发电机、励磁机结构及工作原理
- 格式:ppt
- 大小:3.03 MB
- 文档页数:32
发电机励磁系统原理发电机励磁系统是指为了使发电机在运行中能够产生稳定的电压和电流,采取的一系列控制和调整励磁电流的措施。
励磁系统的原理是通过调节励磁电流来改变磁场强度,进而控制发电机的输出电压和频率。
一、电磁感应原理根据法拉第电磁感应定律,当导体在磁场中运动或磁场变化时,会在导体中产生感应电动势。
由此,发电机中的转子在转动时,通过导线产生的感应电动势可以用来驱动电流,从而实现电能的转换。
二、励磁机构发电机励磁系统的核心是励磁机构,它由励磁电源和励磁回路组成。
励磁电源提供直流电源,用于激励发电机的磁场。
而励磁回路则通过一组电阻、电感和励磁开关等元件,将励磁电流导入到发电机的励磁线圈中。
三、调整励磁电流励磁电流的大小决定了发电机的磁场强度,从而影响了输出电压和频率。
一般情况下,发电机励磁系统会根据负荷的需求,通过调节励磁电流的大小来实现稳定的电压输出。
4、励磁系统的调整机制发电机励磁系统通常采用自动调压和手动调压两种方式来保持输出电压的稳定。
在自动调压模式下,根据电压传感器的反馈信号,控制励磁电流的大小。
一旦输出电压下降,励磁系统会自动增加励磁电流,以提高输出电压。
手动调压模式下,操作人员可以根据需要手动调整励磁电流,以实现电压的稳定输出。
五、励磁系统的稳定性好的励磁系统应具有良好的稳定性,能够在负荷变化时迅速调整励磁电流,并且使输出电压变化最小。
稳定性的提高可以通过增加励磁回路中的电感和电容元件,以及制定合理的励磁调节策略来实现。
六、励磁系统的应用发电机励磁系统广泛应用于各种发电场景中,包括电力站、风力发电、水力发电、汽车发电机等。
它不仅能够保证电力供应的稳定性和可靠性,还能够提高发电效率和节能减排。
总结:发电机励磁系统是使发电机能够稳定输出电压和频率的重要控制系统。
通过调节励磁电流来改变发电机的磁场强度,励磁系统能够实现电能的转换和稳定输出。
良好的励磁系统应具有稳定性和高效性,能够适应负荷变化并实现可靠的电力供应。
发电机励磁系统原理及运行1.(发电机励磁系统图:)励磁系统构成及优缺点:励磁电源由励磁变引自发电机机端,通过可控硅整流元件直接控制发电机的励磁,这种励磁方式即为自并励可控硅整流励磁,其特点如下:(1)因采用可控硅整流器和无需考虑同轴励磁机时间常数的影响,故可获得较高的电压响应速度。
(2) 励磁变压器接到发电机端不受厂用电压的影响,但需起励电源。
(3)缺点:其一整流输出的直流顶值电压受发电机或电力系统短路故障形式和故障点远近的影响,缺乏足够的强励能力。
其二由于自并励可控硅整流励磁系统的发电机短路电流衰减较快,对发电机带延时的后备保护可靠动作不利。
为此,过流保护可采用电流启动记忆,由复合电压或低电压闭锁的延时保护。
2. 发电机励磁装置:(1) 励磁装置组成:并联励磁变、可控整流装置、励磁调节器、灭磁及转子过电压保护、起励回路。
(2) 并联励磁变压器:型号:SCLLB-1800KVA / 容量:1800kVA一次电压15.75KV 二次电压:0.6kv接线Y/△ -11••••• 自并励励磁系统的励磁变压器不设自动开关,只设有隔离刀闸。
励磁变装设过流保护,该保护动作引跳出口油开关及灭磁开关。
励磁变接在主变底压侧,不受系统及厂用电影响。
•(3) 可控硅整流回路:(整流回路原理图:)以单相半波整流电路为例说明可控硅整流电路的工作原理。
要使可控硅导通,必须在可控硅的阳极及控制极同时加正向电压,并且使流过可控硅的阳极电流大于它的维持电流。
当阳极加反响电压,或流过可控硅阳极的电流小于维持电流时,可控硅截止。
从可控硅承受正向电压开始,到可控硅导通为止,这一段区间为控制角。
改变控制角的大小,可调整可控硅输出电压的大小。
可控硅整流电路可输出连续可调的直流电压。
主整流器采用三相全控桥,2个功率柜并列运行。
整流元件采用晶闸管整流,•每个功率柜额定功率输出2000A。
整流柜为强迫风冷式。
风机设有主、备用电源,互为备用(•主、备用电源:均用机旁I II段电源)。
发电机励磁系统工作原理
发电机励磁系统工作原理是通过在发电机的励磁线圈中通电产生电磁场,从而激发转子磁极上的磁场,进而导致转子磁极和定子磁极之间的磁场相互作用,产生电磁感应,最终实现电能的转换和发电。
具体过程如下:
1. 发电机的励磁线圈通电:励磁线圈被连接到直流电源上,通电后产生电流,从而在励磁线圈内形成电磁场。
2. 电磁场激发转子磁极:产生的电磁场经过磁路作用,激发转子磁极上的磁场。
3. 转子磁场与定子磁场交互作用:转子磁场和定子磁场之间相互作用,引发电磁感应现象。
4. 电磁感应产生交流电:由于转子磁场和定子磁场的相互作用,导致定子线圈中产生交流电流。
5. 交流电输出:产生的交流电经过定子线圈的接触器或整流器等装置,进行调整和控制后输出为电能。
总之,发电机励磁系统工作原理是通过励磁线圈通电产生电磁场,激发转子磁极上的磁场,并与定子磁场相互作用产生电磁感应,从而实现电能的转换和发电。
发电机励磁系统工作原理
发电机励磁系统的工作原理如下:
1. 励磁电源:发电机励磁系统通常由励磁电源提供直流电能。
励磁电源可以是直流电源、电池或者其他的电源装置。
2. 励磁线圈:发电机中有一个称为励磁线圈的线圈,它通常由铜导线绕成,固定在发电机的定子上。
励磁线圈连接到励磁电源。
3. 励磁电流:当励磁电源接通时,电流将开始流经励磁线圈。
这会在发电机中产生一个磁场。
4. 磁场:励磁线圈产生的磁场通过铁芯传导到转子和定子之间的空间。
转子是发电机中旋转的部分,定子是固定的部分。
5. 感应电压:当发电机的转子旋转时,磁场也随之旋转。
由于电磁感应的原理,转子中的导线将产生感应电压。
这个感应电压会驱动绕在定子上的线圈产生电流。
6. 电流输出:通过定子上的线圈产生的电流输出到外部负载上,为外部负载提供电能供应。
总结起来,发电机励磁系统的工作原理就是通过励磁电源提供直流电能,产生磁场,使得转子中的线圈通过电磁感应产生电流,从而输出电能供应外部负载。
发电机自并励励磁工作原理发电机是一种将机械能转化为电能的设备。
它通过励磁产生磁场,然后利用磁场与导线之间的相对运动产生感应电动势,最终产生电能。
发电机的自并励励磁工作原理是指发电机自身产生励磁电流,以维持磁场的稳定。
在发电机中,励磁线圈是产生磁场的关键部件。
当励磁线圈中通过电流时,就会在发电机内部产生磁场。
这个磁场与转子之间的相对运动会产生感应电动势,从而产生电能。
具体来说,发电机的自并励励磁工作原理包括以下几个步骤:发电机的励磁线圈接通直流电源,通过电流在线圈中产生磁场。
这个磁场会沿着转子的轴向形成一个稳定的磁通量。
当转子开始旋转时,磁通量就会与转子之间的导线相互作用。
根据法拉第电磁感应定律,当导线与磁场相对运动时,就会在导线两端产生感应电动势。
这个感应电动势的大小与导线的长度、磁场的强度以及转子的转速有关。
然后,感应电动势的产生会导致导线两端的电荷分布不平衡,从而产生电流。
这个电流会通过导线外部的电路,形成回路,最终返回励磁线圈。
这个电流就是励磁电流。
励磁电流通过励磁线圈产生磁场,维持磁场的稳定。
这样,发电机就能够持续地将机械能转化为电能。
总的来说,发电机的自并励励磁工作原理是通过励磁线圈产生磁场,然后利用磁场与导线之间的相对运动产生感应电动势,最终产生电能。
这个过程需要励磁电流的不断循环,以维持磁场的稳定。
发电机的自并励励磁工作原理是现代发电技术中的重要原理,广泛应用于各种发电设备中。
通过对发电机自并励励磁工作原理的深入理解,我们可以更好地掌握发电机的工作原理,为发电设备的设计和维护提供指导。
同时,发电机的自并励励磁工作原理也为我们理解电磁感应等基础物理现象提供了一个具体的实例。
发电机的自并励励磁工作原理的研究和应用,有助于推动能源领域的发展,为人类提供更多更可靠的电能供应。
发电机励磁原理发电机励磁原理励磁机的作⽤:发电机原理为永磁极随转⼦旋转,产⽣交流电,交流电⼀部分作为AER的电源,⼀部分通过逆变器整流成直流为转⼦建⽴磁场。
通过调节导通⾓可以改变发电机的端电压(空载时)进⽽实现并⽹,在并⽹时调节向电⽹的⽆功输出。
⼯作原理:众所周知,同步发电机要⽤直流电流励磁。
在以往的他励式同步发电机中,其直流电流是有附设的直流励磁机供给。
直流励磁机是⼀种带机械换向器的旋转电枢式交流发电机。
其多相闭合电枢绕组切割定⼦磁场产⽣了多相交流电,由于机械换向器和电刷组成的整流系统的整流作⽤,在电刷上获得了直流电,再通过另⼀套电刷,滑块系统将获得的直流输送到同步发电机的转⼦,励磁绕组去励磁,因此直流励磁机的换向器原则上是⼀个整流器,显然可以⽤⼀组硅⼆极管取代,⽽功率半导体器件的发展提供了这个条件。
将半导体元件与发电机的轴固结在⼀起转动,则可取消换向器、滑块等滑动接触部分、利⽤⼆极管换成直流电流。
直流送给转⼦励磁、绕组励磁。
这就是⽆刷系统。
下⾯我们以典型的⼏种不同发电机励磁系统,介绍它的⼯作原理。
⼀、相复励励磁原理由线形电抗器DK把电枢绕组抽头电压移相约90°、和电流互感器LH提供的电压⼏何叠加,经过桥式整流器ZL整流,供给发电机励磁绕组。
负载时由电流互感器LH供给所需的复励电流,进⾏电流补偿,由线形电抗器DK移相进⾏相位补偿。
⼆、三次谐波原理对⼀般发电机来源,我们需要的是⼯频正弦波,称为基波,⽐基波⾼的正弦波都称为谐波、其中三次谐波的含量最⼤,在谐波发电机定⼦槽中,安放有主绕组和谐波励磁绕组(s1、s2),⽽这个绕组之间没有电的联系。
谐波绕组将绕组中150HZ谐波感应出来,经过ZL桥式整流器整流,送到主发电机转⼦绕组LE 中进⾏励磁。
三、可控硅直接励磁原理可控硅直接励磁是采⽤可控硅整流器直接将发电机输出的任⼀相⼀部分能量,经整流后送⼊励磁绕组去的励磁⽅式,它是由⾃动电压调节器(AVR),控制可控硅的导通⾓来调节励磁电流⼤⼩⽽维持发电机端电压的稳定。
1.“三机”励磁系统发电机交流励磁机-静止整流器励磁系统(“三机”励磁系统)简介交流主励磁机(ACL)和交流副励磁机(ACFL)都与发电机同轴。
副励磁机是自励式的,其磁场绕组由副励磁机机端电压经整流后供电。
也有用永磁发电机作副励磁机的,亦称三机它励励磁系统。
2.“三机”励磁系统慨述主励磁机的交流输出,经硅二极管整流器整流后,供给汽轮发电机励磁。
主励磁机的励磁,由永磁副励磁机之中频输出经可控硅整流器整流后供给。
自动电压调节器根据汽轮发电机之端电压互感器、电流互感器取得的调节信号,控制可控硅整流器输出的大小,实现机组励磁的自动调节。
3.“三机”励磁系统的优点——发电机的励磁电源取自同轴的交流主励磁机,不受电力系统运行的情况影响,工作可靠。
——高速大容量交流主励磁机的设计制造、运行维护比直流励磁机容易。
直流励磁机电枢产生的是交流电势,经过整流子(换向器)的机械整流作用,变成直流电输出,供给发电机励磁。
“三机”励磁系统用静止硅整流器代替旋转的机械整流子。
——永磁式副励磁机PMG工作可靠,只要机组转动,即可为主励磁机提供励磁电流。
4.“三机”励磁系统的缺点——交流主励磁机是一“时滞”环节1. 交流主励磁机(发电机生产厂家制造) 1台2. 永磁副励磁机(发电机生产厂家制造) 1台3. 硅二极管整流装置 1套4. 微机励磁调节装置 1套5. 灭磁及转子绕组过电压保护装置 1套6. 主励磁机手动备用励磁装置(可不设置) 1套7. 交流主励磁机额定容量根据发电机参数和强励磁电压顶值倍数确定额定电压根据发电机参数和强励磁电压顶值倍数确定额定电流根据发电机参数和强励磁电压顶值倍数确定相数三相频率 100 Hz(用以减小发电机转子绕组的电感及时间常数)额定转速与同轴发电机相同8. 永励副励磁机额定容量根据发电机、交流主励磁机参数和强励磁电压顶值倍数确定额定电压根据发电机、交流主励磁机参数和强励磁电压顶值倍数确定额定电流根据发电机、交流主励磁机参数和强励磁电压顶值倍数确定相数三相频率 400 或500 Hz(中频)额定转速与同轴发电机相同励磁方式永磁式9. 硅整流装置整流方式三相全波桥式不可控整流整流元件大功率硅二极管整流桥数量 1 ~ 2(并联)个单个整流桥输出电压≮ 2 倍发电机额定励磁电压单个整流桥输出电流≮ 2 倍发电机额定励磁电流只需单个整流桥即可满足发电机强励需要硅二极管参数:额定电流额定电压反向电压10. 微机励磁调节装置内有单通道或双通道容错型数字式(微机型)自动励磁调节器(AER)。
发电机自并励励磁工作原理一、什么是发电机的自并励励磁?自并励励磁(Self-Excitation)是指发电机在工作时,通过其自身的电磁感应和反馈机制产生励磁电流,从而形成稳定的磁场,实现电压的产生和输出。
发电机的自并励励磁工作原理是发电机产生电流的基础和关键过程。
二、自并励励磁的工作原理1. 自励磁原理自励磁原理是指发电机在工作时,由于电磁感应作用产生的感应电动势,经过整流装置后形成直流电流,进而加强磁场,实现自身的励磁。
2. 励磁回路励磁回路是实现自并励励磁的基础结构,包括发电机的励磁绕组、电刷、电枢绕组和整流装置等。
(1)励磁绕组励磁绕组是发电机中用于产生磁场的线圈,通常由直流电流供电。
其位置通常位于电机转子上。
(2)电刷电刷是连接外部电源和励磁绕组的器件,用于将外部电流引入励磁绕组,产生磁场。
(3)电枢绕组电枢绕组是发电机中的输出绕组,根据法拉第电磁感应定律,电枢绕组中的电流会产生磁场。
(4)整流装置整流装置用于将产生的交流电转化为直流电,以实现对励磁绕组的供电。
常见的整流装置包括整流桥和整流子。
3. 自并励励磁的过程当发电机启动后,电机转子开始旋转。
根据电磁感应定律,由磁场变化所产生的感应电动势会导致电枢绕组中产生电流。
该电流通过励磁绕组和电刷,形成励磁电流,进而加强磁场。
加强的磁场又会进一步增大电枢绕组中的感应电动势,形成正反馈,使励磁电流继续增大。
当励磁电流达到一定程度后,磁场强度足够强大,电枢绕组中的感应电动势能够抵消励磁电流产生的电势差。
此时,自并励励磁达到稳定状态,发电机开始产生稳定的电压和电流输出。
三、自并励励磁的优点和应用1. 优点自并励励磁具有以下几个优点:•系统简单:自并励励磁不需要外部的励磁电源,只需要发电机自身产生的电势差即可实现励磁,使系统结构简单、可靠性高。
•节能环保:自并励励磁消除了对外部励磁电源的需求,节省了能源消耗,并且减少了对环境的影响。
•稳定性强:自并励励磁能够根据电枢绕组的输出电压和电流的变化进行自动调节,以保持发电机输出电压的稳定性。
发电机励磁系统分类与工作原理一、直流励磁系统直流励磁系统是指通过外部直流电源为发电机提供直流电源进行励磁的一种方式。
根据外部直流电源的不同,直流励磁系统可以分为恒定电流励磁、恒定电压励磁和恒定磁通励磁三种类型。
1.恒定电流励磁恒定电流励磁是指通过恒定电流激励线圈,使发电机产生固定的电磁场,从而实现稳定的发电功率输出。
该励磁方式适用于低容量的发电机,因为其在负载变化时,会出现电流无法稳定的问题。
2.恒定电压励磁恒定电压励磁是指通过恒定电压激励线圈,控制发电机输出电压的一种方式。
该励磁方式适用于大容量的发电机,因为其可以根据负载变化自动调节电流。
当负载增加时,发电机电流增大,电压保持不变;当负载减小时,电流减小,电压保持不变。
3.恒定磁通励磁恒定磁通励磁是指通过恒定磁通激励线圈,控制发电机输出电压的一种方式,也是较为常用的励磁方式。
通过调节磁通大小,可以实现对电压的调节。
当负载增加时,电压下降,调节磁通以增加输出电压;当负载减小时,电压上升,调节磁通以减小输出电压。
二、交流励磁系统交流励磁系统是指通过交流电源为发电机提供激励电源,进而产生电磁场的一种方式。
根据交流电源的不同,交流励磁系统可以分为同步励磁和异步励磁两种类型。
1.同步励磁同步励磁是指通过同步发电机自身产生的交流电源来为其他发电机提供励磁电源的一种方式。
同步发电机的励磁线圈接通后,通过自身的额外励磁功率产生电磁场,进而激励其他发电机产生电功率。
2.异步励磁异步励磁是指通过变压器将工程电网的交流电源转化为励磁电源来为发电机提供激励的一种方式。
变压器将工程电网的电压升高,然后通过整流装置将高压交流转换为直流电源,最后通过励磁线圈激励发电机产生电磁场。
不同于直流励磁系统,交流励磁系统可以实现多发电机联网运行,其中一个发电机提供励磁电源,而其他发电机则由该发电机提供激励电源进行励磁。
总结起来,发电机励磁系统的分类与工作原理主要可以从直流励磁系统和交流励磁系统两个方面来考虑。
各类发电机的结构及工作原理电力有发输变配用5个环节,其中发电是指利用发电动力装置将水能、化石燃料(煤炭、石油、天然气等)的热能、核能以及太阳能、风能、地热能、海洋能等转换为电能。
发电就需要用到发电机。
常见的有水轮机、汽轮机、柴油机或其他动力机械驱动的发电机,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。
发电机主要结构发电机主要机构发电机通常由定子、转子、端盖及轴承等部件构成。
定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。
转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。
由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。
发电机工作原理发电机的工作原理发电机是基于法拉第电磁感应定律而来的,即一块金属,比如一根铜线,在磁场中运动,金属内部会产生电场。
金属内部的电荷就会沿着电场流动。
如果这块金属不是一个环,电荷就会积累在两端,以电压的形式存在,把这块金属接在一个回路中(回路除金属以外的其他部分并没有在磁场中),就产生了电流,于是,发电机发出了电。
所以,发电机的基本原则就是固定住永磁体或者是金属,让金属或者是永磁体不停的运动,运动是相对的嘛,这样,那块不停的在磁场中运动的金属就会源源不断的发电。
由这一点可以区分不同的发电机,水力发电机就是利用水从高处落下的能量维持金属的运动,火电就是利用火烧开水产生的蒸汽的力量维持金属运动。
发电机分类发电机组类型有很多,按照不同的标准划分有不同类型的机组,例如:1、按照动力来源划分有柴油发电机组、燃气发电机组、汽油发电机组、风力发电机组、太阳能发电机组、水力发电机组、燃煤发电机组等。
2、电能方式按转换的电能方式可分为交流发电机和直流发电机两大类。
交流发电机又分为同步发电机和异步发电机两种。
发电机励磁系统原理发电机励磁系统是指对发电机的磁场进行励磁,以产生电压的一种系统。
在发电机内部,通过励磁系统可以产生电磁场,在转子上产生感应电动势,进而通过转子和定子之间的磁场变化将机械能转换为电能。
发电机励磁系统一般包括励磁电源、励磁线圈以及励磁调节器等组成部分。
本文将继续介绍发电机励磁系统的原理。
1.励磁电源励磁电源是发电机励磁系统中的能量供应部分,其作用是提供所需的电流和电压来激励励磁线圈。
励磁电源可以分为直流励磁电源和交流励磁电源两种。
直流励磁系统中,励磁电源通常是由一个直流发电机供电。
当励磁电源的转子转动时,产生的磁场通过励磁线圈激励主磁场,从而激励发电机。
通常,直流励磁电流的强弱可以通过励磁电源的电压调节器进行调节,以满足发电机输出电压的需要。
2.励磁线圈励磁线圈是励磁系统中最重要的组成部分,它是通过电流激励发电机的主磁场。
励磁线圈通常由导线绕成线圈,绕制在发电机的定子或转子上。
根据线圈的位置不同,励磁线圈可以分为定子励磁线圈和转子励磁线圈两种。
定子励磁线圈是固定在发电机定子上的线圈,通常由大电流和大电压来激励主磁场。
定子励磁线圈的设计和布置需要根据发电机的类型和功率等参数来确定。
转子励磁线圈是绕制在发电机转子上的线圈。
在发电机中,转子是通过传递转速和机械能来激励发电机的部分。
转子励磁线圈同时具有励磁和发电的功能,当转子励磁线圈通入电流时,会产生电磁场,从而感应出电动势,进而转换为电能输出。
3.励磁调节器励磁调节器是控制发电机励磁系统的关键部分,它能够根据发电机输出电压的变化,调节励磁电流的大小,以保持发电机的稳定输出。
根据调节方式的不同,励磁调节器可以分为自动励磁调节器和手动励磁调节器两种。
自动励磁调节器是根据发电机输出电压的反馈信号来自动调节励磁电流的大小。
当发电机输出电压过低时,自动励磁调节器会增大励磁电流,从而提高输出电压。
相反,当输出电压过高时,自动励磁调节器会减小励磁电流,以降低输出电压。
.发电机的励磁方法及工作原理同步发电机为了实现能量的转换,需要有一个直流磁场而产生这个磁场的直流电流,称为发电机的励磁电流。
根据励磁电流的供给方式,凡是从其它电源获得励磁电流的发电机,称为他励发电机,从发电机本身获得励磁电源的,则称为自励发电机。
一、发电机获得励磁电流的几种方式1、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一般与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机获得直流电流。
这种励磁方式具有励磁电流独立,工作比较可靠和减少自用电消耗量等优点,是过去几十年间发电机主要励磁方式,具有较成熟的运行经验。
缺点是励磁调节速度较慢,维护工作量大,故在10MW以上的机组中很少采用.2、交流励磁机供电的励磁方式代大容量发电机有的采用交流励磁机提供励磁电流。
交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,此时,发电机的励磁方式属他励磁方式,又由于采用静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流.交流副励磁机可以是永磁机或是具有自励恒压装置的交流发电机。
为了提高励磁调节速度,交流励磁机通常采用100-—200HZ的中频发电机,而交流副励磁机则采用400—-500HZ的中频发电机.这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作可靠,结构简单,制造工艺方便等优点.缺点是噪音较大,交流电势的谐波分量也较大。
3、无励磁机的励磁方式:在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁.自励式静止励磁可分为自并励和自复励两种方式。
自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和维护工作量少等优点.自复励磁方式除没有整流变压外,还设有串联在发电机定子回路的大功率电流互感器。
.发电机的励磁方式及工作原理同步发电机为了实现能量的转换,需要有一个直流磁场而产生那个磁场的直流电流,称为发电机的励磁电流。
依照励磁电流的供给方式,凡是从其它电源取得励磁电流的发电机,称为他励发电机,从发电机本身取得励磁电源的,那么称为自励发电机。
一、发电机取得励磁电流的几种方式一、直流发电机供电的励磁方式:这种励磁方式的发电机具有专用的直流发电机,这种专用的直流发电机称为直流励磁机,励磁机一样与发电机同轴,发电机的励磁绕组通过装在大轴上的滑环及固定电刷从励磁机取得直流电流。
这种励磁方式具有励磁电流独立,工作比较靠得住和减少自用电消耗量等优势,是过去几十年间发电机要紧励磁方式,具有较成熟的运行体会。
缺点是励磁调剂速度较慢,保护工作量大,故在10MW以上的机组中很少采纳。
二、交流励磁机供电的励磁方式代大容量发电机有的采纳交流励磁机提供励磁电流。
交流励磁机也装在发电机大轴上,它输出的交流电流经整流后供给发电机转子励磁,现在,发电机的励磁方式属他励磁方式,又由于采纳静止的整流装置,故又称为他励静止励磁,交流副励磁机提供励磁电流。
交流副励磁性能够是永磁机或是具有自励恒压装置的交流发电机。
为了提高励磁调剂速度,交流励磁机通常采纳100——200HZ的中频发电机,而交流副励磁机那么采纳400——500HZ的中频发电机。
这种发电机的直流励磁绕组和三相交流绕组都绕在定子槽内,转子只有齿与槽而没有绕组,像个齿轮,因此,它没有电刷,滑环等转动接触部件,具有工作靠得住,结构简单,制造工艺方便等优势。
缺点是噪音较大,交流电势的谐波分量也较大。
3、无励磁机的励磁方式:在励磁方式中不设置专门的励磁机,而从发电机本身取得励磁电源,经整流后再供给发电机本身励磁,称自励式静止励磁。
自励式静止励磁可分为自并励和自复励两种方式。
自并励方式它通过接在发电机出口的整流变压器取得励磁电流,经整流后供给发电机励磁,这种励磁方式具有结简单,设备少,投资省和保护工作量少等优势。