空间向量与立体几何专题
- 格式:doc
- 大小:1.04 MB
- 文档页数:15
空间向量和立体几何练习题与答案
1.若把空间平行于同一平面且长度相等的所有非零向量的始点放置在同一点,则这些向量的终点构成的图形就是( )
A.一个圆
B.一个点
C.半圆
D.平行四边形
答案:A
2.在长方体 ABCD-A₁B ₁C ₁D ₁中,下列关于AC₁的表达中错误的 一个就是( )
A. AA₁+A ₁B ₁+A ₁D ₁
B. AB+DD₁
+D ₁C ₁
C. AD+CC₁+D ₁C ₁
D.12(AB 1+CD 1)+A 1C 1
答案:B
3.若a ,b ,c 为任意向量,m ∈R ,下列等式不一定成立的就是( )
A.(a+b)+c=a+(b+c)
B.(a+b)•c=a•c+b•c
C. m(a+b)=ma+mb
D.(a·b)·c=a·(b·c)
答案:D
4.若三点A, B, C 共线,P 为空间任意一点,且PA+αPB=βPC,则α-β的值为( )
A.1
B.-1
C.12
D.-2
答案:B
5.设a=(x,4,3), b=(3,2, z),且a ∥b,则xz 等于( )
A.-4
B.9
C.-9
D.649
答案:B
6.已知非零向量 e ,e₂不共线,如果AB=e₁+e ₂ A C=2e ₂ 8e ₂AD=3e ₁3 ,则四点 A. B C (
) A.一定共圆
B.恰就是空间四边形的四个顶点心
C.一定共面
D.肯定不共面
答案:C。
专题1空间向量与立体几何练习(三)1.如图,一个结晶体的形状为平行六面体1111ABCD A B C D -,其中以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒.(1)求证:1AC DB ⊥;(2)求异面直线1BD 与AC 所成角的余弦值.2.如图四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//,3AF DE DE AF =.(1)求证:AC ⊥平面BDE ;(2)若BE 与平面ABCD 所成角为60︒,求二面角F BE D --的正弦值.3.已知()1,4,2a =- ,()2,2,4b =- .(1)若12c b = ,求cos ,a c <> 的值;(2)若()()3ka b a b +-∥ ,求实数k 的值.4.如图,平行六面体1111ABCD A B C D -的底面是菱形,且1160C CB C CD BCD ∠=∠=∠=︒,12CD CC ==.(1)求1AC 的长;(2)求异面直线1CA 与1DC 所成的角.5.已知向量()1,1,0a = ,()1,0,b c =- ,且a b += (1)求c 的值;(2)若ka b + 与2a b - 互相垂直,求实数k 的值.6.如图,在长方体1111ABCD A B C D -中,1226AD AB AA ===,,E F 分别是1111,A D A B 的中点,CG GE = ,以点A 为坐标原点,建立如图所示的空间直角坐标系A xyz -.(1)写出1,,,C D F G 四点的坐标;(2)求1cos ,CF D G <> .7.如图所示,在棱长为2的正四面体ABCD 中,E ,F 分别是AB ,AD 的中点,求:(1)EF ·BA ;(2)EF ·BD ;(3)AB ·CD .8.如图所示,在正方体1111ABCD A B C D -中,化简向量表达式:(1)AB CD BC DA +++ ;(2)1111AA B C D D ++ ;(3)1111AA B C D D CB +++ .9.已知空间三点()4,0,4A -,()2,2,4B -,()3,2,3C -,设a AB = ,b BC =r u u u r .(1)求a ,b ;(2)求a 与b 的夹角.10.如图所示,已知在三棱锥A BCD -中,向量AB a = ,AC b = ,AD c =uuu r r ,已知M 为BC 的中点,试用a 、b 、c 表示向量DM .参考答案:1.(1)证明见解析【分析】(1)根据平面向量转化基底,以及加减运算和数量积的运算性质,得到10AC DB ⋅= ,即可证得1AC DB ⊥;(2)根据平面向量转化基底,求出1BD 、AC 、1AC BD ⋅ ,再利用夹角公式即可求解.【详解】(1)证明:∵以顶点A 为端点的三条棱长均为1,且它们彼此的夹角都是60︒,∴11111cos602AA AB AA AD AD AB ⋅=⋅=⋅=⨯⨯︒= ,∴()()1111111()()AC DB AA A B B C AB AD AA AB AD AB AD ⋅=++⋅-=++⋅- 22110AA AB AA AD AB AB AD AD AB AD =⋅-⋅+-⋅+⋅-= ,∴1AC DB ⊥.(2)∵111BD AD DD AB AD AA AB ==+-+- ,AC AB BC AB AD =+=+ ,∴1BD ==||AC ==== ,()11()BD AC AD AA AB AB AD ⋅=+-⋅+ 12211111122AD AB AA AB AA AD =+⋅-++⋅=-+= ,∴111cos ,6BD AC BD AC BD AC⋅==⋅ ,∴异面直线1BD与AC 所成角的余弦值为6.2.(1)证明见解析【分析】(1)由已知可得DE AC ⊥且AC BD ⊥,由线面垂直的判定定理即可得到证明;(2)以D 为原点,DA 方向为x 轴,DC 方向为y 轴,DE 方向为z 轴建立空间直角坐标系,利用已知条件求出平面BDE 的一个法向量和平面BEF 的一个法向量,利用向量的夹角公式计算即可.【详解】(1)因为DE ⊥平面ABCD ,AC ⊂平面ABCD ,所以DE AC⊥因为四边形ABCD 是正方形,所以AC BD⊥又因为BD DE D ⋂=,BD ⊂平面BDE ,DE ⊂平面BDE ,所以AC ⊥平面BDE(2)DE ⊥ 底面ABCD ,,⊂DA DC 平面ABCD ,,DE DA DE DC ∴⊥⊥,四边形ABCD 是正方形,DA DC∴⊥故DA ,DC ,DE 两两垂直,建立如图所示的空间直角坐标系D xyz -,因为BE 与平面ABCD 所成角为60 ,DE ⊥ 平面ABCD ,且垂足为D ,故60DBE ∠=,所以DE DB=又3,3AD DE AF ==,所以BD DE AF ===所以(3,0,0)A ,(3,3,0)B,F,E ,(0,3,0)C ,所以(0,,(3,0,BF EF =-=- 设平面BEF 的一个法向量(),,m x y z = ,则3030m BF y m EF x ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,令z =(4,m = 因为AC ⊥平面BDE ,所以CA 为平面BDE 的一个法向量,()3,3,0CA =- .所以cos ,13m CA m CA m CA ⨯+-⨯+⋅〈〉===,所以sin ,m CA〈〉=所以二面角F BE D --3.(1)42-(2)13-【分析】(1)利用空间向量夹角公式的坐标运算直接求解;(2)根据两向量的共线定理,利用坐标运算求解.【详解】(1)由已知可得()11,1,22c b ==- ,()1,4,2a =- ,∴114122cos ,42a c a c a c⨯-+⨯+-⨯⋅<>==- .(2)()2,42,24ka b k k k +=-+-+ ,()37,2,14a b -=-- ,∵()()3ka b a b +-∥ ,∴存在实数m 使得()3ka b m a b +=- ,∴27k m -=,422k m +=-,2414k m -+=-,联立解得13k =-.4.(1)1AC =(2)90°.【分析】(1)因为1,,CD CB CC 三组不共线,则可以作为一组基底,用基底表示向量1AC uuu r ,平方即求得模长.(2)求出两条直线1CA 与1DC 的方向向量,用向量夹角余弦公式即可.【详解】(1)设CD a =uu u r r ,CB b =uu r r ,1CC c =uuu r r ,{},,a b c 构成空间的一个基底.因为()11()AC CC CD CB c a b =-+=-+ ,所以()22211AC AC c a b ⎡⎤==-+⎣⎦222222c a b a c b c a b=++-⋅-⋅+⋅ 12222cos608=-⨯⨯⨯︒=,所以1AC =(2)又1CA a b c =++ ,1DC c a =- ,所以()()11CA DC a b c c a ⋅=++⋅- 220c a b c a b =-+⋅-⋅= ∴11CA DC ⊥ ∴异面直线1CA 与1DC 所成的角为90°.5.(1)2c =±(2)75k =【分析】(1)求出()0,1,b a c += ,根据向量模长公式列出方程,求出2c =±;(2)分2c =与2c =-两种情况,根据向量垂直列出方程,求出实数k 的值.【详解】(1)()()()01,0,1,1,0,1,b c a c =-++= ,所以a b +== 2c =±;(2)当2c =时,()()()01,0,2,,1,,2k b k k k a k +=--=+ ,()()()2202,21,0,2,,23,a b -=-=-- ,因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,当2c =-时,()()()210,1,2,,0,,ka k k k b k +=-+---= ,()()()2202,21,0,2,,23,a b -=-=-- 因为ka b + 与2a b - 互相垂直,所以()231220k k -+-=,解得:75k =,综上:75k =.6.(1)()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,393,,222G ⎛⎫ ⎪⎝⎭21【分析】(1)根据线段长度、中点坐标公式可求得点对应的坐标;(2)利用向量夹角的坐标运算可直接求得结果.【详解】(1)1226AD AB AA === ,13AB AA ∴==,则()3,6,0C ,()10,6,3D ,3,0,32F ⎛⎫ ⎪⎝⎭,()0,3,3E ,CG GE = ,G ∴为CE 中点,393,,222G ⎛⎫∴ ⎝⎭.(2)由(1)得:3,6,32CF ⎛⎫=-- ⎪⎝⎭ ,1333,,222D G ⎛⎫=-- ⎪⎝⎭,1119999424cos ,22CF D G CF D G CF D G -+-⋅∴<>=⋅⨯ .7.(1)1(2)2(3)0【分析】分别将EF ,BD ,CD 转化为AB ,AC ,AD 后根据数量积定义计算即可.【详解】(1)在正四面体ABCD 中,||||2,cos ,60BD BA BD BA ==〈〉=111||||cos ,22cos 601222EF BA BD BA BD BA BD BA ⋅=⋅=⋅〈〉=⨯⨯︒= (2)211||222EF BD BD BD BD ⋅=⋅== (3)()AB CD AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅=||||cos ,||||cos ,AB AD AB AD AB AC AB AC ⋅⋅〈〉-⋅〈〉在正四面体ABCD 中,||||||AB AD AC == ,cos ,cos ,AB AD AB AC 〈〉=〈〉故0AB CD ⋅=8.(1)0(2)AD(3)0【分析】(1)(2)(3)结合图形,根据空间向量的线性运算直接化简可得.【详解】(1)0AB CD BC DA AB BC CD DA AC CD DA AD AD +++=+++=++=-= (2)由图知,1111B C A D = 所以1111111111AA B C D D AA A D D D AD D D AD++=++=+= (3)由图知,CB DA =所以由(2)可得11110AA B C D D CB AD DA AD AD +++=+=-= 9.(1)(2)2π3【分析】(1)(2)由空间向量的坐标运算求解,【详解】(1)由题意得所以()2,2,0a AB == ,所以a == 因为()2,2,4B -,()3,2,3C -,所以()1,0,1b BC ==--r u u u r ,所以b ==r (2)由(1)可知1cos ,2a b a b a b⋅==-⋅ ,又[],0,πa b ∈ ,所以2π,3a b = ,即a 与b 的夹角为2π3.10.()122DM a b c =+- 【分析】利用空间向量的线性运算的几何表示运算即得.【详解】∵M 为BC 的中点,∴()12AM AB AC =+uuu r uu u r uuu r ,∴()()11222DM AM AD AB AC AD a b c =-=+-=+- .。
1【知识梳理】一、空间向量的概念及相关运算1、空间向量基本定理、空间向量基本定理如果三个向量,,a b c r r r不共面,那么对空间任一向量p xa yb zc =++u r r r r,,a b c r r r称为基向量。
称为基向量。
2、空间直角坐标系的建立、空间直角坐标系的建立分别以互相垂直的三个基向量k j i ρρρ,,的方向为正方向建立三条数轴:x 轴,y 轴和z 轴。
则轴。
则a xi y j zk =++r r r r(x,y,z )称为空间直角坐标。
)称为空间直角坐标。
注:假如没有三条互相垂直的向量,需要添加辅助线构造,在题目中找出互相垂直的两个面,通过做垂线等方法来建立即可。
建立即可。
3、空间向量运算的坐标表示、空间向量运算的坐标表示(1)若()()111222,,,,,a x y z b x y z ==r r ,则:()121212,,a b x x y y z z ±=±±±r r()111,,a x y z λλλλ=r 121212a b x x y y z z ⋅=++r r 错误!未找到引用源。
121212//,,a b a b x x y y z z λλλλ⇔=⇔===r r r r222111a a a x y z =⋅=++r r r .a b ⋅r r =a rcos ,b a b 〈〉r r r .cos ,a b a b a b ⋅〈〉=r r r r r r121212222222111222cos ,x x y y z za b a b ab x y z x y z ++⋅〈〉==++⋅++r r r r r r (2)(2)设设()()111222,,,,,A x y z B x y z ==则()212121,,AB OB OA x x y y z z =-=---u u u r r r(3)()111,,x y z A ,()222,,x y z B =,则()()()222212121d x x y y z zAB =AB =-+-+-u u u r二、应用:平面的法向量的求法:1、建立恰当的直角坐标系、建立恰当的直角坐标系2、设平面法向量n =(x ,y ,z )3、在平面内找出两个不共线的向量,记为a =(a1,a2, a3) b =(b1,b2,b3)4、根据法向量的定义建立方程组①n*a =0 ②n*b =05、解方程组,取其中一组解即可。
§1-3 空间向量与立体几何【知识要点】1.空间向量及其运算:(1)空间向量的线性运算:①空间向量的加法、减法和数乘向量运算:平面向量加、减法的三角形法则和平行四边形法则拓广到空间依然成立.②空间向量的线性运算的运算律:加法交换律:a+b=b+a;加法结合律:(a+b+c)=a+(b+c);分配律:(+)a=a+a;(a+b)=a+b.(2)空间向量的基本定理:①共线(平行)向量定理:对空间两个向量a,b(b≠0),a∥b的充要条件是存在实数,使得a∥b.②共面向量定理:如果两个向量a,b不共线,则向量c与向量a,b共面的充要条件是存在惟一一对实数,,使得c=a+b.③空间向量分解定理:如果三个向量a,b,c不共面,那么对空间任一向量p,存在惟一的有序实数组1,2,3,使得p=1a+2b+3c.(3)空间向量的数量积运算:①空间向量的数量积的定义:a·b=|a||b|c os〈a,b〉;②空间向量的数量积的性质:a·e=|a|c os<a,e>;a⊥b a·b=0;|a|2=a·a;|a·b|≤|a||b|.③空间向量的数量积的运算律: (a )·b =(a ·b );交换律:a ·b =b ·a ;分配律:(a +b )·c =a ·c +b ·c . (4)空间向量运算的坐标表示:①空间向量的正交分解:建立空间直角坐标系Oxyz ,分别沿x 轴,y 轴,z 轴的正方向引单位向量i ,j ,k ,则这三个互相垂直的单位向量构成空间向量的一个基底{i ,j ,k },由空间向量分解定理,对于空间任一向量a ,存在惟一数组(a 1,a 2,a 3),使a =a 1i +a 2j +a 3k ,那么有序数组(a 1,a 2,a 3)就叫做空间向量a 的坐标,即a =(a 1,a 2,a 3).②空间向量线性运算及数量积的坐标表示: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a +b =(a 1+b 1,a 2+b 2,a 3+b 3);a -b =(a 1-b 1,a 2-b 2,a 3-b 3);a =(a 1,a 2,a 3);a ·b =a 1b 1+a 2b 2+a 3b 3.③空间向量平行和垂直的条件:a ∥b (b ≠0)⇔a =b ⇔a 1=b 1,a 2=b 2,a 3=b 3(∈R );a ⊥b ⇔a ·b =0⇔a 1b 1+a 2b 2+a 3b 3=0.④向量的夹角与向量长度的坐标计算公式: 设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则;||,||232221232221b b b a a a ++==++==⋅⋅b b b a a a;||||,cos 232221232221332211b b b a a a b a b a b a ++++++=>=<⋅b a ba b a在空间直角坐标系中,点A (a 1,a 2,a 3),B (b 1,b 2,b 3),则A ,B 两点间的距离是.)()()(||233222211b a b a b a AB -+-+-=2.空间向量在立体几何中的应用: (1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定. ②如果直线l ⊥平面,取直线l 的方向向量a ,则向量a 叫做平面的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定.(2)用空间向量刻画空间中平行与垂直的位置关系: 设直线l ,m 的方向向量分别是a ,b ,平面,的法向量分别是u ,v ,则①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥⇔a ⊥u ⇔a ·u =0; ④l ⊥⇔a ∥u ⇔a =k u ,k ∈R ;⑤∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥⊥⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面的法向量是v ,直线a 与平面的夹角为,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作-l -在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB叫做二面角-l -的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角-l -的两个面内与棱l 垂直的异面直线,则二面角-l -的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面,的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示.3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2PA 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2PA 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴RS PQ //,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤: (1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明.例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行.解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),OG =(-1,1,4),∴MN ∥EF ,OG AK =,∴MN//EF ,AK//OG , ∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是b =(b 1,b 2,b 3).由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅BF DE b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试. 例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aAD a a a AC =-= 23||||cos 111==∴AD AC AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a a a C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a a a AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅AA AB a a 得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0).设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||||,cos |sin 111 ===〉〈=⋅θθa a a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,AC ⊥BC ,PA =AC =1,2=BC ,求二面角A -PB -C 的平面角的余弦值.解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵PA =AC =1,PA ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB 的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<⋅33||||,cos DC EA DC EA DC EA 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====CP CB AB AP设平面PAB 的法向量是a =(a 1,a 2,a 3), 平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅AB AP a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅CP CB b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.例6 如图,三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面PAC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面PAC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.解:如图建立空间直角坐标系.设PA =a ,由已知可得A (0,0,0),).,0,0(),0,23,0(),0,23,21(a P a C a a B - (Ⅰ)∵),0,0,21(),,0,0(a BC a AP ==∴,0=⋅BC AP ∴BC ⊥AP .又∠BCA =90°,∴BC ⊥AC .∴BC ⊥平面PAC .(Ⅱ)∵D 为PB 的中点,DE ∥BC ,∴E 为PC 的中点. ∴⋅-)21,43,0(),21,43,41(a a E a a a D 由(Ⅰ)知,BC ⊥平面PAC ,∴DE ⊥平面PAC , ∴∠DAE 是直线AD 与平面PAC 所成的角. ∴),21,43,0(),21,43,41(a a AE a a a AD =-= ∴,414||||cos ==∠AE AD DAE 即直线AD 与平面PAC 所成角的余弦值是⋅414 (Ⅲ)由(Ⅱ)知,DE ⊥平面PAC ,∴DE ⊥AE ,DE ⊥PE , ∴∠AEP 是二面角A -DE -P 的平面角. ∵PA ⊥底面ABC ,∴PA ⊥AC ,∠PAC =90°. ∴在棱PC 上存在一点E ,使得AE ⊥PC ,这时,∠AEP =90°,且⋅==3422AC PA EC PE 故存在点E 使得二面角A -DE -P 是直二面角,此时PE ∶EC =4∶3. 注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.练习1-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30°(B)45°(C)60°(D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,⊥,∩=l ,A ∈,B ∈,A ,B 到l 的距离分别是a 和b ,AB 与,所成的角分别是和ϕ,AB 在,内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)>ϕ,m >n (B)>ϕ,m <n (C)<ϕ,m <n(D)<ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,PA ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为,则cos=______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小.11.如图,已知直二面角-PQ-,A∈PQ,B∈,C∈,CA=CB,∠BAP =45°,直线CA和平面所成的角为30°.(Ⅰ)证明:BC⊥PQ;(Ⅱ)求二面角B-AC-P平面角的余弦值.习题1一、选择题:1.关于空间两条直线a、b和平面,下列命题正确的是( )(A)若a ∥b ,b ⊂,则a ∥ (B)若a ∥,b ⊂,则a ∥b (C)若a ∥,b ∥,则a ∥b(D)若a ⊥,b ⊥,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( ) (A)8(B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3(D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2(B)22(C)23(D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______. 9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论: ①直线AD ⊥平面BCD ; ②侧面ABC 是等边三角形; ③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号) 三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ; (Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥AC,PA=AC=2,AB=1,M 为PC的中点.(Ⅰ)求证:平面PCB⊥平面MAB;(Ⅱ)求三棱锥P-ABC的表面积.13.如图,在直三棱柱ABC-A1B1C1中,∠ABC=90°,AB=BC=AA1=2,M、N分别是A1C1、BC1的中点.(Ⅰ)求证:BC1⊥平面A1B1C;(Ⅱ)求证:MN∥平面A1ABB1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.练习1-3一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.54 8.42三、解答题:9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=DA C A(Ⅰ)∵,0,011==⋅⋅DE C A DB C A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==⋅4214||||),cos(111C A C A C A n n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421(OD OP MN 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅OD OP n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n MN ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为,,3π,21||||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面内过点C 作CO ⊥PQ 于点O ,连结OB . ∵⊥,∩=PQ ,∴CO ⊥.又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥,∴∠CAO 是CA 和平面所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AC AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面的一个法向量.设二面角B -AC -P 的平面角为,∴,55||||cos 2121==⋅⋅n n n n θ 即二面角B -AC -P 平面角的余弦值是⋅55习题1一、选择题:1.D 2.B 3.A 4.B 5.B 二、填空题: 6.324 7.438.9 9.5 10.①、②、③三、解答题:11.(Ⅰ)证明:∵ABC -A 1B 1C 1是正三棱柱,∴BB 1⊥平面ABC ,∴平面BB 1C 1C ⊥平面ABC .∵正△ABC 中,D 是BC 的中点,∴AD ⊥BC ,∴AD ⊥平面BB 1C 1C , ∴AD ⊥B 1D .(Ⅱ)解:连接A 1B ,设A 1B ∩AB 1=E ,连接DE .∵AB =AA 1, ∴ 四边形A 1ABB 1是正方形, ∴E 是A 1B 的中点,又D 是BC 的中点,∴DE ∥A 1C . ∵DE ⊂平面A 1BD ,A 1C ⊄平面A 1BD ,∴A 1C ∥平面A 1BD .(Ⅲ)解:建立空间直角坐标系,设AB =AA 1=1, 则⋅-)1,0,21(),0,23,0(),0,0,0(1B A D 设n 1=(p ,q ,r )是平面A 1BD 的一个法向量, 则,01=⋅AD n 且,011=⋅D B n 故.021,023=-=-r P q 取r =1,得n 1=(2,0,1). 同理,可求得平面AB 1B 的法向量是).0,1,3(2-=n 设二面角B -AB 1-D 大小为,∵,515||||cos 2121==⋅n n n n θ ∴二面角B -AB 1-D 的平面角余弦值为⋅51512.(Ⅰ)∵PA ⊥AB ,AB ⊥AC ,∴AB ⊥平面PAC ,故AB ⊥PC .∵PA =AC =2,M 为PC 的中点,∴MA ⊥PC .∴PC ⊥平面MAB , 又PC ⊂平面PCB ,∴平面PCB ⊥平面MAB . (Ⅱ)Rt △PAB 的面积1211==⋅AB PA S .Rt △PAC 的面积.2212==⋅AC PA S Rt △ABC 的面积S 3=S 1=1.∵△PAB ≌△CAB ,∵PB =CB ,∴△PCB 的面积.632221214=⨯⨯==⋅MB PC S ∴三棱锥P -ABC 的表面积为S =S 1+S 2+S 3+S 4=.64+13.(Ⅰ)∵ABC -A 1B 1C 1是直三棱柱,∴BB 1⊥平面A 1B 1C 1,∴B 1B ⊥A 1B 1.又B 1C 1⊥A 1B 1,∴A 1B 1⊥平面BCC 1B 1,∴BC 1⊥A 1B 1. ∵BB 1=CB =2,∴BC 1⊥B 1C ,∴BC 1⊥平面A 1B 1C .(Ⅱ)连接A 1B ,由M 、N 分别为A 1C 1、BC 1的中点,得MN ∥A 1B , 又A 1B ⊂平面A 1ABB 1,MN ⊄平面A 1ABB 1,∴MN ∥平面A 1ABB 1.(Ⅲ)取C 1B 1中点H ,连结MH . ∵M 是A 1C 1的中点,∴MH ∥A 1B 1,又A 1B 1⊥平面BCC 1B 1,∴MH ⊥平面BCC 1B 1,∴MH 是三棱锥M -BC 1B 1的高, ∴三棱锥M -BC 1B 1的体积⋅=⨯⨯⨯==⋅⋅∆321421313111MH S V B BC 14.如图建立空间直角坐标系,设A (2,0,0),则B (2,2,0),C (0,2,0),S (0,0,2).(Ⅰ)设)0(>=λλMC SM , 则),12,12,2(),12,12,0(λλλλλ++--=++BM M 又.60,),0,2,0( >=<-=BM BA BA 故,60cos ||||.BA BM BA BM =即,)12()12()2(14222λλλ+++-+-=+解得=1.∴M 是侧棱SC 的中点.(Ⅱ)由M (0,1,1),A (2,0,0)得AM 的中点⋅)21,21,22(G 又),1,1,2(),1,1,0(),21,23,22(-=-=-=AM MS GB ∴,,,0,0AM MS AM GB AM MS AM GB ⊥⊥∴==⋅⋅ ∴cos〉MS ,G B 〈等于二面角S -AM -B 的平面角. ,36||||),cos(-==MS GB MS GB 即二面角S -AM -B 的平面角的余弦值是-36.。
空间向量与立体几何基础测试题(总3页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第三章:空间向量与立体几何专题复习1. 直三棱柱ABC —A 1B 1C 1中,若====B A C CC b CB a CA 11,,,则( ) A .c b a -+B .c b a +-C .c b a ++-D .c b a -+-2.在空间四边形ABCD 中,M ,G 分别是BC ,CD 的中点,则21AB +→--(→--BD +→--BC )等于 ( )A 、→--ADB 、→--GAC 、→--AGD 、→--MG 4.对空间任意两个向量b a o b b a //),(,≠的充要条件是( )A .b a =B .b a -=C .a b λ=D .b a λ=2.已知a +b +c =0,|a |=2,|b |=3,|c |=4,则向量a 与b 之间的夹角,〈〉a b 为 ( )(A )30° (B )45° (C )60° (D )以上都不对6.已知线段AB 、BC 都在平面α内,BC ⊥AB,线段DA ⊥α,若AB=1,BC=2,CD=3,则DA= . 6. 已知b a ,是空间二向量,若b a b a b a 与则,7||,2||,3||=-==的夹角为7.已知 b a ,c 两两之间的夹角都是︒60且1||=a ,1||=b ,1||=c 则2)2(c b a +-=1. 已知向量(0,2,1)=a ,(1,1,2)=--b ,则a 与b 的夹角为 ( ) (A )0° (B )45° (C )90° (D )180°3.设|m |=1,|n |=2,2m +n 与m -3n 垂直,a =4m -n ,b =7m +2n ,则,〈〉a b =4. 已知→-a =(3,-3,-1),→-b =(2,0,3),→-c =(0,0,2),求→-a ·(→-b +→-c )=__________。
立体几何与空间向量03 空间点、线、面的位置关系一、具体目标:1.理解空间直线、平面位置关系的定义,并了解可以作为推理依据的公理和定理;2.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.二、知识概述:1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内(即直线在平面内).(2)公理2:经过不在同一条直线上的三点,有且只有一个平面(即可以确定一个平面).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条通过这个点的公共直线. 推论1:经过一条直线和这条直线外一点,有且只有一个平面.推论2:经过两条相交直线,有且只有一个平面.推论3:经过两条平行直线,有且只有一个平面.2. 空间两直线的位置关系直线与直线的位置关系的分类⎩⎨⎧ 共面直线⎩⎪⎨⎪⎧ 平行相交异面直线:不同在任何一个平面内直线与平面的位置关系有平行、相交、在平面内三种情况.平面与平面的位置关系有平行、相交两种情况.平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.3.异面直线所成的角①定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角或直角叫作异面直线a ,b 所成的角(或夹角).②范围:.4.异面直线的判定方法: ]2,0(π【考点讲解】判定定理:平面外一点A与平面内一点B的连线和平面内不经过该点的直线是异面直线;反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.5.求异面直线所成的角常采用“平移线段法”,平移的方法一般有三种类型:利用图中已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平移;补形平移.计算异面直线所成的角通常放在三角形中进行.平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.【温馨提示】平面的基本性质,点、直线、平面之间的位置关系是高考试题主要考查知识点,题型除了选择题或填空题外,往往在大题中结合平行关系、垂直关系或角的计算间接考查.1.【2019年高考全国Ⅲ卷】如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线【解析】本题主要考查的空间两条直线的位置关系问题,要求会构造三角形,讨论两直线是否共面,并通过相应的计算确定两条直线的大小关系.如图所示,作EO CD⊥于O,连接ON,BD,易得直线BM,EN是三角形EBD的中线,是相交直线.过M作MF OD⊥于F,连接BF,Q平面CDE⊥平面ABCD,,EO CD EO⊥⊂平面CDE,EO∴⊥平面ABCD,MF⊥平面ABCD,MFB∴△与EON△均为直角三角形.设正方形边长为2,易知12EO ON EN===,,5,2MF BF BM==∴=,BM EN∴≠,故选B.] 2 ,0(π【真题分析】【答案】B2.【2018年高考全国Ⅱ卷理数】在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为( )A .15 BCD【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,如图,则11B P AD ∥,连接DP ,易求得1DB DP =,12B P =,则1DB P ∠是异面直线1AD 与1DB 所成的角,由余弦定理可得22211111cos 2DB B P DP DB P DB PB +-∠===⋅.故选C.方法二:以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立空间直角坐标系,则()()((110,0,0,1,0,0,,D A B D ,所以((11,AD DB =-=u u u u r u u u u r ,因为111111cos ,5AD DB AD DB AD DB ⋅===u u u u r u u u u r u u u u r u u u u r u u u u r u u u u r , 所以异面直线1AD 与1DB所成角的余弦值为5,故选C. 【答案】C3. 【2018年高考全国Ⅱ卷文数】在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为( )A.2 BCD【解析】如图,在正方体1111ABCD A B C D -中,CD AB ∥,所以异面直线AE 与CD 所成角为EAB ∠,设正方体边长为2a ,则由E 为棱1CC 的中点,可得CE a =,所以BE =,则tan BE EAB AB ∠===.故选C .【答案】C4.【2017年高考全国Ⅱ卷理数】已知直三棱柱111ABC A B C -中,120ABC ∠=︒,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A.2 B.5 C.5D.3 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos 5BC BC D C D ∠===,故选C . 【答案】C5.【2017年高考全国Ⅲ卷文数】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥【解析】根据三垂线定理的逆定理,可知平面内的线垂直于平面的斜线,则也垂直于斜线在平面内的射影.A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立;D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.【答案】C6.【2019年高考北京卷理数】已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ; ②m ∥α; ③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【解析】将所给论断,分别作为条件、结论,得到如下三个命题:(1)如果l ⊥α,m ∥α,则l ⊥m ,正确;(2)如果l ⊥α,l ⊥m ,则m ∥α,不正确,有可能m 在平面α内;(3)如果l ⊥m ,m ∥α,则l ⊥α,不正确,有可能l 与α斜交、l ∥α.故答案为:如果l ⊥α,m ∥α,则l ⊥m.【答案】如果l ⊥α,m ∥α,则l ⊥m .7.【2017年高考全国Ⅲ卷理数】a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60°角时,AB 与b 成30°角;②当直线AB 与a 成60°角时,AB 与b 成60°角;③直线AB 与a 所成角的最小值为45°;④直线AB 与a 所成角的最大值为60°. 其中正确的是________.(填写所有正确结论的编号)【解析】设1AC BC ==.由题意,AB 是以AC 为轴,BC 为底面半径的圆锥的母线,由,AC a AC b ⊥⊥,又AC ⊥圆锥底面,所以在底面内可以过点B ,作BD a ∥,交底面圆C 于点D ,如图所示,连接DE ,则DE ⊥BD ,DE b ∴∥,连接AD ,等腰ABD △中,AB AD ==当直线AB 与a 成60°角时,60ABD ∠=o ,故BD =Rt BDE △中,2,BE DE =∴=B 作BF ∥DE ,交圆C 于点F ,连接AF ,由圆的对称性可知BF DE ==ABF ∴△为等边三角形,60ABF ∴∠=o ,即AB 与b 成60°角,②正确,①错误.由图可知③正确;很明显,可以满足平面ABC ⊥直线a ,则直线AB 与a 所成角的最大值为90°,④错误.故正确的是②③.【答案】②③8.【2016高考浙江文数】如图,已知平面四边形ABCD ,AB =BC =3,CD =1,ADADC =90°.沿直线AC 将△ACD 翻折成△ACD ',直线AC 与BD '所成角的余弦的最大值是______.【解析】设直线AC 与'BD 所成角为θ.设O 是AC 中点,由已知得AC =如图,以OB 为x 轴,OA 为y 轴,过O 与平面ABC 垂直的直线为z轴,建立空间直角坐标系,由(0,2A,(2B,(0,2C -,作DH AC ⊥于H ,翻折过程中,'D H 始终与AC 垂直,26CD CH CA ===,则3OH =,DH =='(,sin )636D αα-,则'sin )6236BD αα=--uuu r ,与CA uu r 平行的单位向量为(0,1,0)n =r , 所以cos cos ',BD n θ=<>uuu r r ''BD n BD n⋅=uuu r r uuu r rcos 1α=时,cos θ取最大值9.9.【2017天津,文17】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(I )求异面直线AP 与BC 所成角的余弦值;(II )求证:PD ⊥平面PBC ;(Ⅲ)求直线AB 与平面PBC 所成角的正弦值.【分析】(Ⅰ)异面直线所成的角一般都转化为相交线所成的角,//AD BC ,所以PAD ∠即为所求,根据余弦定理求得,但本题可证明AD PD ⊥,所以cosAD PAD AP ∠=;(Ⅱ)要证明线面垂直,根据判断定理,证明线与平面内的两条相交直线垂直,则线与面垂直,即证明,PD BC PD PB ⊥⊥;(Ⅲ)根据(Ⅱ)的结论,做//DF AB ,连结PF ,DFP ∠即为所求【解析】(Ⅰ)解:如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得225AP AD PD =+=,故5cos AD DAP AP ∠==. 所以,异面直线AP 与BC C(Ⅱ)证明:因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C.10.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A AC AC E F ∠=︒==分别是AC ,A 1B 1的中点. (1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E ,EG O 为A 1G 的中点,故12A G EO OG ===, 所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35. 方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,B 1,0),1B ,3,2F ,C (0,2,0).因此,3,2EF =u u u r ,(BC =u u u r .由0EF BC ⋅=u u u r u u u r 得EF BC ⊥. (2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(310)=(0223)BC A C --u u u r u u u u r ,,,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩u u u r n n,得00y y ⎧+=⎪⎨=⎪⎩, 取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅u u u r u u u r u u u r ,n n n |, 因此,直线EF 与平面A 1BC 所成的角的余弦值为35.2.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( ) A . B .C .D .【解析】本题考点是线面平行的判断问题,由题意可知:第二个选项中AB ∥MQ ,在直线AB ∥平面MNQ ,第三个选项同样可得AB ∥MQ ,直线AB ∥平面MNQ ,第四个选项有AB ∥NQ ,直线AB ∥平面MNQ ,只有选项A 不符合要求【答案】A2.空间中,可以确定一个平面的条件是( )A .两条直线B .一点和一条直线C .一个三角形D .三个点【解析】不共线的三点确定一个平面,C 正确;A 选项,只有这两条直线相交或平行才能确定一个平面;B 选项,一条直线和直线外一点才能确定一个平面;D 选项,不共线的三点确定一个平面.【答案】C3.在三棱锥A -BCD 的棱AB 、BC 、CD 、DA 上分别取E 、F 、G 、H 四点,如果EF ∩HG =P ,则点P ( )A .一定在直线BD 上B .一定在直线AC 上 【模拟考场】C .在直线AC 或BD 上 D .不在直线AC 上,也不在直线BD 上【解析】如图所示,∵EF ⊂平面ABC ,HG ⊂平面ACD ,EF ∩HG =P ,∴P ∈平面ABC ,P ∈平面ACD .又∵平面ABC ∩平面ACD =AC ,∴P ∈AC ,故选B .【答案】B4.已知平面α和直线l ,则在平面α内至少有一条直线与直线l ( )A.平行B.垂直C.相交D.以上都有可能【解析】本题的考点是直线与平面的位置关系,直线与直线的位置关系,若直线l 与平面α相交,则在平面α内不存在直线与直线l 平行,故A 错误;若直线l ∥平面α,则在平面α内不存在直线与l 相交,故C 错误;对于直线l 与平面α相交,直线l 与平面α平行,直线l 在平面α内三种位置关系,在平面α内至少有一条直线与直线l 垂直,故选B.【答案】B5.如图,四棱锥P ABCD -中,90ABC BAD ∠=∠=︒,2BC AD =,PAB ∆和PAD ∆都是等边三角形,则异面直线CD 和PB 所成角的大小为( )A .90︒B .75︒C .60︒D .45︒【解析】设1AD =,则2BC =,过A 作//AE CD 交BC 于E ,则AD CE =,过E 作//EF PB 交PC于F ,则AEF ∠即为为所求,如图所示,过F 作//FG CD 交PD 于G ,连接AG ,则四边形AEFG 是梯形,其中//FG AE ,12EF =G 作//GH EF 交AE 于H ,则GHA AEF ∠=∠,在GHA ∆中,1,,222GH EF AH AE FG AG ===-===则 222AG GH AH =+,所以90AEF ∠=︒,故选A.【答案】A6.不在同一条直线上的三点A 、B 、C 到平面α的距离相等,且A ∉α,给出以下三个命题:①△ABC 中至少 有一条边平行于α;②△ABC 中至多有两边平行于α;③△ABC 中只可能有一条边与α相交.其中真命题是_____________.【解析】直线与平面的位置关系,平面与平面的位置关系,如图,三点A 、B 、C 可能在α的同侧,也可能在α两侧,其中真命题是①.【答案】①7.已知A 是△BCD 所在平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角.【解析】本题考点反证法证明异面直线,异面直线所成的角.(1)证明:假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 所在平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以直线EF 与EG 所成的角即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,可得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.8.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为3,M ,N 分别是棱AA 1,AB 上的点,且AM =AN =1.(1)证明:M ,N ,C ,D 1四点共面;(2)平面MNCD 1将此正方体分为两部分,求这两部分的体积之比.【解析】本题考点是多点共面的证明,平面分几何体的体积之比.(1)证明:连接A 1B ,在四边形A 1BCD 1中,A 1D 1∥BC 且A 1D 1=BC ,所以四边形A 1BCD 1是平行四边形.所以A 1B ∥D 1C. 在△ABA 1中,AM =AN =1,AA 1=AB =3,所以1AM AN AA AB, 所以MN ∥A 1B ,所以MN ∥D 1C.所以M ,N ,C ,D 1四点共面.(2)记平面MNCD 1将正方体分成两部分的下部分体积为V 1,上部分体积为V 2,连接D 1A ,D 1N ,DN ,则几何体D 1-AMN ,D 1-ADN ,D 1-CDN 均为三棱锥,所以V 1=111D AMN D ADN D CDN V V V ---++=13S △AMN ·D 1A 1+13S △ADN ·D 1D +13S △CDN ·D 1D =13×12×3+13×32×3+13×92×3=132. 从而V 2=1111ABCD A B C D V --V 1=27-132=412,所以121341V V =, 所以平面MNCD 1分此正方体的两部分体积的比为1341.。
【最新】高考数学《空间向量与立体几何》专题解析一、选择题1.如图,在正方体1111ABCD A B C D -中,M , N 分别为棱111,C D CC 的中点,以下四个结论:①直线DM 与1CC 是相交直线;②直线AM 与NB 是平行直线;③直线BN 与1MB 是异面直线;④直线AM 与1DD 是异面直线.其中正确的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据正方体的几何特征,可通过判断每个选项中的两条直线字母表示的点是否共面;如果共面,则可能是相交或者平行;若不共面,则是异面. 【详解】①:1CC 与DM 是共面的,且不平行,所以必定相交,故正确;②:若AM BN 、平行,又AD BC 、平行且,AM AD A BN BC B ⋂=⋂=,所以平面BNC P 平面ADM ,明显不正确,故错误;③:1BN MB 、不共面,所以是异面直线,故正确; ④:1AM DD 、不共面,所以是异面直线,故正确; 故选C. 【点睛】异面直线的判断方法:一条直线上两点与另外一条直线上两点不共面,那么两条直线异面;反之则为共面直线,可能是平行也可能是相交.2.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r ,利用公式222PA R r ⎛⎫=+⎪⎝⎭可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为232sin3AB r π==PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为222223211233PA R r ⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭, 因此,三棱锥P ABC -的外接球的表面积为222128443R πππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.3.已知某几何体的三视图如图所示,则该几何体的体积为A .273B .276C .274D .272【答案】D 【解析】 【分析】先还原几何体,再根据锥体体积公式求结果. 【详解】几何体为一个三棱锥,高为33333,,所以体积为1127=33333=322V ⨯⨯⨯,选D. 【点睛】(1)解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;(2)解决本类题目的技巧:三棱柱、四棱柱、三棱锥、四棱锥是常用的几何模型,有些问题可以利用它们举特例解决或者学会利用反例对概念类的命题进行辨析.4.已知一个几何体的三视图如图所示(正方形边长为1),则该几何体的体积为()A.34B.78C.1516D.2324【答案】B【解析】【分析】【详解】由三视图可知:该几何体为正方体挖去了一个四棱锥A BCDE-,该几何体的体积为11117 11132228⎛⎫-⨯⨯+⨯⨯=⎪⎝⎭故选B点睛:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.5.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A .34 B .234C .517D .317【答案】D 【解析】 【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解. 【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯,则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅317172317==⨯⨯. 故选:D【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.6.在以下命题中:①三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r共面;②若两个非零向量a r ,b r 与任何一个向量都不能构成空间的一个基底,则a r ,b r共线;③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--u u u r u u u r u u u u r u u u u r,则P ,A ,B ,C 四点共面④若a r ,b r是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠r r r ,则{},,a b c r r r 构成空间的一个基底⑤若{},,a b c r r r 为空间的一个基底,则{},,a b b c c a +++r r r r r r构成空间的另一个基底;其中真命题的个数是( ) A .0 B .1C .2D .3【答案】D 【解析】 【分析】根据空间向量的运算法则,逐一判断即可得到结论. 【详解】①由空间基底的定义知,三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r,c r共面,故①正确;②由空间基底的定义知,若两个非零向量a r ,b r与任何一个向量都不能构成空间的一个基底,则a r ,b r共线,故②正确;③由22221--=-≠,根据共面向量定理知,,,P A B C 四点不共面,故③错误;④由c a b λμ=+r r r ,当1λμ+=时,向量c r 与向量a r ,b r构成的平面共面,则{},,a b c r r r 不能构成空间的一个基底,故④错误;⑤利用反证法:若{},,a b b c c a +++r r r r r r不构成空间的一个基底, 设()()()1a b x b c x c a +=++-+r r r r r r ,整理得()1c xa x b =+-r r r ,即,,a b c r r r共面,又因{},,a b c r r r 为空间的一个基底,所以{},,a b b c c a +++r r r r r r能构成空间的一个基底,故⑤正确.综上:①②⑤正确. 故选:D. 【点睛】本题考查空间向量基本运算,向量共面,向量共线等基础知识,以及空间基底的定义,共面向量的定义,属于基础题.7.已知正方体1111ABCD A B C D -中,M ,N 分别为AB ,1AA 的中点,则异面直线1C M 与BN 所成角的大小为( )A .30°B .45︒C .60︒D .90︒【答案】D 【解析】 【分析】根据题意画出图形,可将异面直线转化共面的相交直线,再进行求解 【详解】 如图:作AN 的中点'N ,连接'N M ,1'C N 由题设可知'N M BN P ,则异面直线1C M 与BN 所成角为1'N MC ∠或其补角,设正方体的边长为4,由几何关系可得,'5N M = ,16C M =,1'41C N =,得21122''N M M C N C =+,即1'90N MC ∠=︒故选D 【点睛】本题考查异面直线的求法,属于基础题8.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A 3B 6C 3D 3 【答案】B 【解析】 【分析】设1AA c=u u u v v ,AB a =u u u v v ,AC b =u u u v v,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v ;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,AB BC <>u u u v u u u u v,即可得所求角的余弦值. 【详解】设棱长为1,1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12a c ⋅=v v1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v又1AB ===u u u v1BC ===u u u u v111111cos ,AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u vu u u v u u u u v u u u v u u u u v即异面直线1AB 与1BC 所成角的余弦值为:6本题正确选项:B 【点睛】本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.9.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ). A .130 B .140C .150D .160【答案】D 【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC Ì,平面ABCD ,所以1A A AC ⊥, 在1Rt A AC ∆中,15A A=,可得AC ==同理可得BD ===,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8,因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.10.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( ) A .8π B .12πC .83πD .3π【答案】B 【解析】 【分析】依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =【详解】依据题意作出图形如下:设四面体P ABC -的外接球的半径为R , 因为球心O 在AB 上,所以AB 为球的直径, 所以2AB R =,且AC BC ⊥ 由23AC AB =可得:3AC R =, BC R =所以四面体P ABC -的体积为111333322ABC V S PO R R R ∆=⋅=⨯⨯⨯⨯= 解得:3R =所以球的表面积2412S R ππ== 故选:B 【点睛】本题主要考查了锥体体积公式及方程思想,还考查了球的表面积公式及计算能力,考查了空间思维能力,属于中档题。
空间向量与立体几何知识点第一篇:空间向量1. 空间向量的表示方法空间向量可以用有向线段、坐标和向量分量等多种方式进行表示。
其中,有向线段表示空间向量的长度、方向和起点,坐标表示空间向量的左端点和右端点的坐标,向量分量表示空间向量在三个坐标轴上的投影。
2. 空间向量的加减法空间向量的加减法与二维向量的加减法类似,可以通过将两个向量的分量逐一相加或相减得到结果向量的分量。
也可以通过平移法、三角法、正交分解等方法进行计算。
3. 空间向量的数量积和向量积空间向量的数量积和向量积都具有几何意义和物理意义。
数量积表示两个向量之间的夹角余弦值和向量长度的乘积,通常用于计算向量的投影和求解平面或直线的方程。
向量积表示两个向量所在平行四边形的面积和法向量,通常用于计算向量的叉积、平面或直线的法向量以及计算空间中两个平面的夹角。
4. 空间向量的共线、垂直和平行空间向量的共线、垂直和平行是三种基本关系。
当两个向量共线时,它们所在直线相交或重合;当两个向量垂直时,它们的数量积为0,而向量积为一个与它们垂直的向量;当两个向量平行时,它们的向量积为0,而数量积为它们长度的乘积。
5. 应用举例空间向量广泛应用于物理、工程、计算机图形学等领域。
例如,通过计算物体的重心和质量分布情况,可以求解物体的转动惯量和稳定性问题;通过计算矢量场中的散度和旋度,可以分析流体的运动状态和变化规律;通过计算三维空间中的距离和夹角,可以在计算机图形学中进行三维模型的建模和渲染。
第二篇:立体几何1. 立体几何的基本概念立体几何是研究三维空间中的基本几何对象和它们的性质、关系的数学分支。
它包括点、线、面、体和空间角等多个基本概念,用于描述和分析三维物体的形状、大小和位置关系。
2. 立体几何的基本公理立体几何的基本公理是欧几里得几何的扩展,是指空间中的点、线、面、体和空间角等基本几何对象应满足的性质和约束。
这些公理包括点的唯一性、直线的唯一性、平面的唯一性、线段长度的可加性、平面的无限性、等角推移原理等。
专题空间向量与立体几何(六个混淆易错点)易错点1对空间向量的运算理解不清1.在棱长为1的正四面体A BCD -中,点M 满足()1AM xAB y AC x y AD =++--,点N 满足()1DN DB DC λλ=-- ,当线段AM 、DN 的长度均最短时,AM AN ⋅= ()A .23B .23-C .43D .43-【答案】A【分析】根据题意得到M ∈平面BCD ,N ∈直线BC ,从而求得,AM DN 最短时,得到M 为BCD △的中心,N 为BC 的中点,求得AM 的长,结合向量的运算公式,即可求得AM AN ⋅的值.【详解】解:如图所示,因为(1)AM x AB y AC x y AD =++-- ,()1DN DB DC λλ=--,可得M ∈平面BCD ,N ∈直线BC ,当,AM DN 最短时,AM ⊥平面BCD ,且DN BC ⊥,所以M 为BCD △的中心,N 为BC 的中点,如图所示,又由正四面体的棱长为1,所以13NM DN ==AN =所以3AM =,因为AM ⊥平面BCD ,所以AM MN ⊥,所以Rt ANM △中,6223cos 332AM MAN AN ∠===,所以326222cos 333AM AN AM AN MAN ⋅=⋅∠=⨯=⨯ 故选:A2.下列命题中正确的个数是().①若a 与b 共线,b 与c 共线,则a 与c共线.②向量a ,b ,c共面,即它们所在的直线共面.③如果三个向量a ,b ,c不共面,那么对于空间任意一个向量p ,存在有序实数组(),,x y z ,使得p xa yb zc =++.④若a ,b 是两个不共线的向量,而c a b λμ=+(,λμ∈R 且0λμ≠),则{},,a b c 是空间向量的一组基底.A .0B .1C .2D .3【答案】B【分析】举例0b =,判断①,由向量共面的定义判断②,由空间向量基本定理判断③,由共面向量定理和空间向量基本定理判断④.【详解】①当0b = 时,a 与c不一定共线,故①错误;②当a ,b ,c共面时,它们所在的直线平行于同一平面,或在同一平面内,故②错误;由空间向量基本定理知③正确;④当a ,b 不共线且c a b λμ=+时,a ,b ,c 共面,故④错误.故选:B .3.以下命题:①若//a b r r ,则存在唯一的实数λ,使得λa b = ;②若a b b c ⋅=⋅r r r r,则a c = 或0b = ;③若{},,a b c为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底;④()()()()a b c d d c b a ⋅⋅⋅=⋅⋅⋅ 一定成立.则其中真命题的个数为()A .4B .3C .2D .1【答案】C【分析】由共线向量的基本定理判断①;由数量积判断②;由基底的概念判断③;由数量积的性质判断④【详解】对于①:根据共线向量的基本定理,//a b r r 的充要条件是存在唯一的实数λ,使得λa b = ,其中0b ≠r r;这里没有限制b,所以①错误;对于②:cos ,,cos ,a b a b a b b c b c b c ⋅=⋅⋅=⋅r r r r r r r r r r r r ,若a b b c ⋅=⋅r r r r ,则cos ,cos ,a a b c b c ⋅=r r r r r r ,即只要a 在b 上的投影与c 在b 上的投影相等即可,故②错误;对于③:若{},,a b c 为空间的一个基底,则,,a b c不共面,则,,a b b c c a +++ 也不共面,则{},,a b b c c a +++构成空间的另一个基底,故③正确;对于④:因为,a b b a c d d c ⋅=⋅⋅=⋅,所以()()()()a b c d d c b a ⋅⋅⋅=⋅⋅⋅ ,故④正确;所以正确的有2个,故选:C4.下面四个结论正确的个数是()①空间向量(),0,0a b a b ≠≠ ,若a b ⊥ ,则0a b ⋅=;②若空间四个点P ,A ,B ,C ,1344PC PA PB =+,则A ,B ,C 三点共线;③已知向量(1,1,)a x = ,(3,,9)b x =- ,若310x <,则,a b 〈〉为钝角;④任意向量,,a b c 满足()()a b c a b c ⋅⋅=⋅⋅.A .4B .3C .2D .1【答案】C【分析】根据空间向量的线性运算、向量平行的意义及坐标表示、数量积的定义、性质对各命题逐一判断即可.【详解】对于①,因0,0a b ≠≠ ,a b ⊥ ,则·0a b =,①正确;对于②,因1344PC PA PB =+ ,则1144PC PA - =3344PB PC -,即3AC CB = ,即A 、B 、C 三点共线,②正确;对于③,a b ⋅ =10x -3,若,a b 〈〉 为钝角,则0a b ⋅< ,且a 与b 不共线,由0a b ⋅<得310x <,当//a b 时,1139xx ==-,即3x =-,由a 与b 不共线得3x ≠-,于是得当310x <且3x ≠-时,,a b 〈〉为钝角,③错误;对于④,()a b c ⋅⋅ 是c 的共线向量,而()a b c ⋅⋅是a 的共线向量,④错误,综上可知,①②正确.故选:C5.(多选)给出下列命题,其中正确的是()A .若{},,a b c是空间的一个基底,则{},,a b b c +r r r r 也是空间的一个基底B .在空间直角坐标系中,点()2,4,3P -关于坐标平面yOz 的对称点是()2,4,3---C .若空间四个点P ,A ,B ,C 满足1344PC PA PB =+,则A ,B ,C 三点共线D .平面α的一个法向量为()1,3,4m =-u r ,平面β的一个法向量为()2,6,n k =--r.若//αβ,则8k =【答案】ACD【分析】根据三个向量是否共面判断A ,由点关于坐标面的对称判断B ,由向量的运算确定三点共线可判断C ,根据向量共线求参数可判断D 。
专题29 空间向量与立体几何(解答题)1.如图,在三棱锥P ABC -中,平面PAC ⊥平面ABC ,PC AC ⊥,BC AC ⊥,2AC PC ==,4CB =,M 是PA 的中点.(1)求证:PA ⊥平面MBC ;(2)设点N 是PB 的中点,求二面角N MC B --的余弦值.【试题来源】陕西省咸阳市2020-2021学年高三上学期高考模拟检测(一)(理)【答案】(1)证明见解析;(2)3. 【解析】(1)平面PAC ⊥平面ABC ,平面PAC平面ABC =AC ,BC ⊂平面ABC ,BC AC ⊥,所以BC ⊥平面PAC ,因为PA ⊂平面PAC ,所以BC PA ⊥,因为AC PC =,M 是PA 的中点,所以CM PA ⊥, 因为CMBC C =,,CM BC ⊂平面MBC ,所以PA ⊥平面MBC .(2)因为平面PAC ⊥平面ABC ,平面PAC平面ABC =AC ,PC ⊂平面PAC ,PC AC ⊥,所以PC ⊥平面ABC ,因为BC ⊂平面ABC ,所以PC BC ⊥,以C 为原点,CA ,CB ,CP 为x ,y ,z 轴正方向,建立如图所示的空间直角坐标系,(2,0,0)A ,(0,4,0)B ,(0,0,0)C ,(0,0,2)P ,(1,0,1)M ,(0,2,1)N ,则(1,0,1)CM =,(0,2,1)CN =,(2,0,2)PA =-,由(1)知(2,0,2)PA =-是平面MBC 的一个法向量,设(,,)n x y z =是平面MNC 的法向量,则有00CM n CN n ⎧⋅=⎨⋅=⎩,即020x z y z +=⎧⎨+=⎩,令1y =,则2z =-,2x =,所以(2,1,2)n =-,设二面角N MC B --所成角为θ,由图可得θ为锐角,则2cos cos ,||||PA n PA n PA n θ⋅⨯=<>===【名师点睛】解题的关键是熟练掌握面面垂直的性质定理,线面垂直的判定和性质定理,并灵活应用,处理二面角或点到平面距离时,常用向量法求解,建立适当的坐标系,求得所需点的坐标及向量坐标,求得法向量坐标,代入夹角或距离公式,即可求得答案. 2.在四棱锥P ABCD -中,PAB △为直角三角形,90APB ∠=︒且12PA AB CD ==,四边形ABCD 为直角梯形,//AB CD 且DAB ∠为直角,E 为AB 的中点,F 为PE 的四等分点且14EF EP =,M 为AC 中点且MF PE ⊥.(1)证明:AD ⊥平面ABP ;(2)设二面角A PC E --的大小为α,求α的取值范围. 【试题来源】山东省德州市2020-2021学年高三上学期期末 【答案】(1)证明见解析;(2),32ππα【解析】(1)取PE 的中点N ,连接AN ,DN ,CE ,如图所示:因为12AE AB =,12AP AB =,所以AP AE =,AN PE ⊥.因为四边形ABCD 为直角梯形,且90DAB ∠=︒,12CD AB =, 所以四边形AECD 为正方形,即M 为DE 的中点. 因为14EF EP =,N 为PE 的中点,所以F 为EN 的中点.所以//MF DN . 因为MF PE ⊥,所以DN PE ⊥.所以PE DN PE ANPE DN AN N ⊥⎧⎪⊥⇒⊥⎨⎪⋂=⎩平面ADN . 因为DA ⊂平面ADN ,所以PE DA ⊥.所以DA AB DA PEDA PE AB E ⊥⎧⎪⊥⇒⊥⎨⎪⋂=⎩平面ABP . (2)以A 为原点,AB ,AD 分别为y ,z 轴,垂直AB 的直线为x 轴,建立空间直角坐标系,如图所示:设AD a =,1PA CD ==,2AB =,则()0,0,0A,1,02P ⎫⎪⎪⎝⎭,()0,1,0E ,()0,1,C a . 31,02AP ⎛⎫= ⎪ ⎪⎝⎭,()0,1,AC a =,1,02PE ⎛⎫=- ⎪ ⎪⎝⎭,()0,0,CE a =-. 设平面PAC 的法向量()111,,n x y z =,则1111310220AP n x yAC n y az ⎧⋅=+=⎪⎨⎪⋅=+=⎩,令1y =,解得11x =,1z =,故1,3,n⎛=- ⎝⎭. 设平面PEC 的法向量()222,,m x y z =,则222310220PE mx y CE m az ⎧⋅=-+=⎪⎨⎪⋅=-=⎩,令2y =21x =,20z =,故()1,3,0m =.由图知,二面角A PC E --的平面角α为锐角,所以11cos 0,2α-⎛⎫==⎪⎝⎭.故,32ππα.3.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,AD BC ∥,112BC AD ==且CD =E 为AD 的中点,F 是棱PA 的中点,2PA =,PE ⊥底面ABCD .AD CD ⊥(1)证明://BF平面PCD ; (2)求二面角P BD F --的正弦值;(3)在线段PC (不含端点)上是否存在一点M ,使得直线BM 和平面BDF 所成角的正弦值为13?若存在,求出此时PM 的长;若不存在,说明理由. 【试题来源】天津市滨海七校2020-2021学年高三上学期期末联考 【答案】(1)证明见解析;(2(3)存在,7PM = 【解析】(1)由题意得//BC DE ,=BC DE ,90ADC ∠=︒,所以四边形BCDE 为矩形, 又PE ⊥面ABCD ,如图建立空间直角坐标系E xyz -,则()0,0,0E ,()1,0,0A,()B ,()1,0,0D -,(P ,()C -,1,0,22F ⎛ ⎝⎭,设平面PCD的法向量为(),,m x y z=,()0,DC =,(DP =则00DC m DP m ⎧⋅=⎨⋅=⎩,则0x ==⎪⎩,则0y =,不妨设x =1z =,可得()3,0,1m =-,又1,22BF ⎛⎫= ⎪ ⎪⎝⎭,可得0BF m ⋅=,因为直线BF ⊄平面BCD ,所以//BF 平面BCD .(2)设平面PBD 的法向量为()1111,,x n y z =,()1,DB =,(0,BP =,则1100DB n BP n ⎧⋅=⎪⎨⋅=⎪⎩,即111100x ⎧+=⎪⎨+=⎪⎩,不妨设x =()13,1,1n =--,设平面BDF 的法向量为()2222,,n xy z =,32DF ⎛= ⎝⎭,则2200DB n DF n ⎧⋅=⎪⎨⋅=⎪⎩,即222203022x x z ⎧+=⎪⎨+=⎪⎩,不妨设2x =,可得()2n =-,因此有121212cos ,65n n n n n n ⋅==-⋅,(注:结果正负取决于法向量方向) 于是21212465sin ,1cos ,n n n n =-=,所以二面角P BD F --.(3)设((),PM PC λλλ==-=-,()0,1λ∈(),BM BP PM λ=+=-,由(2)可知平面BDF 的法向量为()23,1,3n =-,2223cos ,BM n BM n BM n⋅===⋅,有23410λλ-+=,解得1λ=(舍)或13λ=, 可得1,333PM ⎛=-- ⎝⎭,所以73PM =. 4.在四棱锥P ABCD -中,PA ⊥平面ABCD ,PA =//DC AB ,90DAB ∠=︒,3AB =,2AD CD ==,M 是棱PD 的中点.(1)求异面直线DP 与BC 所成的角的余弦值; (2)求AM 与平面PBC 所成的角的大小;(3)在棱PB 上是否存在点Q ,使得平面QAD 与平面ABCD 所成的锐二面角的大小为60°?若存在,求出AQ 的长;若不存在,说明理由.【试题来源】天津市南开中学2020-2021学年高三上学期第四次月考 【答案】(1;(2)45︒;(3)125. 【解析】如图,以,,AD AB AP 所在直线分别为,,x y z 轴建立如图所示空间直角坐标系,则(()()()()(,0,0,0,3,0,0,2,2,0,0,2,0,P A B C D M ,(1)(0,DP =-,()1,2,0BC =-,所以cos,DP BC==,即异面直线DP与BC(2)(AM=,(3,0,PB=-,()1,2,0BC=-设平面PBC的法向量(),,m x y z=,则mPBm BC⎧⋅=⎨⋅=⎩,3020xx y⎧-=⎪⎨-+=⎪⎩,所以可取(m=,设AM与平面PBC所成的角为θ,则sin cos,AM mθ===,所以AM与平面PBC所成的角为45︒;(3)平面ABCD的法向量可取()10,0,1n=,设(()3,0,3,0,PQ PBλλλ==-=-,则()3Qλ,所以()3AQλ=,()0,2,0AD =,设平面QAD的法向量为()2222,,n x y z=,则22nAQn AD⎧⋅=⎪⎨⋅=⎪⎩,()2223020x zyλ⎧+=⎪⎨=⎪⎩,可取()223,0,3nλ=-,因为平面QAD与平面ABCD所成的锐二面角的大小为60°.所以121cos,2n n=,12=,解得25λ=或2λ=-(舍)所以6,0,55AQ⎛=⎝⎭,所以61255AQ⎛==5.如图,在正四面体A BCD-中,点E,F分别是,ABBC的中点,点G,H分别在,CD AD 上,且14DH AD=,14DG CD=.(1)求证:直线,EH FG 必相交于一点,且这个交点在直线BD 上; (2)求直线AB 与平面EFGH 所成角的正弦值.【试题来源】陕西省榆林市2020-2021学年高三上学期第一次高考模拟测试(理) 【答案】(1)证明见解析;(2. 【解析】(1)因为//,//EF AC GH AC ,11=,=24EF AC GH AC ,所以//GH EF 且12GH EF =,故E ,F ,G ,H 四点共面,且直线,EH FG 必相交于一点,设=EH FG M ,因为,∈M EH EH平面ABD ,所以M ∈平面ABD ,同理:M ∈平面BCD ,而平面ABD ⋂平面BCD BD =,故M ∈平面BCD ,即直线,EH FG 必相交于一点,且这个交点在直线BD 上; (2)取BD 的中点O ,则,⊥⊥BD OA BD OC ,所以BD ⊥平面AOC ,不妨设OD =,则BD AC ==12AO CO ==, 所以1441441921cos 212123+-∠==⨯⨯AOC ,以O 为坐标原点建立如图所示的空间直角坐标系,则(0,(12,0,0),(6,--A B C F G ,故=BA ,(=-FG ,(8,0,=-AC ,(4,0,=-EF ,设平面EFGH 的法向量为(,,)n x y z =,由00n EF n FG ⎧⋅=⎨⋅=⎩可得50y x ⎧+=⎪⎨-=⎪⎩,令x =,则(52,=n ,则182cos ,3||||92⋅<>===⨯BA n BA n BA n ,故直线AB 与平面EFGH . 6.如图,已知四边形ABCD 为菱形,对角线AC 与BD 相交于O ,60BAD ∠=︒,平面ADEF平面BCEF =直线EF ,FO ⊥平面ABCD ,22BC CE DE EF ====(1)求证://EF DA ;(2)求二面角A EF B --的余弦值.【试题来源】江西省五市九校协作体2021届高三第一次联考 【答案】(1)证明见解析;(2)35. 【解析】(1)因为四边形ABCD 为菱形,所以//AD BC ,AD ⊄平面BCEF ,BC ⊂平面BCEF ,//AD ∴平面BCEF ,因为平面ADEF平面BCEF =直线,EF AD ⊂平面ADEF ,所以//EF AD ;(2)因为四边形ABCD 为菱形,所以AC BD ⊥,因为OF ⊥平面ABCD ,所以以O 为坐标原点、OA ,OB ,OF 为x ,y ,z 轴建立空间直角坐标系,取CD 中点M ,连EM ,OM ,60BAD ︒∠=,21BC OA OC OB OD =∴====,2BC CD CE DE CDE ====∴为正三角形,EM =11//,=,//,=22OM BC OM BC EF BC EF BC,//,=//,=EF OM EF OM OF EM OF EM∴∴,从而1(0,1,0),((0,1,0),(22A B C D E---,设平面ADEF一个法向量为(,,)m x y z=,则m DAm DE⎧⋅=⎨⋅=⎩,即12yx y⎧+=⎪⎨+=⎪⎩,令11,(1,x y z m=∴===-,设平面BCEF一个法向量为(,,)n x y z=,则n BCn EC⎧⋅=⎨⋅=⎩,即122yx y⎧-=⎪⎨-+-=⎪⎩,令11,(1,3,1)x y z n=∴==-=--,3cos,5|||,|m nm nm n⋅∴<>==,因此二面角A EF B--的余弦值为35.7.如图,在四棱锥P ABCD-中,90BAD∠=,//AD BC,PA AD⊥,PA AB⊥,122PA AB BC AD====.(1)求证://BC平面PAD;(2)求平面PAB与平面PCD所成锐二面角的余弦值.【试题来源】北京房山区2021届高三上学期数学期末试题【答案】(1)证明见解析;(2【解析】(1)解法1.因为//BC AD,BC⊄平面PAD,AD⊂平面PAD,所以//BC平面PAD,解法2.因为PA AD⊥,PA AB⊥,AD AB⊥,所以以A为坐标原点,,,AB AD AP所在直线分别为x轴、y轴、z轴,建立如图所示空间直角坐标系A xyz-,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C ,平面PAD 的法向量为(1,0,0)t , (0,2,0)BC = ,因为 0120000t BC ⋅=⨯+⨯+⨯= ,BC ⊄平面PAD ,所以//BC 平面PAD ; (2)因为PA AD ⊥,PA AB ⊥AD AB ⊥,所以以A 为坐标原点,,,AB AD AP 所在直线分别为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系A xyz -,则(0,0,0),(2,0,0),(0,4,0),(0,0,2),(2,2,0)A B D P C所以平面PAB 的法向量为(0,1,0)n = , 设平面PCD 的法向量为(,,)m x y z =, (2,2,2)PC =-,(0,4,2)PD =- ,所以2220042020x y z x y m PC m PC y z z y m PD m PD ⎧⎧+-==⎧⎧⊥⋅=⇒⇒⇒⎨⎨⎨⎨-==⊥⋅=⎩⎩⎩⎩,令1(1,1,2)y m ==得 ,cos ,1n mn m n m ⋅<>===⨯,设平面PAB 与平面PCD 所成角为θθ,为锐角, 所以cos θ=. 8.如图,在四棱锥P ABCD -中,底面ABCD 为菱形,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,3BAD π∠=,E 是线段AD 的中点,连结BE .(1)求证:BE PA ⊥;(2)求二面角A PD C --的余弦值;(3)在线段PB 上是否存在点F ,使得//EF 平面PCD ?若存在,求出PF PB 的值;若不存在,说明理由.【试题来源】北京市朝阳区2021届高三上学期期末数学质量检测试题【答案】(1)证明见解析;(2)7-;(3)存在;12PF PB =. 【解析】(1)因为四边形ABCD 为菱形,所以AB AD =.因为3BAD π∠=,E 为AD 的中点,所以BE AD ⊥. 因为平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =,所以BE ⊥平面PAD . 因为PA ⊂平面PAD ,所以BE PA ⊥.(2)连结PE .因为PA PD =,E 为AD 的中点,所以PE AD ⊥.由(1)可知BE ⊥平面PAD ,所以BE AD ⊥,PE BE ⊥.设2AD a =,则PE a =.如图,建立空间直角坐标系E xyz -.所以(,0,0),,0),(2,0),(,0,0),(0,0,)A a B C a D a P a --.所以),0(D C a =-,(,0,)D a P a =.因为BE ⊥平面PAD ,所以(0,,0)EB =是平面PAD 的一个法向量.设平面PCD 的法向量为(,,)x y z =n ,则00n DC n DP ⎧⋅=⎨⋅=⎩,即00ax ax az ⎧-+=⎪⎨+=⎪⎩,所以,.x x z ⎧=⎪⎨=-⎪⎩令3x =,则1y =,z =(3,1,n =.所以cos ,||||7n EB n EB n EB ⋅===.由题知,二面角A PD C --为钝角,所以其余弦值为- (3)当点F 是线段PB 的中点时,//EF 平面PCD .理由如下: 因为点E ∈/平面PCD ,所以在线段PB 上存在点F 使得//EF 平面PCD 等价于0EF ⋅=n .假设线段PB 上存在点F 使得//EF 平面PCD .设([0,1])PF PBλλ=∈,则PF PB λ=.所以(0,0,),),)EF EP PF EP PB a a a a a λλλ=+=+=+-=-.由)0EF a a a λ⋅=-=n ,得12λ=. 所以当点F 是线段PB 的中点时,//EF 平面PCD ,且12PF PB =. 9.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,4PD =,底面ABCD 是边长为2的正方形,E ,F 分别为PB ,PC 的中点.(1)求证:平面ADE ⊥平面PCD ;(2)求直线BF 与平面ADE 所成角的正弦值.【试题来源】北京市东城区2021届高三上学期期末考试【答案】(1)证明见解析;(2)15. 【解析】(1)因为PD ⊥平面ABCD ,所以PD AD ⊥.因为底面ABCD 是正方形,所以AD CD ⊥.因为PD CD D ⋂=,所以AD ⊥平面PCD .因为AD ⊂平面ADE ,所以平面ADE ⊥平面PCD .(2)因为PD ⊥底面ABCD ,所以PD AD ⊥,PD CD ⊥.因为底面ABCD 是正方形,所以AD CD ⊥.如图建立空间直角坐标系D xyz -.因为4PD =,底面ABCD 为边长为2的正方形,所以()0,0,4P ,()2,0,0A ,()2,2,0B ,()0,2,0C ,()0,0,0D ,()1,1,2E ,()0,1,2F . 则()2,0,0DA =,()1,1,2DE =,()2,1,2BF =--.设平面ADE 的法向量(),,m x y z =,由00m DA m DE ⎧⋅=⎨⋅=⎩,可得2020x x y z =⎧⎨++=⎩. 令1z =-,则0x =,2y =.所以()0,2,1m =-.设直线BF 与平面ADE 所成角为θ,则,sincos ,9BF mBF m BF m θ====.所以直线BF 与平面ADE . 【名师点睛】本题考查了面面垂直的判定,核心是要求面面垂直,先考虑线面垂直;同时也考查了线面角的计算方法,核心是要求正弦值,先求余弦值.10.如图,已知11ABB A 是圆柱1OO 的轴截面,O 、1O 分别是两底面的圆心,C 是弧AB 上的一点,30ABC ∠=,圆柱的体积和侧面积均为4π.(1)求证:平面1ACA ⊥平面1BCB ;(2)求二面角11B A B C --的大小.【试题来源】江西省吉安市2021届高三大联考数学(理)(3-2)试题【答案】(1)证明见解析 ;(2)60 .【解析】(1)因为1AA 是圆柱的母线,所以1AA ⊥平面ABC ,因为BC ⊂平面ABC , 所以1AA BC ⊥,又C 是弧AB 上的一点,且AB 是圆O 的直径,所以AC BC ⊥,因为1AA AC A =,所以BC ⊥平面1ACA ,又BC ⊂平面1BCB ,所以平面1ACA ⊥平面1BCB ;(2)设圆柱的底面半径为r ,母线长为l ,因为圆柱的体积和侧面积均为4π,所以2244rl r l ππππ=⎧⎨=⎩,解得,2r ,1l =,即4AB =,11AA =,因为30ABC ∠=,所以2AC =,BC =设圆柱过C 点的母线为CD ,以C 为原点,CA ,CB ,CD 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系C xyz -,如图所示;则()0,0,0C ,()B ,()12,0,1A ,()1B ;所以()12,0,1CA =,()10,CB =,()12,BA =-,()10,0,1BB = 设平面11CA B 的法向量为(),,n x y z =,由1120000x z n CA n CB z ⎧+=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩,取z =x =1y =-,所以平面11CA B的一个法向量为(3,n =--, 设平面11BA B 的法向量为(),,m a b c=,由1102000m BA a c m BB c ⎧⎧⋅=-+=⎪⎪⇒⎨⎨⋅==⎪⎪⎩⎩, 取1b =,则a =0c ,所以平面11BA B 的一个法向量为()3,1,0m =, 所以1cos ,23n mm n n m ⋅===-+⋅, 由图中可看出二面角11B A B C --是锐角,故二面角11B A B C --的值为60.【名师点睛】证明面面垂直的方法:(1)利用面面垂直的判定定理,先找到其中一个平面的一条垂线,再证明这条垂线在另外一个平面内或与另外一个平面内的一条直线平行即可; (2)利用性质://,αββγαγ⊥⇒⊥(客观题常用);(3)面面垂直的定义(不常用); (4)向量方法:证明两个平面的法向量垂直,即法向量数量积等于0.11.如图1,正方形ABCD ,边长为a,,E F 分别为,AD CD 中点,现将正方形沿对角线AC 折起,折起过程中D 点位置记为T ,如图2.(1)求证:EF TB ⊥;(2)当60TAB ︒∠=时,求平面ABC 与平面BEF 所成二面角的余弦值.【试题来源】安徽省黄山市2020-2021学年高三上学期第一次质量检测(理)【答案】(1)证明见解析;(2. 【解析】(1)取AC 中点O ,连,,OT OB BT ,因为ABCD 为正方形,所以,AC OT AC OB ⊥⊥,又OT OB O ⋂=,所以AC ⊥平面OBT ,而TB ⊂平面OBT ,所以AC TB ⊥. 又,E F 分别为,AD CD 中点,所以//EF AC ,所以EF TB ⊥;(2)因为60TAB ︒∠=,所以TAB △为等边三角形,TB a =,又2OT OB a ==,所以222TB OB OT =+,即OT OB ⊥. 如图建立空间直角坐标系O xyz -,则,0,0,0,,B E F ⎫⎛⎛⎪ ⎝⎭⎝⎭⎝⎭,220,,0,,,2244EF a EB a ⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭,平面ABC 法向量(0,0,1)m =设平面BEF 法向量(,,1)x n y =,由00n EF n EB ⎧⋅=⎨⋅=⎩,00244y ay =⎧+-=⎩,012y x =⎧⎪⎨=⎪⎩,1,0,1,cos ,2||||11mn n m n m n ⋅⎛⎫=<>=== ⎪⋅⎝⎭⋅, 记平面ABC 与平面BEF 所成二面角为θ,则θ为锐角,所以cos 5θ=即平面ABC 与平面BEF . 12.如图所示,四棱柱1111ABCD A B C D -的底面是菱形,侧棱垂直于底面,点E ,F 分别在棱1AA ,1CC 上,且满足113AE AA =,113CF CC =,平面BEF 与平面ABC 的交线为l .(1)证明:直线l ⊥平面1BDD ;(2)已知2EF =,14BD =,设BF 与平面1BDD 所成的角为θ,求sin θ的取值范围.【试题来源】海南省2021届高三年级第二次模拟考试【答案】(1)证明见解析;(2)35⎫⎪⎪⎝⎭.【解析】(1)如图,连接AC ,与BD 交于点O .由条件可知//AE CF ,且AE CF =,所以//AC EF ,因为EF ⊂平面BEF ,所以//AC 平面BEF .因为平面BEF 平面ABC l =,所以//AC l . 因为四棱柱1111ABCD A B C D -的底面是菱形,且侧棱垂直于底面,所以AC BD ⊥,1AC BB ⊥,又1BD BB B ⋂=,所以AC ⊥平面1BDD ,所以l ⊥平面1BDD .(2)如图所示,以O 为坐标原点,分别以OB ,OC 的方向为x ,y 轴的正方向建立空间直角坐标系.设2BD a =,因为1BD BD <,所以02a <<.则OB a =,1DD ==所以(,0,0)B a ,(0,1,0)C,F ⎛ ⎝. 由(1)可知(0,1,0)OC =是平面1BDD的一个法向量,而BF a ⎛=- ⎝, 所以sin cos ,OC BF OC BF OC BF θ⋅=<>===当02a <<35<<,即3sin 5θ⎫∈⎪⎪⎝⎭.【名师点睛】求空间角的常用方法:(1)定义法,由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量夹角(直线方向向量与直线方向向量、直线方向向量与平面法向量,平面法向量与平面法向量)余弦值,即可求出结果.13.在三棱柱111ABC A B C -中,1AB AC ==,1AA =AB AC ⊥,1B C ⊥平面ABC ,E 是1B C 的中点.(1)求证:平面1AB C ⊥平面11ABB A ;(2)求直线AE 与平面11AAC C 所成角的正弦值.【试题来源】浙江省宁波市2020-2021学年高三上学期期末【答案】(1)证明见解析;(2【解析】(1)由1B C ⊥平面ABC ,AB平面ABC ,得1AB B C ⊥, 又AB AC ⊥,1CB AC C =,故AB ⊥平面1AB C , AB 平面11ABB A ,故平面11ABB A ⊥平面1AB C .(2)以C 为原点,CA 为x 轴,1CB 为z 轴,建立如图所示空间直角坐标系, 则()0,0,0C ,()1,0,0A ,()1,1,0B,又BC =11BB AA == 故11CB =,()10,0,1B ,10,0,2E ⎛⎫ ⎪⎝⎭,()1,0,0CA =, ()111,1,1AA BB ==--,11,0,2AE ⎛⎫=- ⎪⎝⎭,设平面11AAC C 的一个法向量为(),,n x y z =,则100n CA n AA ⎧⋅=⎪⎨⋅=⎪⎩,即00x x y z =⎧⎨--+=⎩,令1y =,则1z =, ()0,1,1n =, 设直线AE 与平面11AAC C 所成的角为θ,故1sin 102nAEn AE θ⋅===,即直线AE 与平面11AAC C14.如图,在平面四边形PABC 中,PA AC ⊥,AB BC ⊥,PA AB ==,2AC =,现把PAC △沿AC 折起,使P 在平面ABC 上的射影为O ,连接OA 、OB ,且OB//AC .(1)证明:OB ⊥平面PAO ;(2)求二面角O PB C --的余弦值.【试题来源】安徽省六安市示范高中2020-2021学年高三上学期教学质量检测(理)【答案】(1)证明见解析;(2) 【解析】(1)PO ⊥平面ABC ,AC ⊂平面ABC ,PO AC ∴⊥,又PA AC ⊥,PAPO P =,所以AC ⊥平面PAO , //OB AC ,所以OB ⊥平面PAO ;(2)在Rt ABC 中,AB =2AC =,则1BC ==,30BAC ∴∠=,在Rt OAB 中,903060OAB ∠=-=,所以12OA AB ==,32OB =,Rt PAO 中,PA =AO =32OP ∴==, 以点O 为坐标原点,OB 、OA 、OP 所在直线分别为x 、y 、z 轴建立空间直角坐标系O xyz -,则0,,02A ⎛⎫ ⎪ ⎪⎝⎭、,02C ⎛⎫ ⎪ ⎪⎝⎭、3,0,02B ⎛⎫ ⎪⎝⎭、30,0,2P ⎛⎫ ⎪⎝⎭,所以33,0,22PB ⎛⎫=- ⎪⎝⎭,32PC ⎛⎫=- ⎪ ⎪⎝⎭,由(1)可知()0,1,0m =为平面POB 的一个法向量,设平面平PBC 的法向量为(),,n x y z =,则有330223202x z x y z ⎧-=⎪⎪⎨⎪-=⎪⎩y x z x ⎧=⎪⇒⎨⎪=⎩,取x =(3,n =-,cos ,717m n m n m n ⋅===-⋅⨯, 由图可知,二面角O PB C --为钝角,所以,二面角O PB C --的余弦值为7-. 15.在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为直角梯形,//,90BC AD ADC ∠=︒,11,2BC CD AD E ===为线段AD 的中点,过BE 的平面与线段,PD PC 分别交于点,G F .(1)求证:GF ⊥平面PAD ;(2)若PA PD ==G为PD 的中点,求平面PAB 与平面BEGF所成锐二面角的余弦值.【试题来源】安徽省名校2020-2021学年高三上学期期末联考(理)【答案】(1)证明见解析;(2.【解析】证明:(1)因为12BC AD =,且E 为线段AD 的中点,所以BC DE =, 因为//BC AD ,所以四边形BCDE 为平行四边形,所以//BE CD ,因为CD ⊂平面,PCD BE ⊂/平面PCD ,所以//BE 平面PCD ,又平面BEGF ⋂平面PCD GF =,所以//BE GF ,又BE AD ⊥,且平面PAD ⊥平面ABCD ,平面PAD平面ABCD AD =, 所以BE ⊥平面PAD ,所以GF ⊥平面PAD ;(2)因为,PA PD E =为线段AD 的中点,所以PE AD ⊥,‘’因为平面PAD ⊥平面ABCD ,所以PE ⊥平面ABCD ,以E 为坐标原点,EA 的方向为x 轴正方向建立如图所示的空间直角坐标系E xyz -;则11(0,0,1),(1,0,0),(0,1,0),(0,0,0),(1,0,0),,0,22P A B E D G ⎛⎫--⎪⎝⎭, 则11(1,0,1),(0,1,1),(0,1,0),(1,0,1),,0,22PA PB BE DP EG ⎛⎫=-=-=-==- ⎪⎝⎭, 设平面PAB 的法向量为()111,,m x y z =,则0{0PA m PB m ⋅=⋅=,,,即11110,0x z y z -=⎧⎨-=⎩, 不妨令11x =,可得(1,1,1)n =为平面BEGF 的一个法向量,设平面BEGF 的法向量为()222,,n x y z =,则0{0BE n EG n ⋅=⋅=,,,即222011022y x z =⎧⎪⎨-+=⎪⎩,,不妨令21x =,可得(1,0,1)n =为平面BEGF 的一个法向量,设平面PAB 与平面BEGF 所成的锐二面角为α,于是有2cos |cos ,|32m n α=〈〉==; 所以平面PAB 与平面BEGF .16.如图所示,在四棱锥S ABCD -中,底面ABCD 是正方形,对角线AC 与BD 交于点F ,侧面SBC 是边长为2的等边三角形,点E 在棱BS 上.(1)若//SD 平面AEC ,求SE EB的值; (2)若平面SBC ⊥平面ABCD ,求二面角B AS C --的余弦值.【试题来源】江苏省G4(苏州中学、常州中学、盐城中学、扬州中学)2020-2021学年高三上学期期末联考【答案】(1)1;(2. 【解析】(1)连结EF ,因为//SD 平面AEC ,SD ⊂平面BSD ,平面BSD ⋂平面AEC EF =,所以//SD EF .因为底面ABCD 是正方形,F 为AC 中点,所以EF 是SD 的中位线,则1SE EB=. (2)取BC 的中点为O ,AD 的中点为M ,连结MO ,则MO BC ⊥, 因为平面SBC ⊥平面ABCD ,平面SBC平面ABCD BC =,OM ⊂平面ABCD , 所以OM ⊥平面SBC .又OS BC ⊥,所以O 为坐标原点.以{},,OS OC OM 为正交基底建立空间直角坐标系O xyz -.则()0,1,2A -,()010B -,,,()0,1,0C,)S,1,022E ⎛⎫- ⎪ ⎪⎝⎭,从而()SC =-,()0,2,2AC =-,()0,0,2AB =-,()3,1,2AS =-. 设平面ASC 的法向量为(),,m x y z =, 则0,0.m SC m AC ⎧⋅=⎪⎨⋅=⎪⎩,即0,0.y y z ⎧+=⎪⎨-=⎪⎩取1x =,则y =z = 所以平面ASC的一个法向量为(1,3,m =.设平面ASB 的法向量为(),,n x y z =, 则0,0.n AB n AS ⎧⋅=⎪⎨⋅=⎪⎩,即20,20.z y z -=⎧⎪+-=取y =1x =-,0z =. 所以平面ASB 的一个法向量为()1,3,0n =-.所以7cos ,7m n m n m n ⋅〈〉==. 因为二面角B AS C --的平面角为锐角,所以二面角B AS C --的余弦值为7. 【名师点睛】本题的核心在考查空间向量的应用,需要注意以下问题:(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算,要认真细心,准确计算.(2)设,m n 分别为平面α,β的法向量,则二面角θ与,m n <>互补或相等.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.17.在三棱锥P ABC -中,底面ABC 为正三角形,平面PBC ⊥平面,1,ABC PB PC D ==为AP 上一点,2,AD DP O =为三角形ABC 的中心.(1)求证:AC ⊥平面OBD ;(2)若直线PA 与平面ABC 所成的角为45︒,求二面角A BD O --的余弦值.【试题来源】山东省威海市2020-2021学年高三上学期期末【答案】(1)证明见解析;(2)5. 【解析】(1)证明:连接AO 并延长BC 交于点E ,则E 为BC 中点,连接PE .如图所示:因为О为正三角形ABC 的中心,所以2,AO OE =又2AD DP =,所以//,DO PE 因为PB PC =,E 为BC 中点,所以,PE BC ⊥ 又平面PBC ⊥平面ABC ,平面PBC 平面ABC BC =,所以PE ⊥平面,ABC 所以DO ⊥平面,ABC AC ⊂平面PBC ,所以,DO AC ⊥又,AC BO DO BO O ⊥⋂=,所以AC ⊥平面OBD .(2)由PE ⊥平面ABC 知,所以45PAE ∠=︒ ,所以,PE AE =所以,ABE PBE ≌ 所以1AB PB BC AC ====,由(1)知,,,EA EB EP 两两互相垂直,所以分别以,,EA EB EP 的方向为,,x y z 轴正方向,建立如图所示空间直角坐标系,则1,0,,0,0,0,,22263A B P D ⎛⎫⎛⎫⎛⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,10,,02C ⎛⎫- ⎪⎝⎭所以31,,0,2231,,623AB BD ⎛⎫-⎛= ⎪ ⎪⎝⎭=-⎝⎭, 设平面ABD 的法向量为(),,n x y z =, 则302302x y nBD z y n AB x ⎧⋅=-=⎪⎪⎨⎪⋅=-+=⎪⎩,令1,x =可得1y z ==,则()1,3,1n =. 由(1)知AC ⊥平面,DBO 故1,02AC ⎛⎫=-- ⎪ ⎪⎝⎭为平面DBO 的法向量, 所以2cos ,5nAC n AC n AC -⋅===-,由图可知二面角A BD O --的为锐二面角,所以二面角A BDO --的余弦值为5. 18.如图,在几何体ABCDEF 中,四边形ABCD 为等腰梯形,且22AB CD ==,60ABC ∠=︒,四边形ACFE 为矩形,且FB =,M ,N 分别为EF ,AB 的中点.(1)求证://MN 平面FCB;(2)若直线AF 与平面FCB 所成的角为60°,求平面MAB 与平面MAC 所成锐二面角的余弦值.【试题来源】山西省运城市2021届高三上学期期末(理)【答案】(1)证明见解析;(2.【解析】(1)取BC 的中点Q ,连接NQ ,FQ ,则1//2NQ AC ,且12NQ AC =, 又1//2MF AC ,且12MF AC = ,所以//MF NQ 且MF NQ =, 所以四边形MNQF 为平行四边形,所以//MN FQ ,因为FQ ⊂平面FCB ,MN ⊄平面FCB ,所以//MN 平面FCB ;(2)由四边形ABCD 为等腰梯形,且22AB CD ==,60ABC ∠=︒,可得1BC =,AC =90ACB ∠=︒,所以AC BC ⊥.因为四边形ACFE 为矩形,所以AC CF ⊥,所以AC ⊥平面FCB ,所以AFC ∠为直线AF 与平面FCB 所成的角,即60AFC ∠=︒,所以1FC =.因为FB =,所以222FB FC CB =+,所以FC BC ⊥.则可建立如图所示的空间直角坐标系C xyz -,3(3,0,0),(0,1,0),,0,12A B M ⎛⎫ ⎪⎝⎭,所以3,0,1,(3,1,0)2MA AB ⎛⎫=-=- ⎪⎝⎭,设(,,)m x y z =为平面MAB 的法向量,则00MA m AB m ⎧⋅=⎨⋅=⎩,即30230x z x y ⎧-=⎪⎨⎪-+=⎩,取23x =,则(23,6,3)m =为平面MAB 的一个法向量,又(0,1,0)n =为平面MAC的一个法向量, 所以657257cos 571||m n mn m n ⋅〈〉====⨯∣∣, 故平面MAB 与平面MAC 所成锐二面角的余弦值为5719. 19.如图,该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,其中正方形ABCD 的边长为4,H 是线段EF 上(不含端点)的动点,36==FC EB .(1)若H 为EF 的中点,证明://GH 平面ABCD ;(2)若14=EH EF ,求直线CH 与平面ACG 所成角的正弦值. 【试题来源】河南省驻马店市2020-2021学年高三上学期期末考试(理) 【答案】(1)证明见解析;(26. 【解析】(1)证明:取BC 的中点M ,连接HM ,DM .因为该多面体由底面为正方形ABCD 的直四棱柱被截面AEFG 所截而成,所以截面AEFG 是平行四边形,则4=-=DG CF EB .因为36==FC EB ,所以1(26)42=⨯+=HM ,且DG//HM ,所以四边形DGHM 是平行四边形,所以GH //DM .因为DM ⊂平面ABCD ,GH ⊄平面ABCD ,所以//GH 平面ABCD .(2)解:如图,以D 为原点,分别以DA ,DC ,DG 的方向为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系D xyz -,则(4,0,0)A ,(0,4,0)C ,(0,0,4)G ,(3,4,3)H ,(4,4,0)=-AC ,(4,0,4)=-AG ,(3,0,3)=CH .设平面ACG 的法向量为(,,)n x y z =,则440440AC n x y AG n x z ⎧⋅=-+=⎨⋅=-+=⎩,令1x =,得(1,1,1)n =.因为cos ,3||||32⋅〈〉===⨯CH n C n n CH H ,所以直线CH 与平面ACG 所成角的正弦值为3.【名师点睛】本题考查了立体几何中的线面平行的判定和线面角的求解问题,意在考查学生的空间想象能力和逻辑推理能力;解答本题关键在于能利用直线与直线、直线与平面关系的相互转化,通过严密推理证明线线平行从而得线面平行,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20.如图,已知四边形ABCD 和BCEG 均为直角梯形,//AD BC ,//CE BG ,且2BCD BCE π∠=∠=,120ECD ∠=︒.22BC CD CE AD BG ====.(1)求证://AG 平面BDE ;(2)求二面角E BD C --的余弦值.【试题来源】安徽省蚌埠市2020-2021学年高三上学期第二次教学质量检查(理)【答案】(1)证明见解析;(2 【解析】(1)证明:在平面BCEG 中,过G 作GN CE ⊥于N ,交BE 于M ,连DM , 由题意知,MG MN =,////MN BC DA 且12MN AD BC ==, 因为//MG AD ,MG AD =,故四边形ADMG 为平行四边形,所以//AG DM , 又DM ⊂平面BDE ,AG ⊂/平面BDE ,故//AG 平面BDE .(2)由题意知BC ⊥平面ECD ,在平面ECD 内过C 点作CF CD ⊥交DE 于F , 以C 为原点,CD ,CB ,CF 的方向为x ,y ,z 轴的正方向建立空间直角坐标系,不妨设1AD =,则22BC CD CE BG ====.且()0,0,0C ,()2,0,0D ,()0,2,0B ,(E -,设平面EBD 的法向量(),,n x y z =,则由0,0,DE n BD n ⎧⋅=⎨⋅=⎩得30,220,x x y ⎧-=⎪⎨-=⎪⎩ 取1y =,得(1,1,3n =,易知平面BCD 的一个法向量为()0,0,1m =,3cos ,51m nm n m n ⋅==⋅=⋅E BD C --. 21.如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,M 为PC 的中点.(1)求证://AP 平面BDM ;(2)若PB PC ==CD PC ⊥,求二面角C DM B --的余弦值.【试题来源】河南省湘豫名校2020-2021学年高三上学期1月月考(理)【答案】(1)证明见解析;(2. 【解析】(1)连接AC 交BD 于E ,连接EM ,则E 为AC 中点,所以EM 为APC △的中位线,所以//EM AP ,因为EM ⊂平面BDM ,AP ⊄平面BDM ,所以//AP 平面BDM .(2)在PBC 中,因为2224PB PC BC +==,所以PB PC ⊥,取BC 中点O ,AD 中点F ,连接PO ,OF ,则PO BC ⊥,1PO =,因为BC CD ⊥,CD PC ⊥,BC 、PC ⊂平面PBC ,BC PC C ⋂=,所以CD ⊥平面PBC ,因为PO ⊂平面PBC ,所以CD PO ⊥,因为PO BC ⊥,BC CD C ⋂=,BC 、CD ⊂平面ABCD ,所以PO ⊥平面ABCD ,因为OF ⊂平面ABCD ,所以PO OF ⊥,所以PO ,OF ,OB 两两垂直,如图所示,以O 为原点,OF ,OB ,OP 分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(2,1,0)D -,(0,0,1)P ,(0,1,0)B ,(0,1,0)C -,所以110,,22M ⎛⎫- ⎪⎝⎭,可得112,,22DM ⎛⎫=- ⎪⎝⎭,(2,2,0)BD =-,(2,0,0)CD =.设平面BDM 的法向量为()111,,m x y z =, 则0 0m BD m DM ⎧⋅=⎨⋅=⎩,即11111220112022x y x y z -=⎧⎪⎨-++=⎪⎩,取(1,1,3)m =, 设平面CDM 的法向量为()222,,n x y z =,则00n CD n DM ⎧⋅=⎨⋅=⎩,即222220112022x x y z =⎧⎪⎨-++=⎪⎩,取(0,1,1)n =-,所以222cos ,11||||112m n m nm n ⋅〈〉===⋅⨯, 所以二面角C DM B --的余弦值为11.22.如图所示,矩形ABCD 和梯形BEFC 所在平面互相垂直, //BE CF ,BCF CEF ∠=∠=90°,AD =EF =(1)求证:EF ⊥平面DCE(2)当AB 的长为何值时,二面角A EF C --的大小为60°. 【试题来源】山东省菏泽市2020-2021学年高三上学期期末【答案】(1)证明见解析;(2)60°.【解析】(1)因为平面ABCD ⊥平面BEFC ,平面ABCD 平面BEFC BC =,CD BC ⊥,CD ⊂平面ABCD ,所以CD ⊥平面BEFC ,EF ⊂平面BEFC ,从而CD EF ⊥. 因为EF CE ⊥,CD CE C =,,CD CE ⊂平面CDE ,所以EF ⊥平面CDE .(2)如图所示,以点C 为坐标原点,以CB 、CF 和CD 所在直线分别为x 轴、y 轴和z 轴建立空间直角坐标系.过点E 作EG CF ⊥于点G .在Rt EFG中,EG AD ==EF =1FG =.因为CE EF ⊥,则90EFC ECF BCE ∠=︒-∠=∠,所以Rt EFG Rt ECB △△,EG GF EF BE BC EC==,所以2,BE CE == 所以2CG =,所以3CF =.设AB a ,则()0,0,0C,)A a,)E ,()0,3,0F .()0,2,AE a =-,()EF =-,()2,2,0CE =, 设平面AEF 的法向量(),,n x y z =.则00n AE n EF ⎧⋅=⎨⋅=⎩,即200y az y -=⎧⎪⎨+=⎪⎩, 令2z=,得,2n a ⎫=⎪⎭.因为CD ⊥平面EFC ,()0,0,CD a =,所以1cos ,2n CD ==,解得a =所以当AB =A EF C --的大小为60°.【名师点睛】本题考查空间向量法求二面角.求空间角的方法:(1)几何法(定义法):根据定义作出二面角的平面角并证明,然后解三角形得出结论; (2)空间向量法:建立空间直角坐标系,写出各点为坐标,求出平面的法向量,由两个平面法向量的夹角得二面角(它们相等或互补).23.如图,四棱锥E ABCD -中,底面ABCD 为直角梯形,其中AB BC ⊥,//CD AB ,面ABE ⊥面ABCD ,且224AB AE BE BC CD =====,点M 在棱AE 上.(1)证明:当2MA EM =时,直线//CE 平面BDM ;(2)当AE ⊥平面MBC 时,求二面角E BD M --的余弦值.【试题来源】内蒙古赤峰市2021届高三模拟考试(理)【答案】(1)证明见解析;(2. 【解析】(1)连结BD 与AC 交于点N ,连结MN ,//AB CD ,24AB CD ==, CND ANB ∴△∽△,12CD CN AB AN ∴==, 12EM MA =,EM CN MA AN∴=,MN //EC ∴, 又MN ⊂面BDM ,CE ⊂面BDM ,//CE ∴平面BDM .(2)AE 平面MBC ,AE BM ∴⊥,M ∴是AE 的中点,取AB 的中点为O , OE ∴⊥平面ABCD ,以OD ,OA ,OE 所在的直线为x ,y ,z 轴建立空间直角坐标系O xyz -,则(0,2,0)B-,E ,(2,0,0)D ,(0,2,0)A ,M ,设平面EBD 的法向量为()1111,,x n y z=,则1111112200020x y n BD n BE y ⎧+=⎧⋅=⎪⎪⇒⎨⎨⋅=+=⎪⎪⎩⎩, 令11z =,则1y=1x =1(3,3,1)n ∴=-,设平面BDM 的法向量为()2222,,n x y z =,则2222222200030x y n BD n BM y ⎧+=⎧⋅=⎪⎪⇒⎨⎨⋅==⎪⎪⎩⎩,令2z 21y =-,21x =,1(1,13)n ∴=-, 1212123105cos ,||n n n n n n ⋅∴<>===⋅ ∴二面角E BD M --的余弦值为35. 24.已知正方体1111ABCD A B C D -,棱长为2,M 为棱CD 的中点,N 为面对角线1BC 的中点,如图.(1)求证:ND AN ⊥;(2)求平面1AMD 与平面11AAC C 所成锐二面角的余弦值.【试题来源】安徽省池州市2020-2021学年高三上学期期末(理)【答案】(1)证明见解析;(2 【解析】(1)取BC 的中点分别为F ,连接NF ,DF ,因为N ,F 分别为1BC ,BC 的中点,1111ABCD A B C D -是正方体,易得NF ⊥平面ABCD ,所以NF AM ⊥;因为FC MD =,AD DC =,FCD MDA ∠=∠,所以FCD MDA ≌△△,所以CFD DMA ∠=∠,所以90FDC DMA ∠+∠=︒,所以FD AM ⊥,因为NF FD F =,NF ⊂平面NFD ,FD ⊂平面NFD ,所以AM ⊥平面NFD , 又DN ⊂平面NFD ,所以ND AM ⊥;(2)以A 为原点,分别以AB 、AD 、1AA 方向为x 轴、y 轴、z 轴正方向,建立如下图所示空间直角坐标系:连接BD ,1C D ,在正方体1111ABCD A B C D -中,易知1BD C D =,且N 为1BC 中点,所以1DN BC ⊥.又11//BC AD ,所以1AD DN ⊥. 因为1AD AM A =,1AD ⊂平面1AMD ,AM ⊂平面1AMD ,所以ND ⊥平面1AMD ,故ND 为平面1AMD 的一个法向量;由1111ABCD A B C D -是正方体,得BD ⊥平面11AAC C ,故BD 为平面11AAC C 的一个法向量,因为()2,0,0B ,()0,2,0D ,()2,1,1N , 所以()2,1,1ND =--,()2,2,0BD =-, 所以(cos ,ND BDND BD ND BD -⋅<>===⋅则平面1AMD 与平面11AAC C25.如图,正方形ADEF 与梯形ABCD 所在的平面互相垂直,AD CD ⊥,AB ∥CD ,122AB AD CD ===,点M 在线段EC 上.(1)当点M 为EC 中点时,求证:BM ∥平面ADEF ;(2)当平面BDM 与平面ABFM 在线段EC 上的位置.【试题来源】宁夏固原市第五中学2021届高三年级期末考试(理)【答案】(1)证明见解析;(2)点M 为EC 中点.【解析】(1)以直线DA 、DC 、DE 分别为x 轴、y 轴、z 轴建立空间直角坐标系,则(2,0,0)A ,(2,2,0)B ,(0,4,0)C ,(0,0,2)E ,所以(0,2,1)M .所以(2,0,1)BM =-, 又(0,4,0)DC =是平面ADEF 的一个法向量.因为0BM DC ⋅=即BM DC ⊥,BM ⊄平面ADEF ,所以BM ∥平面ADEF ;(2)设(,,)M x y z ,则(,,2)EM x y z =-,又(0,4,2)EC =-,设()01EM EC λλ=≤≤,则0,4,22x y z λλ===-,即(0,4,22)M λλ-.设111(,,)n x y z =是平面BDM 的一个法向量,则11112204(22)0DB n x y DM n y z λλ⎧⋅=+=⎪⎨⋅=+-=⎪⎩,取11x =得11y =-,此时显然1λ=时不符合,则121z λλ=-,即2(1,1,)1n λλ=--, 又由题设,(2,0,0)DA =是平面ABF 的一个法向量,所以cos ,622DA n DA n DA n ⋅===⋅,解得12λ=,即点M 为EC 中点. 【名师点睛】利用法向量求解空间面面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.26.如图所示,在多面体ABCDEF 中,//AB CD ,AB BC ⊥,22AB BC CD ==,四边形ADEF 为矩形,平面ADEF ⊥平面ABCD ,AF AB λ=.(1)证明://DF 平面BCE ;(2)若二面角C BE F --λ的值. 【试题来源】江西宜春市2021届高三上学期数学(理)期末试题【答案】(1)证明见解析;(2)1.【解析】(1)取AB 的中点为M ,连接FM CM DM ,,,因为//AM CD 且AM CD =,四边形AMCD 为平行四边形,所以//AD MC 且AD MC =,因为四边形ADEF 为矩形,所以//FE MC 且=FEMC ,所以四边形EFMC 是平行四边形,所以//FM EC ,且EC ⊂平面BEC ,FM ⊄平面BEC ,。
A .B .223.若直线的方向向量为,平面l bA .()(1,0,0,2,0,0b n ==-()(0,2,1,1,0,1b n ==--A .B .5136.如图,在平行六面体ABCDA.1122a b c -++C.1122a b c --+7.如图,在四面体OABC中,1-16.已知四棱锥P ABCDPC棱上运动,当平面1.C【分析】根据已知结合向量的坐标运算可得出,且.然后根据向量的数量积a b a +=- 14a = 运算求解,即可得出答案.【详解】由已知可得,且.()1,2,3a b a+=---=-14a =又,()7a b c +⋅= 所以,即有,7a c -⋅= cos ,14cos ,7a c a c a c -⋅=-=所以,.1cos ,2a c =-又,所以.0,180a c ≤≤ ,120a c =︒ 故选:C.2.C【分析】利用中点坐标公式求出中点的坐标,根据空间两点间的距离公式即可得出中线BC 长.【详解】由图可知:,,,(0,0,1)A (2,0,0)B (0,2,0)C 由中点坐标公式可得的中点坐标为,BC (1,1,0)根据空间两点间距离公式得边上的中线的长为.BC 22211(1)3++-=故选:C 3.D【分析】若直线与平面平行,则直线的方向向量与平面的法向量垂直,利用向量数量积检验.【详解】直线的方向向量为,平面的法向量为,l bαn 若可能,则,即.//l αb n ⊥r r 0b n ⋅=r r A 选项,;()1220b n =⨯-⋅=-≠B 选项,;11305160b n =⨯⨯⋅+⨯+=≠C 选项,;()()01201110b n =⨯-+⨯+⨯-⋅=-≠D 选项,;()1013310b n =⨯+-⨯=⋅+⨯因为,,3AB =4BC =2PA =所以()()(0,0,2,3,0,0,0,0,1P B Q 设平面的法向量为BQD (m x =()(),,3,0,1m BQ x y z ⎧设,2AB AD AS ===则()()()0,0,0,0,0,2,2,2,0,A S C P 设,()0,,2M t t -(1,1,2OM t =--所以1120OM AP t t ⊥=-+-+-=点到平面与平面的距离和为为定值,D 选项正确.M ABCD SAB 22t t -+=,,()2,0,0B ()()2,0,2,0,2,0SB BC =-=设平面的法向量为,SBC (),,n x y z =则,故可设,22020n SB x z n BC y ⎧⋅=-=⎪⎨⋅==⎪⎩()1,0,1n = 要使平面,又平面,//OM SBC OM ⊄SBC 则,()()1,1,21,0,11210OM n t t t t ⋅=---⋅=-+-=-=解得,所以存在点,使平面,B 选项正确.1t =M //OM SBC 若直线与直线所成角为,又,OM AB 30︒()2,0,0AB =则,()()222213cos3022661122OM ABOM ABt t t t ⋅-︒====⋅-++-+-⨯ 整理得,无解,所以C 选项错误.23970,8143730t t -+=∆=-⨯⨯=-<故选:ABD.10.BCD【分析】根据向量的多边形法则可知A 正确;根据向量的三角不等式等号成立条件可知,B 错误;根据共线向量的定义可知,C 错误;根据空间向量基本定理的推论可知,D 错误.【详解】对A ,四点恰好围成一封闭图形,根据向量的多边形法则可知,正确;对B ,根据向量的三角不等式等号成立条件可知,同向时,应有,即必要,a b a b a b+=+ 性不成立,错误;对C ,根据共线向量的定义可知,所在直线可能重合,错误;,a b对D ,根据空间向量基本定理的推论可知,需满足x +y +z =1,才有P 、A 、B 、C 四点共面,错误.故选:BCD .11.AB【分析】以,,作为空间的一组基底,利用空间向量判断A ,C ,利用空间向量法ABAD AA 可得面,再用向量法表示,即可判断B ,利用割补法判断D ;1AC ⊥PMN AH【详解】依题意以,,作为空间的一组基底,ABAD AA 则,,11AC AB AD AA =++ ()1122MN BD AD AB ==-因为棱长均为2,,11π3A AD A AB ∠=∠=所以,,224AB AD == 11π22cos 23AA AD AA AB ⋅=⋅=⨯⨯= 所以()()1112D A A C MN AD A A B AA B++⋅⋅=- ,()2211102AB AD AB AD AB AD AA AD AA AB ⋅-+-⋅+==⋅+⋅故,即,故A 正确;1AC MN ⊥1AC MN ⊥同理可证,,面,面,PN AC ⊥MN PN N ⋂=MN ⊂PMN PN ⊂PMN 所以面,即面,即为正三棱锥的高,1AC ⊥PMN AH ⊥PMN AH A PMN -所以()()1133AH AN NH AN NP NM AN AP AN AM AN=+=++=+-+- ,()13AP AM AN =++又,,分别是,,的中点,,P M N 1AA AB AD π3PAM PAN MAN ∠=∠=∠=所以,则三棱锥是正四面体,1PA AM AN PM MN PN ======P AMN -所以()11111133222AH AP AM AN AA AB AD ⎛⎫=++=⨯++ ⎪⎝⎭ ,()111166AA AB AD AC =++=所以,故B 正确;116AH AC =因为()211AC AB AD AA =++ ()()()222111222AB ADAA AB AD AB AA AD AA =+++⋅+⋅+⋅ ,2426==()21111111=AC AA AB AD AA AA AB AA AD AA AA ⋅=++⋅⋅+⋅+ ,11222222=822=⨯⨯+⨯⨯+⨯设直线和直线所成的角为,1AC 1BB θ则,故C 错误;1111111186cos cos ,cos ,3262AC AA AC BB AC AA AC AA θ⋅=====⨯ ,11111111111111A B D C ABCD A B C D A B D A C B D A B ABC D ADCV V V V V V ------=----其中,1111111111116ABCD A B C D A B D A C B D C B ABC D ADC V V V V V -----====所以,故D 错误.1111113A B D C ABCD A B C D V V --=故选:AB.关键点睛:本题解决的关键点是利用空间向量的基底法表示出所需向量,利用空间向量的数量积运算即可得解.12.AC【分析】对于A ,根据即可算出的值;对于B ,根据计算;对于C ,根据||2a = m a b ⊥ m 计算即可;对于D ,根据求出,从而可计算出.a b λ= 1a b ⋅=- m a b + 【详解】对于A ,因为,所以,解得,故A 正确;||2a = 2221(1)2m +-+=2m =±对于B ,因为,所以,所以,故B 错误;a b ⊥ 2120m m -+-+=1m =对于C ,假设,则,a b λ= (1,1,)(2,1,2)m m λ-=--所以,该方程组无解,故C 正确;()12112m m λλλ=-⎧⎪-=-⎨⎪=⎩对于D ,因为,所以,解得,1a b ⋅=- 2121m m -+-+=-0m =所以,,所以,故D 错误.(1,1,0)a =- (2,1,2)b =-- (1,2,2)+=-- a b 故选:AC.13.15【分析】根据线面垂直,可得直线的方向向量和平面的法向量共线,由此列式计算,即得答案.【详解】∵,∴,∴,解得,l α⊥u n ∥ 3123a b ==6,9a b ==∴,15a b +=故1514.2【分析】根据垂直得到,得到方程,求出.()0a a b λ⋅-= 2λ=【详解】,()()()2,1,31,2,12,12,3a b λλλλλ-=---=--- 因为,所以,()a a b λ⊥- ()0a a b λ⋅-= 即,()()2,12,3241293702,1,134λλλλλλλ----=-++-+-=+⋅-=解得.2λ=故215.17【分析】利用向量的加法,转化为,直接求模长即可.CD CA AB BD =++ 【详解】因为.CD CA AB BD =++ 所以()22CD CA AB BD =++ 222222CA CA AB AB AB BD BD CA BD=+⋅++⋅++⋅ 222132022042342⎛⎫=+⨯++⨯++⨯⨯⨯- ⎪⎝⎭17=所以.17CD = 故答案为.1716.33【分析】首先建立空间直角坐标系,分别求平面和平面的法向量,利用法向量垂MBD PCD 直求点的位置,并利用向量法求异面直线所成角的余弦值,即可求解正弦值.M 【详解】如图,以点为原点,以向量为轴的正方向,建立空间直角坐标A ,,AB AD AP ,,x y z 系,设,2AD AP ==,,,,()2,0,0B ()0,2,0D ()002P ,,()2,2,0C 设,()()()0,2,22,2,22,22,22DM DP PM DP PC λλλλλ=+=+=-+-=-- ,,,()2,2,0BD =-u u u r ()2,0,0DC =u u u r ()0,2,2DP =- 设平面的法向量为,MBD ()111,,m x y z =r ,()()11111222220220DM m x y z DM m x y λλλ⎧⋅=+-+-=⎪⎨⋅=-+=⎪⎩33故。
例题1. 已知,,A B C 三点不共线,对平面外任一点,满足条件122555OP OA OB OC =++,试判断:点P 与,,A B C 是否一定共面?分析:要判断点P 与,,A B C 是否一定共面,即是要判断是否存在有序实数对,x y ,使AP x AB y AC =+ 或对空间任一点O ,有OP OA xAB y AC =++。
解:由题意:522OP OA OB OC =++,∴()2()2()OP OA OB OP OC OP -=-+- ,∴22AP PB PC =+ ,即22PA PB PC =-- ,所以,点P 与,,A B C 共面.点评:在用共面向量定理及其推论的充要条件进行向量共面判断的时候,首先要选择恰当的充要条件形式,然后对照形式将已知条件进行转化运算.例题2. 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点M ,N 分别在对角线BD ,AE 上,且13BM BD =,13AN AE =.求证://MN 平面CDE . 分析:要证明//MN 平面CDE ,只要证明向量NM可以用平面CDE 内的两个不共线的向量DE 和DC线性表示.证明:如图,因为M 在BD 上,且13BM BD =,所以111333MB DB DA AB ==+ .同理1133AN AD DE =+ ,又CD BA AB ==- ,所以MN MB BA AN =++1111()()3333DA AB BA AD DE =++++ 2133BA DE =+2133CD DE =+ .又CD 与DE 不共线,根据共面向量定理,可知MN ,CD ,DE共面.由于MN 不在平面CDE 内,所以//MN 平面CDE .点评:空间任意的两向量都是共面的. 考点二 证明空间线面平行与垂直例题3. 如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AA 1=4,点D 是AB 的中点, (I )求证:AC ⊥BC 1; (II )求证:AC 1//平面CDB 1;分析:(1)证明线线垂直方法有两类:一是通过三垂线定理或逆定理证明,二是通过线面垂直来证明线线垂直;(2)证明线转化转化面平行也有两类:一是通过线线平行得到线面平行,二是通过面面平行得到线面平行. 解法一:(I )直三棱柱ABC -A 1B 1C 1,底面三边长AC =3,BC =4AB =5,∴ AC ⊥BC ,且BC 1在平面ABC 内的射影为BC ,∴ AC ⊥BC 1;(II )设CB 1与C 1B 的交点为E ,连结DE ,∵ D 是AB 的中点,E 是BC 1的中点,∴ DE//AC 1,∵ DE ⊂平面C D B 1,AC 1⊄平面C D B 1,∴ AC 1//平面C D B 1;解法二:∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 两两垂直,如图,以C 为坐标原点,直线CA 、CB 、C 1C 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则C (0,0,0),A (3,0,0),C 1(0,0,4),B(0,4,0),B 1(0,4,4),D (23,2,0)(1)∵AC =(-3,0,0),1BC =(0,-4,0),∴AC •1BC =0,∴AC ⊥BC 1. (2)设CB 1与C 1B 的交战为E ,则E (0,2,2).∵DE =(-23,0,2),1AC =(-3,0,4),∴121AC =,∴DE ∥AC 1. 点评:平行问题的转化:面面平行线面平行线线平行;主要依据是有关定义及判定定理和性质定理.例题 4. (北京市东城区2007年综合练习)如图,在棱长为2的正方体ABN BC M BD O D C B A ABCD 为的中点为的中点为中,,,11111-的中点,P 为BB 1的中点. (I )求证:C B BD 11⊥; (II )求证MNP BD 平面⊥1;(III )求异面直线M C O B 11与所成角的大小.分析:本小题考查直线与平面垂直,二面角等基础知识,考查空间想象能力和推理论证能力. 解法一:(I )连结BC 1 由正方体的性质得BC 1是BD 1在平面BCC 1B 1内的射影11BC C B ⊥且,所以C B BD 11⊥ (II)又M PM MN = ,.1MNP BD 平面⊥∴(III )延长OQ Q B BM BQ Q CB ,,,1连结使到=.//.,//111111M C Q B B C QM B C QM ∴=且则.111所成的角与是异面直线M C O B Q OB ∠∴由于正方体的棱长为2,1515532)6()5()3(cos .6,,5,322212121122111=⨯⨯-+==+==+==Q OB Q O OO OQ O ABCD BQ B B Q B O B 可求得的中点为设底面则即异面直线M C O B 11与所成角的大小为arccos 1515. 解法二:(I )如图建立空间直角坐标系. 则B (2,2,0),C (0,2,0) B 1(2,2,2),D 1(0,0,2).),2,0,2(),2,2,2(11--=--=D B BD………………3分B BDC B BD 1111.0404⊥=-+=⋅C B BD 11⊥∴(II ))0,1,2(),1,2,2(),0,2,1(N P M ,,0022,0202),0,1,1(),1,0,1(11=++-=⋅=++-=⋅-==MN BD MP BD MN MP,.,11M PM MN MP BD MN BD =⊥⊥∴ 又MNP BD 平面⊥∴1.(III )θ所成的角为与设异面直线M C O B C O 111),2,2,0(),1,1,1(, ).2,0,1(),1,1,1(11-=---=M C O B 则.1)2()1(0)1(1111=-⨯-+⨯-+⨯-=⋅M C O B.515531cos 1111=⨯==∴θ即异面直线M C O B 11与所成角的大小为arccso.515点评:证明线面垂直只需证此直线与平面内两条相交直线垂直即可.这些从本题证法中都能十分明显地体现出来考点三 求空间图形中的角与距离根据定义找出或作出所求的角与距离,然后通过解三角形等方法求值,注意“作、证、算”的有机统一.解题时注意各种角的范围:异面直线所成角的范围是0°<θ≤90°,其方法是平移法和补形法;直线与平面所成角的范围是0°≤θ≤90°,其解法是作垂线、找射影;二面角0°≤θ≤180°,其方法是:①定义法;②三垂线定理及其逆定理;③垂面法 另也可借助空间向量求这三种角的大小.例题5. (河南省开封市2007届高三年级第三次质量检测)在长方体ABCD —A 1B 1C 1D 1中,AA 1=1,AD=DC=3.(1)求直线A 1C 与D 1C 1所成角的正切值; (2)在线段A 1C 上有一点Q ,且C 1Q =31C 1A 1,求平面QDC 与平面A 1DC 所成锐二面角的大小.分析:求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法 求二面角的大小也可应用面积射影法,向量法办解法一:(I ),//11CD D C CD A 1∠∴为异面直线A 1C 与D 1C 1所成的角连A 1D ,在Rt △A 1DC 中,CD =3,A 1D =2,.332tan 1=∠∴CD A (II )过Q 作EF (在平面A 1C 1内)使EF//A 1B 1, CD EF //∴连B 1C 、CF 、DF ,(面EFCD 即平面QDC ;面A 1B 1CD 即平面A 1DC ),,,111CF DC C B DC B BCC DC ⊥⊥∴⊥面 CF B 1∠∴即为二面角A 1—DC —Q 的平面角.QF C A C Q C 1111,31∆= ~21,11111==∴∆QA Q C E A F C QE A .11122111112,,cos 2C F B F B C CF CB CF B F B CF B CF CB CF ∴=====+-∆∠==⋅又在中301=∠∴CF B ,即所求二面角大小为30°解法二:(I )同解法一(I )(II )建立空间直角坐标系,的一个法向量分别为平面设平面则QCD CD A Q A C Q C C A C D ,),1,332,33(,31).1,3,0(),1,0,3(),0,3,0(),0,0,0(111111∴=.33,1.033,00,0).3,0,1(.3,103,00,0),,(),,,(222222211111111122221111-=∴=⎪⎩⎪⎨⎧=+=⇒⎪⎩⎪⎨⎧=⋅=⋅-=∴-=∴=⎩⎨⎧=+=⇒⎪⎩⎪⎨⎧=⋅=⋅==z x z x y n n n z x z x y DA n DC n z y x n z y x n 令由令由)33,0,1(2-=∴n.6,,2332211||||,cos 21212121π>=∴<=⨯+=⋅>=<∴n n n n n n即平面QDC 与平面A 1DC 所成锐二面角为6π点评:本题主要考查异面直线所成的角、线面角及二面角的一般求法,综合性较强 用平移法求异面直线所成的角,利用三垂线定理求作二面角的平面角,是常用的方法.例题6. (福建省福州三中2008届高三第三次月考)如图,正三棱柱111ABC A B C -的所有棱长都是2,D 是棱AC 的中点,E 是棱1CC 的中点,AE 交1A D 于点.H(1)求证:1AE A BD ⊥平面;(2)求二面角1D BA A --的大小(用反三角函数表示); (3)求点1B 到平面1A BD 的距离。
空间向量与立体几何专题利用空间向量解决立体几何中位置关系平行,垂直,角度问题,距离问题(体积),探索性问题等。
1.正方形ADEF 与梯形ABCD 所在平面互相垂直,,//AD CD AB CD AB ⊥=,2,4AD CD ==,点M 是EC 中点.(I )求证:BM ∥平面ADEF ; (II )求BM 与平面BDE 所成角的正弦值.答案及解析:1.(1)设N 为DE 的中点,因为M 是EC 的中点,,21,//DC MN DC MN =∴ ,21,//CD AB CD AB =因此MN AB //,所以四边形ABMN 是平行四边形,------4分 ,//AN BM ∴因为,平面ADEF BM ⊄,平面ADEF AN ⊂.//ADEF BM 平面∴--6分 (2)因为点M 是EC 中点,所以221==∆∆CDE DEM S S ., -------7分 正方形ADEF 与梯形ABCD 所在平面互相垂直,BC ED AD ED ABCD ED ⊥⊥⇒⊥,平面因为,,DE AD CD AD ⊥⊥,且DE 与CD 相交于D CDE AD 平面⊥∴,,//,//CDE AB CD AB 平面∴ B 到面DEM 的距离2=AD ---------8分. 又CBE ED BC BD BC CD BD BC ∆⇒⊥⊥⇒===,4,22是直角三角形,则32=∆DEB S ---9分设M 到面DEM 的距离h ,23131=⇔⋅=⋅⋅⇔=∆∆--h h S AD S V V DEB DEM DEM B DEB M 由.-----10分 524212122=+==∴EC BM ,---11分 所以BDE BM 与平面所成角θ的正弦值为51052sin ===BM h θ----12分 2.如图,三棱柱ABC -A 1B 1C 1的所有棱长均为2,底面ABC ⊥侧面AA 1B 1B ,01160,AA B P ∠=为CC 1的中点,11AB A B O =.(1)证明:AB 1⊥平面A 1OP .(2)若M 是棱AC 上一点,且满足045MOP ∠=,求二面角1M BB A --的余弦值.答案及解析:2.解:(1)取的中点 ,连接,易证为平行四边形,从而.由底面侧面 ,底面 侧面 , ,底面,所以侧面 ,即侧面,又侧面 ,所以,又侧面为菱形,所以,从而平面,因为 平面,所以 .(2)由(1)知,,,,以 为原点,建立如图所示的空间直角坐标系.因为侧面 是边长为2的菱形,且,所以,,,,,,得 .设,得,所以 ,所以.而.所以 ,解得.所以 , , .设平面的法向量,由得,取 .而侧面 的一个法向量.设二面角 的大小为 .则3.如图,在Rt △ABC 中,3==BC AB ,点E 、F 分别在线段AB 和AC 上,且BC EF //,将△AEF 沿EF 折起到△PEF 的位置,使得二面角B EF P --的大小为60°. (Ⅰ)求证:PB EF ⊥;(Ⅱ)当点E 为线段AB 的靠近B 点的三等分点时,求PC 与平面PEF 所成角θ的正弦值.答案及解析:3.证明:(Ⅰ)∴==,3BC AB BC EF AB BC //, ⊥AB EF ⊥∴,翻折后垂直关系没变,仍有BE EF AE EF ⊥⊥,PBE EF 面⊥∴PB EF ⊥∴(Ⅱ)BE EF AE EF ⊥⊥, PEB ∠∴是二面角P-EF-B 的平面角,︒=∠∴60PEB ,又PE=2,BE=1,由余弦定理得PB=3, EB BC PB EB PB PE EB PB ,,,,222∴⊥∴=+∴两两垂直.以B 为原点,BC 所在直线为X 轴,BE 所在直线为Y 轴,建立如图直角坐标系. 则P(0,0,3),C(3,0,0),E(0,1,0),F(2,1,0).)3,1,2(),3,1,0(-=-=设平面PEF 的法向量),,,(z y x =由,0⎪⎩⎪⎨⎧=⋅=⋅可得),1,3,0(=41sin ),3,0,3(==∴-=PC θ. 故PC 与平面PEF 所成的角的正弦值为14.4.如图,在圆锥PO 中,已知2=PO ,⊙O 的直径AB =2,点C 在底面圆周上,且30=∠CAB ,D 为AC 的中点.(Ⅰ)证明:OD ∥平面PBC ; (Ⅱ)证明:平面PAC ⊥平面POD ; (Ⅲ)求二面角A -PC -O 的正弦值.答案及解析:4.证明 :(Ⅰ)∵D 为AC 的中点,O 为⊙O 的圆心,则OD ∥BC , …………2分 ∵BC ⊂平面PBC ,OD ⊄平面PBC , …………4分 ∴OD ∥平面PBC 。
…………5分证明:(Ⅱ)∵OC OA =,D 是AC 的中点,∴OD AC ⊥. 又⊥PO 底面⊙⊂AC O ,底面⊙O ,∴PO AC ⊥, …………7分 ∵ODOP O =,PO OD ,⊆平面POD ,∴⊥AC 平面POD , …………9分∵AC ⊂平面PAC ,∴平面PAC ⊥平面POD ; …………10分(Ⅲ)由(Ⅱ)知,平面⊥POD 平面PAC ,在平面POD 中,过O 作PD OH ⊥于H ,则⊥OH 平面PAC 。
过H 作HQ PC ⊥,垂足为Q ,连结OQ , 则由三垂线定理得OQ PC ⊥,∴HQO ∠是二面角A PC O --的平面角.…………12分 在POD Rt △中, 3222412122=+⨯=+⋅=OD PO OD PO OH , 在Rt △PDC 中,可求得23HQ =,∴在Rt △OQH 中,3OQ ==,∴sin OH HQO OQ ∠==.即二面角A PC O --. …………15分5.如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,四边形ABCD 是菱形,2=AC ,32=BD ,且AC ,BD 交于点O ,E 是PB 上任意一点.(1)求证:DE AC ⊥;(2)若E 为PB 的中点,且二面角A -PB -D 的余弦值为721,求EC 与平面PAB 所成角θ的正弦值.5.(1)因为DP ⊥平面ABCD ,所以DP ⊥AC ,因为四边形ABCD 为菱形,所以BD ⊥AC ,又BD ∩PD=D ,∴AC ⊥平面PBD ,因为DE ⊂平面PBD ,∴AC ⊥DE . (4分) (2)连接OE ,在△PBD 中,EO ∥PD ,所以EO ⊥平面ABCD ,分别以OA ,OB ,OE 所在直线为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系, (5分)设PD=t ,则A (1,0,0),B (0,0),C (﹣1,0,0),E (0,0,),P (0t ).设平面PAB 的一个法向量为=n (x ,y ,z ),则错误!未找到引用源。
,令错误!未找到引用源。
,得)32,1,3(tn =, 平面PBD 的法向量=m (1,0,0),因为二面角A ﹣PB ﹣D 的余弦值为错误!未找到引用源。
,所以错误!未找到引用源。
, 所以错误!未找到引用源。
或错误!未找到引用源。
(舍), (9分)则错误!未找到引用源。
∴错误!未找到引用源。
, ∴EC 与平面PAB 所成角θ的正弦值为742. 6.如图,在四棱锥P -ABCD 中,已知PA ⊥平面ABCD ,且四边形ABCD 为直角梯形,π2ABC =BAD ∠∠=,2PA AD ==,1AB BC ==,点M ,E 分别是PA ,PD 的中点.(I )求证:CE ∥平面PAB ;(II )点Q 是线段BP 上的动点,当直线CQ 与DM 所成角最小时,求线段BQ 的长.答案及解析:6.(Ⅰ) 证明:连接BM ,ME ,因为点M ,E 分别是PA ,PD 的中点, 所以12ME AD =,ME //AD , 所以BC //ME ,BC ME =,所以四边形BCEM 为平行四边形,所以CE //BM .…………………………………………………………………3分 又因为BM ⊂平面PAB ,CE ⊄平面PAB ,所以CE //平面PAB . …………………………………………………………4分 (Ⅱ)解:如图,以A 为坐标原点建立空间坐标系O xyz -,则(1,0,0)B ,(1,1,0)C ,(0,2,0)D ,(0,0,2)P ,(0,0,1)M .………………5分所以(1,0,2)BP =-,(0,2,1)DM =-,设(,0,2)BQ BP λλλ==-,01λ≤≤, ………………………………………6分 又(,1,2)CQ CB BQ λλ=+=--,所以cos ,CQ DM <>=.……7分设1t λ+=, 则1t λ+=,[1,2]t ∈,所以2224cos ,55106t CQ DM t t <>=⋅-+,2241cos ,61055CQ DM t t<>=⋅-+, 当且仅当156t =,即15l =时,|cos ,|CQ DM <>取得最大值, 即直线CQ 与DM所成角取得最小值,此时155BQ BP ==.……………10分7.如图,在梯形ABCD 中,AB ∥CD ,2AD DC CB ===,。
60=∠ABC ,平面ACEF ⊥平面ABCD ,四边形ACEF 是矩形,2AE =.。
(1)求证: BC ⊥平面ACEF ;。
(2)求二面角B -EF -D 的余弦值. 7.(1)在梯形ABCD 中,∵//AB CD ,2AD DC CB ===,。
60=∠ABC∴四边形ABCD 是等腰梯形,且︒︒=∠=∠=∠120,30DCB DAC DCA︒=∠-∠=∠∴90DCA DCB ACB BC AC ⊥∴又∵ 平面⊥ACFE 平面ABCD ,交线为AC ,⊥∴BC 平面ACFE(2)由(1)知,以点C 为原点,CF CB CA ,,所在直线为坐标轴,建立空间直角坐标系, 则)0,0,0(C,(0,2,0),1,0),(0,0,2),2)B A D F E -,在平面BEF中,2,2),BE FE =-=u u u r u u u r设其法向量为1(,,)n x y z =u r,则112200n BE y z n FE ⎧⋅=-+=⎪⎨⋅==⎪⎩u r u u u r u r u u ur ,令1y =,则1z =. 故平面BEF 的一个法向量为1(0,1,1)n =u r.在平面DEF中,FE =u u u r,1(2DF CF CD CF BA =-=-=u u u r u u u r u u u r u u u r u u u r设其法向量为2(,,)n x y z =u u r,则22200n BF y z n FE ⎧⋅=++=⎪⎨⋅==⎪⎩u u r u u u r u ur u u u r ,令2y =-,则1z =. 故平面DEF 的一个法向量为2(0,2,1)n =-u u r.由12cos ,10n n <>==-u r u u r , 知二面角D EF B --的余弦值为1010.8.如图,已知三棱柱ABC-A1B1C1,侧面BCC1B1⊥底面ABC.(Ⅰ)若M,N分别是AB,A1C的中点,求证:MN∥平面BCC1B1;(Ⅱ)若三棱柱ABC-A1B1C1的各棱长均为2,侧棱BB1与底面ABC所成的角为60°,问在线段A1C1上是否存在一点P,使得平面B1CP⊥平面ACC1A1?若存在,求C1P与PA1的比值,若不存在,说明理由.8.解:(1)证明:连接AC1,BC1,则AC1∩A1C=N,AN=NC1,因为AM=MB,所以MN∥BC1.又BC1⊂平面BCC1B1,所以MN∥平面BCC1B1.(2)作B 1O ⊥BC 于O 点,连接AO ,因为平面BCC 1B 1⊥底面ABC ,所以B 1O ⊥平面ABC ,以O 为原点,建立如图所示的空间直角坐标系,则A (0,3,0),B (-1,0,0),C (1,0,0),B 1(0,0,3).由1AA =1CC =1BB ,可求出A 1(1,3,3),C 1(2,0,3),设点P (x ,y ,z ),11AC =λ1A P .则P (λ1+1,3-λ3,3), CP =(λ1,3-λ3,3), 1CB =(-1,0,3).设平面B 1CP 的法向量为n 1=(x 1,y 1,z 1), 由⎪⎩⎪⎨⎧=⋅=⋅.0,0111CB n n 得⎪⎩⎪⎨⎧=+-=+λ-+λ.03,03)33(z x z y x 令z 1=1,解得n 1=(3,λ-λ+11,1). 同理可求出平面ACC 1A 1的法向量n 2=(3,1,-1).由平面B 1CP ⊥平面ACC 1A 1,得n 1·n 2=0,即3+λ-λ+11-1=0, 解得λ=3,所以A 1C 1=3A 1P ,从而C 1P ∶PA 1=2.9.如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,PA ⊥平面ABCD ,点M ,N 分别为BC , PA 的中点,且1AB AC ==,AD =(1)证明:MN ∥平面PCD ;(2)设直线AC 与平面PBC 所成角为α,当α在(0,)6π内变化时,求二面角P -BC -A 的取值范围.9.(1)取PD 得中点Q,连接NQ,CQ,因为点M,N 分别为BC,PA 的中点,,21,////CM AD NQ CM AD NQ ==∴ CQ MN CQNM //∴∴为平行四边形,四边形,PCD MN PCD CQ PCD MN 面面面又//,,∴⊂⊄,(2)连接PM,因为2,1===AD AC AB ,点M 为BC 的中点,则,,,,BC PM ABCD PA BC AM ⊥⊥⊥则面又θ的平面角,设为为二面角A BC P PMA --∠∴,以AB,AC,AP 所在的直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则A(0,0,0),B(1,0,0),C(0,1,0),M(02121,,),P(θtan 2200,,), 设平面PBC 的一个法向量为=(x,y,z),则由0,0=⋅=⋅PM n BC n ,⎪⎩⎪⎨⎧=-+=+-0tan 2221210θz y x y x 可取60,sin 22tan 221sin 2παθθα<<=+==∴ 22sin 0,21sin 0<∠<<<∴AMH α, 0044P BC A ππθ∴<<--,即二面角取值范围为(,).10.直三棱柱ABC -A 1B 1C 1中,AB AC ⊥,2AB =,4AC =12AA =,BD DC λ=.(1)若1λ=,求直线DB 1与平面A 1C 1D 所成角的正弦值;(2)若二面角B 1 - A 1C 1-D 的大小为60°,求实数λ的值.10.解:分别以AB ,AC ,1AA 所在直线为x ,y ,z 轴建立空间直角坐标系. 则(0,0,0)A ,(2,0,0)B ,(0,4,0)C ,1(0,0,2)A ,1(2,0,2)B ,1(0,4,2)C(1)当1λ=时,D 为BC 的中点,所以D 为BC 的中点,所以(1,2,0)D ,1(1,2,2)DB =-,11(0,4,0)AC =,1(1,2,2)A D =-,设平面111AC D 的法向量为(2,0,1)n =,又111cos ,||||3DB n DB nDB n === 所以直线1DB 与平面11AC D (2)∵BD DC λ=,∴24(,,0)11D λλλ++,∴11(0,4,0)AC =,124(,,2)11A D λλλ=-++, 设平面11AC D 的法向量为1(,,)n x y z =,则402201y x z λ=⎧⎪⎨-=⎪+⎩,所以1(1,0,1)n λ=+.又平面111A B C 的一个法向量为2(0,0,1)n =,由题意得121cos ,2n n <>=,12=,解得1λ=或1λ=(不合题意,舍去),所以实数λ1.Welcome !!! 欢迎您的下载,资料仅供参考!。