.分析:先假设结论反面成立,再由前三项是等比数列推出矛盾.证明:假设{an}是等比数列,则a22=a1a3又题知:a2= -3,a3= a2-2= -4,( -3)2= ( -4),9=0,矛盾,故假设不成立,即{an}不是等比数列.点评:数列中涉及到证明“不是等比数列,不是等差数列”这类题型时,利用反证法证明可直捣黄龙.例4. 已知数列{an}满足:a1= , = ,anan+1分析:先假设存在三项是等差数列,化为整式后利用数论知识推导矛盾.解析:(1)an=(-1)n-1 ,bn= ・()n-1;(2)假设数列{bn}中存在三项br,bs,bt(rbt,2bs=br+bt, 2・()s-1= ()r-1+ ()t-1,两边同乘3t-121-r,化简得3t-r+2t-r=2・2s-r3t-s,r点评:借助反证法思想,乍看繁难的问题,利用反证法有效的突破了解题困境,一气呵成.4. 在函数中的应用.例5. 设f(x)=x|x+m|+n,m,n为常数,讨论f(x)的奇偶性并说明理由.分析:容易观察m, n都是0时,f(x)是奇函数,利用定义容易证明; m,n至少有一个不为0时,f(x)是非奇非偶函数,利用反证法分两类情况证明.解析:①若m=n=0,则f(-x)=-x│x│=-f(x),故f(x)为奇函数;②若m2+n2≠0,则f(x)是非奇非偶函数,下用反证法证明:假设f(x)是奇函数,则f(0)=n=0, f (-1)=-│m-1│=-f(1)=│m+1│,(m-1)2=(m+1)2,m=0,这与m2+n2≠0矛盾,故f(x)不是奇函数;假设f (x)是偶函数,则f(-1)=-|m-1|+n=|m+1|+n,|m+1|+|m-1|=0,这与|m+1|+|m-1|≥2矛盾,故f(x)不是偶函数. 综合上述,f(x)是非奇非偶函数.点评:函数中涉及到“不是奇(偶)函数,不是单调函数”这类问题的证明时,往往可用反证法将问题解决得干净彻底.例6. 给定实数a,a≠0且a≠1,设函数y= (其中x∈R且x≠ ),证明:经过这个函数图像上任意两个不同点的直线不平行于x轴.分析:“不平行”的否定是“平行”,假设“平行”后得出矛盾从而假设.证明:设M1(x1,y1)、M2(x2,y2)是函数图像上任意两个不同的点,则x1≠x2,假设直线M1M2平行于x轴,则必有y1=y2,即 = ,整理得a(x1-x2)=x1-x2. x1≠x2, a=1,这与已知“a≠1”矛盾,因此假设不对,即直线M1M2不平行于x轴.5. 在立体几何中的应用.例7. 如图,设SA、SB是圆锥SO的两条母线,O是底面圆心,C是SB上一点.求证:AC与平面SOB不垂直.分析:结论是“不垂直”,呈“否定性”,考虑使用反证法,即假设“垂直”后再导出矛盾后,再肯定“不垂直”.证明:假设AC平面SOB,直线SO在平面SOB内, ACSO.SO底面圆O, SOAB,SO平面SAB,平面SAB∥底面圆O,这显然出现矛盾,所以假设不成立.即AC与平面SOB不垂直.点评:否定性的问题常用反证法.例如证明异面直线,可以假设共面,再把假设作为已知条件推导出矛盾.6. 在不等式中的应用.例8. 已知a1,a2,a3,…,a10为大于0的正实数,且a1+a2+a3+…+a10=30,a1a2a3…a10分析:先假设这10个数都大于1,再利用换元法和不等式的性质推导出与已知条件矛盾.证明:假设ai≥1(1≤i≤10,i∈N?鄢),令bi=ai-1≥0,则由a1+a2+...+a10=30得b1+b2+...+b10=20,又a1a2 (10)(b1+1)(b2+1)…(b10+1)=1+(b1+b2+…+b10)+…+(b1b2…b10)≥1+(b1+b2+…+b10)=21,这与条件a1a2…a10点评:不等式中涉及到“必有一个,至少一个,至多一个”等命题的证明时,采用反证法可以使问题解决的十分干脆彻底.例9. 设a>0,b>0,()A. 若2a+2a=2b+3b,则a>bB. 若2a+2a=2b+3b,则aC. 若2a-2a=2b-3b,则a>bD. 若2a-2a=2b-3b,则a分析:本题将常见不等式题目中的条件和结论进行了交换,直接证明感觉无从下手,采用反证法问题可以迎刃而解.解析:对于A选项,利用反证法,假设a≤b,则2a≤2b,2a≤2b点评:对于常见不等式问题的逆命题,利用反证法可以化难为易.例10. 设 a,b为正实数.现有下列命题:①若a2-b2=1,则a-b分析:对假命题②③,可用特值法判断;对真命题①④,可利用反证法证明.解析:对于②,令a=2,b= ,显然满足条件,但a-b= >1故②错误;对于③,令a=4,b=1,显然满足条件,但│a-b│=3>1故③错误;对于①,假设a-b≥1,a,b>0,a+b>a-b≥1,a2-b2=(a+b)(a-b)>1,即a2-b2≠1,与条件矛盾,假设不成立,故a-b0,a2+ab+b2>(a-b)2= |a-b|2≥1,|a3-b3|=|a-b||a2+ab+b2|>1,与条件矛盾,假设不成立,故|a-b|点评:本题主要考查反证法在不等式中的应用,利用反证法可以扭转不利的局面,从而使问题快速获解.7. 在三角函数中的应用.例11. 存不存在0解析:不存在.否则有cosx-sinx= -tanx= ,。
反证法最简单三个例子《反证法最简单三个例子带来的思考》嘿,大家好啊!今天咱来聊聊反证法最简单的三个例子,可别小看它们,那是相当有意思呢!咱先来说个日常生活中的例子。
比如说你觉得你的朋友小明不可能吃辣,但是呢,你又没啥确凿的证据。
那咱就用反证法来瞅瞅。
你就假设他能吃辣,然后要是按照这个假设,你就会发现很多事情说不通啦,比如每次吃火锅他都不点辣锅,吃辣条也是一脸痛苦的表情等等,这些都和他能吃辣这个假设矛盾嘛,所以就得出来了,他确实不能吃辣。
你看,这多简单明了,还挺有趣的吧!再讲个学习上的例子。
数学老师说三角形的内角和一定是180 度。
那咱就来反证一下,假设不是180 度,然后你去试着推导,哎呀,怎么推导都会发现不对劲,到处都是矛盾,最后你就不得不承认,嘿,还真是180 度啊!这种推翻自己错误想法的过程,就像一场小小的冒险,充满了新奇感。
还有个好玩的例子,你说世界上没有外星人。
那咱也用反证法来试一试。
假设世界上有外星人,然后你会发现宇宙那么大,有那么多未知的星球,凭啥就肯定没有外星人呢?你看,这样一想,是不是就觉得自己原来的想法不一定对啦。
反证法就像是一把神奇的小钥匙,能打开我们思维里那些固执的小锁头。
它让我们学会从相反的方向去思考问题,有时候能发现以前没看到的东西。
它还特别像一个爱挑刺的小伙伴,总是揪出我们以为对但其实不一定对的想法。
这既让我们有些尴尬,又让我们觉得特别好玩。
而且啊,通过反证法,我们能更深刻地理解问题,也能让我们的思维变得更加灵活。
就像给大脑做了一场有趣的体操,让它变得更健康、更有活力。
所以啊,大家可别小看这反证法最简单的三个例子,它们背后藏着的可是大大的智慧呢!以后我们遇到问题,也可以试着用用反证法,说不定会有新的发现和乐趣哦!让我们一起在反证法的世界里欢快地玩耍吧!。
及时对知识点进行总结,整理,有效应对考试不发愁,下文由查字典大学网初中频道为大家带来了反证法知识点归纳,欢迎大家参考阅读。
附加例题解析(独立完成小组交流):例1?说出下面的反面的假设(1) 直线与圆只有一个交点。
(2) 垂直于同一条直线的两条直线平行。
(3) 一个三角形中不能有两个钝角。
例2?试使用反证法证明下列结论(1) 求证:两直线相交只有一个交点。
(2) 求证:在一个三角形中,至少有一个内角小于或等于60°查字典大学网初中频道为大家推荐的反证法知识点归纳,大家仔细阅读了吗?更多知识点总结尽在查字典大学网初中频道。