正余弦函数图像的对称轴和对称中心
- 格式:doc
- 大小:107.50 KB
- 文档页数:2
高中函数对称轴的总结归纳在高中数学中,函数作为一个重要的概念经常被学生们所接触和学习。
而其中一个重要的内容就是函数的对称性质,特别是对称轴。
本文将对高中函数对称轴的相关知识进行总结和归纳,帮助读者更好地理解和掌握这一概念。
一、对称轴的定义及特点对称轴是指函数图像关于某一条直线对称的性质。
在平面直角坐标系中,如果对于函数图像上的任意一点,它关于直线x=a对称的点也在图像上,那么直线x=a就是函数的对称轴。
对称轴有以下几个特点:1. 对称轴一般是垂直于x轴的直线,但也可以是斜线。
2. 对称轴将函数图像分成两个部分,每个部分关于对称轴对称。
3. 对称轴上的点对应的x坐标值是相等的,即x=a对应于x=-a。
二、常见函数及其对称轴1. 奇函数奇函数是指满足f(-x)=-f(x)的函数。
奇函数的对称轴一定是y轴,因为对于任意的x,有f(x)=-f(-x)。
奇函数的图像关于y轴中心对称。
2. 偶函数偶函数是指满足f(-x)=f(x)的函数。
偶函数的对称轴一定是x轴,因为对于任意的x,有f(x)=f(-x)。
偶函数的图像关于x轴中心对称。
3. 二次函数二次函数的一般形式为f(x)=ax^2+bx+c,其中a≠0。
二次函数的对称轴的x坐标可以通过求解方程f(-x)=f(x)得到。
具体而言,首先将f(x)中的x替换为-x,然后将f(-x)与f(x)进行比较,令两个函数相等,解方程得到x的值,即得到对称轴的x坐标。
4. 三角函数三角函数的对称轴一般与x轴垂直,具体位置与函数的性质相关。
例如,正弦函数和余弦函数的对称轴为x轴,而正切函数的对称轴为直线x=π/2+kπ,其中k为整数。
三、对称轴的求解方法1. 根据函数的性质直接判断根据函数的定义和性质,可以直接判断函数的对称轴。
例如,奇函数的对称轴为y轴,偶函数的对称轴为x轴。
2. 求解方程判断对称轴位置对于一些复杂的函数,可以通过求解方程f(-x)=f(x)来确定对称轴的位置。
正弦与余弦知识点总结正弦与余弦的定义在直角三角形中,如果一个锐角的对边和斜边的比值为正弦值,邻边和斜边的比值为余弦值。
假设在直角三角形ABC中,∠C为90°,AB为斜边,BC为对边,AC为邻边,那么正弦与余弦的定义如下:正弦值:sin∠A=对边/斜边=BC/AB余弦值:cos∠A=邻边/斜边=AC/AB在直角三角形中,正弦与余弦的值可以用来描述角度和三角形边长的关系。
在不同的三角形中,正弦与余弦的值并不相同,但其性质和图像是相似的。
正弦与余弦的性质1. 周期性:正弦与余弦函数都具有周期性,其周期为2π。
这意味着在一个周期内,函数值将重复出现。
在[-π, π]或[0, 2π]范围内,正弦与余弦的函数图像将呈现出周期性的特点。
2. 奇偶性:正弦函数是奇函数,余弦函数是偶函数。
奇函数具有对称中心原点,即f(-x)=-f(x),在图像上关于原点对称。
而偶函数则具有对称中心y轴,即f(-x)=f(x),在图像上关于y轴对称。
3. 交替性:正弦与余弦函数在图像上呈现出交替变化的特点。
在一个周期内,正弦函数的最大值为1,最小值为-1;余弦函数的最大值为1,最小值为-1。
两个函数的图像像是上下振荡的波形。
4. 相关性:正弦与余弦函数是相互关联的。
在直角三角形中,三角函数的相互关系可以由勾股定理推导出来。
sin²x + cos²x = 1是三角函数基本关系式,也称为三角恒等式。
正弦与余弦的图像正弦与余弦函数的图像是学习三角函数的重要内容之一。
它们的图像形状、周期性、奇偶性等特点对于理解三角函数的性质至关重要。
正弦函数的图像是一条连续的波纹状曲线,具有周期性、奇函数特点。
其图像在[-π, π]或[0, 2π]范围内呈现出从最小值-1到最大值1的振荡变化。
正弦函数的图像具有对称性,关于原点对称。
余弦函数的图像也是一条连续的波纹状曲线,具有周期性、偶函数特点。
其图像在[-π, π]或[0, 2π]范围内同样呈现出从最大值1到最小值-1的振荡变化。
y=sinx 对称轴为x=k∏+ ∏/2 (k 为整数),对称中心为(k∏,0)(k 为整数)。
y=cosx 对称轴为x=k∏(k 为整数),对称中心为(k∏+ ∏/2,0)(k 为整数)。
y=tanx 对称中心为(k∏,0)(k 为整数),无对称轴。
这是要记忆的。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = k∏+ ∏/2 解出x 即可求出对称轴,令ωx+Φ = k∏ 解出的x 就是对称中心的横坐标,纵坐标为0。
(若函数是y=Asin(ωx+Φ)+ k 的形式,那此处的纵坐标为k )余弦型,正切型函数类似。
以f (x )=sin (2x -π/6)为例令2x-π/6=Kπ 解得x=kπ/2+π/12那么函数的对称中心就是(kπ/2+π/12,0)三角函数y=Asin (ωx+φ)中的对称轴正弦函数y=sinx 的对称轴是x=k π+2π(k ∈Z ),它的对称轴总是经过它图象的最高点或者最低点。
由于三角函数y=)sin(ϕω+⋅x A 是由正弦函数y=sinx 复合而成的,所以令ϕω+x =k π+2π,就能得到y=)sin(ϕω+⋅x A 的对称轴方程x=ωϕππ-+2k (k ∈Z )。
通过类比可以得到三角函数y=)cos(ϕω+⋅x A 的对称轴方程x=ωϕππ-+k (k ∈Z )。
下面通过几道典型例题来谈一谈如何应用它们的对称轴解题。
1.解析式问题例1.设函数)(x f = )2sin(ϕ+x (0<<-ϕπ),)(x f 图像的一条对称轴是直线8π=x ,求ϕ的值。
分析:正弦函数y=sinx 的对称轴是x=k π+2π,令2x+ϕ=k π+2π,结合条件0<<-ϕπ求解。
解析:∵8π=x 是函数y=)(x f 的图像的对称轴,∴1)82sin(±=+⨯ϕπ,∴24ππππ+=+k ,k ∈Z ,而0<<-ϕπ,则43πϕ-=。
三角函数对称轴与对称中心y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z)y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z)y=tanx 对称轴:无对称中心:(kπ,0)(k∈z)两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]积化和差公式sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]倍角公式sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²αtan(2α)=2tanα/(1-tan²α)cot(2α)=(cot²α-1)/(2cotα)sec(2α)=sec²α/(1-tan²α)csc(2α)=1/2*secα·cscα三倍角公式sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan³α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot³α-3cotα)/(3cotα-1)n倍角公式sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))辅助角公式Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A))Asinα+Bcosα=√(A²+B²)cos(α-arctan(A/B))万能公式sin(a)= (2tan(a/2))/(1+tan²(a/2))cos(a)= (1-tan²(a/2))/(1+tan²(a/2))tan(a)= (2tan(a/2))/(1-tan²(a/2))降幂公式sin²α=(1-cos(2α))/2=versin(2α)/2cos²α=(1+cos(2α))/2=covers(2α)/2tan²α=(1-cos(2α))/(1+cos(2α))三角和的三角函数sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·t角的三角函数值幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...及a都是常数, 这种级数称为幂级数.泰勒展开式泰勒展开式又叫幂级数展开法f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+……实用幂级数:e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k (|x|<1)sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……. (-∞<x<∞)cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)arctan x = x - x^3/3 + x^5/5 -…… (x≤1)sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
三角函数的图像与性质一、正弦函数、余弦函数的图像与性质
(
二、正切函数的图象与性质
三、三角函数图像的平移变换和伸缩变换
1. 由x y sin =的图象得到)sin(ϕω+=x A y (0,0A ω>>)的图象
注意:图象时一定要注意平移与伸缩的先后顺序,否则会出现错误。
2. )sin(ϕω+=x A y (0,0A ω>>)的性质
(1)定义域、值域、单调性、最值、对称性:
将ϕω+x 看作一个整体,与相应的简单三角函数比较得出; (2)奇偶性:只有当ϕ取特殊值时,这些复合函数才具备奇偶性:
)sin(ϕω+=x A y ,当πϕk =时为奇函数,当2
ππϕ±=k 时为偶函数;
(3)最小正周期:ω
π2=T
3. y =A sin(ωx +φ), x ∈[0,+∞) (0,0A ω>>)中各量的物理意义
(1) A 称为振幅; (2)2T πω
=称为周期;
(3)1f
T
=
称为频率;
(4)x ωϕ+称为相位;
(5)ϕ称为初相 (6)ω称为圆频率.。
sin对称轴与对称中心公式
正弦函数的对称轴和对称中心是函数图像的重要特征。
正弦函数的对称轴是x=kπ+2π,其中k是整数。
正弦函数的对称中心是 (kπ,0),其中k是整数。
这些公式可以帮助我们找到正弦函数图像的对称轴和对称中心。
对于正弦函数y=sin x,其对称轴的方程是x=kπ+2π,其中k是整数。
对于正弦函数y=sin x,其对称中心的坐标是 (kπ,0),其中k是整数。
这些公式是基于正弦函数的周期性和振幅变化规律得出的。
正弦函数具有周期性,周期为 2π,因此在每个周期内,函数图像具有对称性。
对称轴和对称中心是正弦函数图像的重要特征,它们可以帮助我们更好地理解和分析函数的性质。
y=sinx 对称轴为x=k∏+ ∏/2 (k 为整数),对称中心为(k∏,0)(k 为整数)。
y=cosx 对称轴为x=k∏(k 为整数),对称中心为(k∏+ ∏/2,0)(k 为整数)。
y=tanx 对称中心为(k∏,0)(k 为整数),无对称轴。
这是要记忆的。
对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ = k∏+ ∏/2 解出x 即可求出对称轴,令ωx+Φ = k∏ 解出的x 就是对称中心的横坐标,纵坐标为0。
(若函数是y=Asin(ωx+Φ)+ k 的形式,那此处的纵坐标为k )余弦型,正切型函数类似。
以f (x )=sin (2x -π/6)为例令2x-π/6=Kπ 解得x=kπ/2+π/12那么函数的对称中心就是(k π/2+π/12,0)三角函数y=Asin (ωx+φ)中的对称轴正弦函数y=sinx 的对称轴是x=k π+2π(k ∈Z ),它的对称轴总是经过它图象的最高点或者最低点。
由于三角函数y=)sin(ϕω+⋅x A 是由正弦函数y=sinx 复合而成的,所以令ϕω+x =k π+2π,就能得到y=)sin(ϕω+⋅x A 的对称轴方程x=ωϕππ-+2k (k ∈Z )。
通过类比可以得到三角函数y=)cos(ϕω+⋅x A 的对称轴方程x=ωϕππ-+k (k ∈Z )。
下面通过几道典型例题来谈一谈如何应用它们的对称轴解题。
1.解析式问题例1.设函数)(x f = )2sin(ϕ+x (0<<-ϕπ),)(x f 图像的一条对称轴是直线8π=x ,求ϕ的值。
分析:正弦函数y=sinx 的对称轴是x=k π+2π,令2x+ϕ=k π+2π,结合条件0<<-ϕπ求解。
解析:∵8π=x 是函数y=)(x f 的图像的对称轴,∴1)82sin(±=+⨯ϕπ,∴24ππππ+=+k ,k ∈Z ,而0<<-ϕπ,则43πϕ-=。
三角函数图象的对称性质及其应用一、正弦曲线和余弦曲线都是轴对称图形性质1、函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形;)sin(ϕω+=x A y 对称轴方程的求法是:令1)sin(±=+ϕωx ,得2ππϕω+=+k x )(Z k ∈,则ωϕπ22)12(-+=k x 为函数)sin(ϕω+=x A y 的图象的对称轴方程。
)cos(ϕω+=x A y 对称轴方程的求法是:令1)cos(±=+ϕωx ,得πϕωk x =+)(Z k ∈,则ωϕπ-=k x 为函数)cos(ϕω+=x A y 的图象的对称轴方程。
例1、函数)62sin(3π+=x y 图象的一条对称轴方程是( )(A )0=x (B )32π=x (C )6π-=x (D )3π=x 解:由性质1知,令1)62sin(3±=+πx 得262πππ+=+k x )(Z k ∈,即62ππ+=k x )(Z k ∈,取1=k 时,32π=x ,故选(B )。
例2、函数)33cos(21)(π+=x x f 的图象的对称轴方程是解:由性质1知, 令1)33cos(±=+πx 得ππk x =+33)(Z k ∈,即93ππ-=k x )(Z k ∈,所以)33cos()(π+=x x f 的图象的对称轴方程93ππ-=k x )(Z k ∈。
二、正弦曲线和余弦曲线都是中心对称图形性质2、函数)sin(ϕω+=x A y 和)cos(ϕω+=x A y 的图象关于其与x 轴的交点分别成中心对称图形;)sin(ϕω+=x A y 的对称中心求法是:令0)sin(=+ϕωx ,得πϕωk x =+)(Z k ∈,则ωϕπ-=k x )(Z k ∈,所以函数)sin(ϕω+=x A y 的图象关于点)0,(ωϕπ-k )(Z k ∈成中心对称;)cos(ϕω+=x A y 对称中心的求法是:令0)cos(=+ϕωx ,得2ππϕω+=+k x )(Z k ∈,则ωϕπ22)12(-+=k x )(Z k ∈,所以函数)cos(ϕω+=x A y 的图象关于点)0,22)12((ωϕπ-+k )(Z k ∈成中心对称; 例3、函数)62sin(4π-=x y 的图象的一个对称中心是( )(A ))0,12(π (B ))0,3(π (C ))0,6(π- (D ))0,6(π解:由性质2知,令0)62sin(=-πx 得ππk x =-62)(Z k ∈,即122ππ+=k x )(Z k ∈,取0=k 时,12π=x ,故选(A )。
三角函数图像的对称轴与对称中心Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT函数轴对称:如果一个函数的图象沿一条直线对折,直线两则的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。
中心对称:如果一个函数的图像沿一个点旋转 180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。
正弦函y=sinx 的图像既是轴对称又是中心对称, 它的图象关于过最值点且垂直于x 轴的直线分别成轴对称图形;y=sinx 的图象的对称轴是经过其图象的 “峰顶点” 或 “谷底点” , 且平行于y 轴的无数条直线; 它的图象关于x 轴的交点分别成中心对称图形。
三角函数图像的对称轴与对称中心特级教师 王新敞对于函数sin()y A x ωφ=+、cos()y A x ωφ=+来说,对称中心与零点相联系,对称轴与最值点联系.而tan()y A x ωφ=+的对称中心与零点和渐近线与x 轴的交点相联系,有渐近线但无对称轴.由于函数sin()y A x ωφ=+、cos()y A x ωφ=+和tan()y A x ωφ=+的简图容易画错,一般只要通过函数sin y x =、cos y x =、tan y x =图像的对称轴与对称中心就可以快速准确的求出对应的复合函数的对称轴与对称中心.1.正弦函数sin y x =图像的对称轴与对称中心: 对称轴为2x k ππ=+、对称中心为(,0) k k Z π∈. 对于函数sin()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即2x k πωφπ+=+ ()k Z ∈,由此解出1()2x k ππφω=+- ()k Z ∈,这就是函数sin()y A x ωφ=+的图象的对称轴方程.对于函数sin()y A x ωφ=+的图象的对称中心只需令x k ωφπ+= ()k Z ∈,由此解出1()x k πφω=- ()k Z ∈,这就是函数sin()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) k k Z πφω-∈. 2.余弦函数cos y x =图像的对称轴与对称中心:对称轴为x k π=、对称中心为(,0)2k ππ+ k Z ∈. 对于函数cos()y A x ωφ=+的图象的对称轴只需将x ωφ+取代上面的x 的位置,即x k ωφπ+= ()k Z ∈,由此解出1()x k πφω=- ()k Z ∈,这就是函数cos()y A x ωφ=+的图象的对称轴方程. 对于函数cos()y A x ωφ=+的图象的对称中心只需令2x k πωφπ+=+ ()k Z ∈,由此解出1()2x k ππφω=+- ()k Z ∈,这就是函数cos()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) 2k k Z ππφω+-∈. 3.正切函数tan y x =图像的渐近线与对称中心: 渐近线为2x k ππ=+、对称中心为(,0)2k π k Z ∈,也就是曲线与x 轴的交点和渐近线与x 轴的交点两类点组成.正切曲线无对称轴.对于函数tan()y A x ωφ=+的图象的渐近线只需将x ωφ+取代上面的x 的位置,即2x k πωφπ+=+ ()k Z ∈,由此解出1()2x k ππφω=+- ()k Z ∈,这就是函数tan()y A x ωφ=+的图象的渐近线方程.对于函数tan()y A x ωφ=+的图象的对称中心只需令2k x πωφ+=()k Z ∈,由此解出1()2k x πφω=- ()k Z ∈,这就是函数tan()y A x ωφ=+的图象的对称中心的横坐标,得对称中心1((),0) 2k k Z πφω-∈. 例 函数y =sin(2x +3π)的图象:⑴关于点(3π,0)对称;⑵关于直线x =4π对称;⑶关于点(4π,0)对称;⑷关于直线x =12π对称.正确的序号为________. 解法一:由2x +3π=k π得x=621ππ-k ,对称点为(621ππ-k ,0)(z k ∈),当k=1时为(3π,0),⑴正确、⑶不正确;由2x +3π2k ππ=+得x=1212k ππ+(z k ∈),当k=0时为12x π=,⑷正确、⑵不正确.综上,正确的序号为⑴⑷.解法二:根据对称中心的横坐标就是函数的零点,对称轴必经过图象最值点的结论,可以采用代入验证法.易求()3f π=sin(2×3π+3π)=0、()4f π=sin(2×4π+3π)=2、()12f π=sin(2×12π+3π)=1,所以⑴正确、⑵不正确、⑶不正确、⑷正确.综上,正确的序号为⑴⑷.。
三角函数对称轴与对称中心y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z)y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z)y=tanx 对称轴:无对称中心:(kπ,0)(k∈z)两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]积化和差公式sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]倍角公式sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos²α-sin²α=2cos²α-1=1-2sin²αtan(2α)=2tanα/(1-tan²α)cot(2α)=(cot²α-1)/(2cotα)sec(2α)=sec²α/(1-tan²α)csc(2α)=1/2*secα·cscα三倍角公式sin(3α) = 3sinα-4sin³α = 4sinα·sin(60°+α)sin(60°-α)cos(3α) = 4cos³α-3cosα = 4cosα·cos(60°+α)cos(60°-α)tan(3α) = (3tanα-tan³α)/(1-3tan²α) = tanαtan(π/3+α)tan(π/3-α) cot(3α)=(cot³α-3cotα)/(3cotα-1)n倍角公式sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)sec(α/2)=±√((2secα/(secα+1))csc(α/2)=±√((2secα/(secα-1))辅助角公式Asinα+Bcosα=√(A²+B²)sin(α+arctan(B/A))Asinα+Bcosα=√(A²+B²)cos(α-arctan(A/B))万能公式sin(a)= (2tan(a/2))/(1+tan²(a/2))cos(a)= (1-tan²(a/2))/(1+tan²(a/2))tan(a)= (2tan(a/2))/(1-tan²(a/2))降幂公式sin²α=(1-cos(2α))/2=versin(2α)/2cos²α=(1+cos(2α))/2=covers(2α)/2tan²α=(1-cos(2α))/(1+cos(2α))三角和的三角函数sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·t角的三角函数值幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...及a都是常数, 这种级数称为幂级数.泰勒展开式泰勒展开式又叫幂级数展开法f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+……实用幂级数:e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k (|x|<1)sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……. (-∞<x<∞)cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)arctan x = x - x^3/3 + x^5/5 -…… (x≤1)sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)cosh x = 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
精品资料 欢迎下载正余弦函数图像的对称轴和对称中心【基本结论】 :正弦曲线 ysin x ,x R 的对称轴方程是 xk2,kZ ;对称中心坐标为(k , ), k Z 。
余弦曲线 ycos x , x R 的对称轴方程是 xk, kZ ;对称中心坐标为( k, 0), kZ 。
2【典例分析】:例 1 求函数y3 cos(2x) 的对称中心和对称轴方程。
3解 : 由于函数 ycosx 的对称中心为( k 2 ,0),( k Z )对称轴方程是 x k又由2x3k2 ,得 xk5( kZ )2 12由 2x3k,得 xk( kZ )26故函数 y3cos(2x)的对称中心为(k5 , )( kZ )32 123对称轴方程为k( k Z )x62例 2 已知函数 f ( x)sin(2x) 的图像关于直线 x对称,求的值。
8解 : 由于函数 f ( x)sin x 的图像的对称轴方程为 x2k( kZ )所以,函数 f ( x) s i n2(x) 的图像的对称轴方程为2 x2 k( k Z )即 2 xk( k Z )xk ( k Z )2242又因为已知函数f ( x) s i n2(x) 的图像的对称轴方程为x8则有84k( k Z )22精品资料欢迎下载解之得:k(k Z );4当 k0 时,4。
三角函数中的中心对称函数1. 引言三角函数是数学中非常重要的一类函数,它们在几何、物理、工程等领域中具有广泛的应用。
而在三角函数中,存在着一类特殊的函数,即中心对称函数。
本文将详细解释什么是中心对称函数,包括其定义、用途和工作方式等。
2. 中心对称函数的定义在三角函数中,如果一个函数满足f(x)=−f(−x),则称该函数为中心对称函数。
换句话说,如果将该函数的图像以原点为对称轴进行翻转后,得到的图像与原图像完全重合,则该函数就是中心对称的。
常见的三角函数中存在两个具有中心对称性质的函数:正弦函数(sin)和奇数幂余弦函数(cos)。
2.1 正弦函数(sin)正弦函数是最基本、最常见的三角函数之一。
它可以表示一个圆上任意点在y轴上的投影值,并且满足以下定义:sin(x)=opposite ℎypotenuse其中,opposite代表与角度x相对应的直角三角形斜边上离x所在顶点最近点的边长,ℎypotenuse代表斜边的长度。
正弦函数是一个中心对称函数,即满足f(x)=−f(−x)。
这是因为正弦函数的图像以原点为中心,左右对称,即将一段正弦曲线翻转后可以得到与原曲线完全重合的曲线。
2.2 奇数幂余弦函数(cos)奇数幂余弦函数是另一个具有中心对称性质的三角函数。
它可以表示一个圆上任意点在x轴上的投影值,并且满足以下定义:cos(x)=adjacent ℎypotenuse其中,adjacent代表与角度x相对应的直角三角形斜边上离x所在顶点最远点的边长。
奇数幂余弦函数也是一个中心对称函数,即满足f(x)=−f(−x)。
和正弦函数类似,奇数幂余弦函数的图像以原点为中心,左右对称。
3. 中心对称函数的用途中心对称函数在数学、物理、工程等领域有着广泛而重要的应用。
下面将分别介绍它们在不同领域中的具体用途。
3.1 几何学在几何学中,中心对称函数可以用来描述和计算图形的对称性质。
通过正弦函数和奇数幂余弦函数,我们可以得到一些特殊角度的正弦值和余弦值,从而推导出一些特殊角度的三角函数值。
正余弦函数图像的对称轴和对称中心
【基本结论】:
正弦曲线x y sin =,R x ∈的对称轴方程是2ππ+=k x ,Z k ∈;对称中心坐标为 (πk ,0),Z k ∈。
余弦曲线x y cos =,R x ∈的对称轴方程是πk x =,Z k ∈;对称中心坐标为 (2
π
π+k ,0),Z k ∈。
【典例分析】: 例1 求函数)3
2cos(3π--=x y 的对称中心和对称轴方程。
解: 由于函数
x y cos =的对称中心为(2ππ+k ,0),(Z k ∈)对称轴方程是πk x = 又由232πππ+=-
k x ,得1252ππ+=k x (Z k ∈) 由ππ
k x =-32,得62π
π
+=k x (Z k ∈)
故函数)32cos(3π--=x y 的对称中心为(1252
ππ
+k ,3)(Z k ∈) 对称轴方程为62ππ+=
k x (Z k ∈) 例2 已知函数)2sin()(ϕ+=x x f 的图像关于直线8π
=x 对称,求ϕ的值。
解: 由于函数x x f sin )(=的图像的对称轴方程为ππ
k x +=2(Z k ∈)
所以,函数)2sin()(ϕ+=x x f 的图像的对称轴方程为
ππ
ϕk x +=
+22(Z k ∈) 即ϕππ
-+=k x 22(Z k ∈) 2
24ϕππ
-+=k x (Z k ∈) 又因为已知函数)2sin()(ϕ+=x x f 的图像的对称轴方程为8π=x
则有2
248ϕππ
π-+=k (Z k ∈)
解之得:4ππϕ+=k (Z k ∈); 当0=k 时,4π
ϕ=。