初中数学常见解题模型及套路(思路、题眼)总汇
- 格式:docx
- 大小:26.17 KB
- 文档页数:9
初中数学常考的几何模型和应用题答题公式是学习和备考数学的关键内容。
不过,
请注意,我无法列出具体的66个常考几何模型或50个应用题答题公式,因为这
取决于不同地区、不同版本的教材和考试要求。
但我可以为你提供一些常见的几何模型和应用题答题思路或公式。
几何模型示例:
1.等边三角形模型:等边三角形的三条边相等,三个内角都是60°。
2.等腰三角形模型:等腰三角形有两条边相等,且对应的两个底角也相等。
3.直角三角形模型:直角三角形有一个90°的角,满足勾股定理(a² + b² = c²)。
4.平行四边形模型:平行四边形的对边平行且相等,对角相等。
5.梯形模型:梯形有一组对边平行,常考察其面积计算(上底加下底,乘以高,再除
以2)。
应用题答题公式或思路示例:
1.速度、时间、距离关系:速度= 距离/ 时间,距离= 速度×时间,时间= 距
离/ 速度。
2.工作问题:工作效率= 工作总量/ 工作时间,常用于比较不同人或机器的工作效
率。
3.百分比问题:部分= 总量×百分比,总量= 部分/ 百分比,百分比= 部分/
总量× 100%。
4.利息问题:简单利息= 本金×利率×时间,复利则考虑本金和利息的共同增
长。
5.浓度问题:浓度= 溶质质量/ 溶液质量× 100%,常用于解决混合溶液的浓度问
题。
初中数学解题思路汇总数学作为一门重要的学科,对于中学生来说是必修课程之一。
在学习数学的过程中,解题是一个重要的环节。
掌握解题思路,能够更加高效地解决问题。
本文将为大家总结一些常见的初中数学解题思路,希望能够对同学们的学习有所帮助。
一、代数解题思路1. 理清题意:在解答代数题目时,首先要仔细阅读并理解题目,分析所给条件和要求。
2. 引入变量:根据题目需要,引入合适的变量表示未知数或者其他特定内容。
3. 建立方程:根据题意用代数语言建立方程,并尽量简化、标准化方程式。
4. 解方程:通过变形、配方等方法解方程,求得未知数的值。
5. 检验答案:将求得的解代入原方程式进行检验,确认所求解是否正确。
二、几何解题思路1. 画图:几何题目一般需要通过图形进行分析,因此首先要画出清晰的示意图。
2. 利用几何定理:在解答几何问题时,可以根据几何定理或者公式进行推导和运用,例如勾股定理、相似三角形的性质等。
3. 利用已知条件:根据题目所给条件,利用已知角度、线段等信息进行推导和分析。
4. 运用几何运算:对于一些几何题目,可以通过计算角度、线段长度等运算过程来解答。
5. 推敲答案:将计算得到的结果代入原图形中进行验证,确认所求解是否正确。
三、概率与统计解题思路1. 确定事件:理解题意,确定所要计算的事件是什么。
2. 确定样本空间:通过分析题目给出的条件和要求,确定问题的样本空间。
3. 确定事件个数:通过排列组合、分析概率等方法,确定所要计算事件的可能数量。
4. 计算概率:根据概率公式,计算所求事件的概率值。
5. 分析结果:对计算出的结果进行分析,判断是否合理,给出相关结论。
四、函数解题思路1. 理解函数:对于给定的函数关系,首先要理解函数的定义、性质和特点。
2. 确定变量:根据问题要求和已知条件,确定所要研究的变量及其取值范围。
3. 建立函数方程:根据问题的描述,建立函数关系的数学表达式。
4. 运用函数性质:通过对函数性质的分析和运用,确定问题中的变量和关系。
初中数学解题常见思路总结数学作为一门理科学科,是一门需要运用逻辑思维和解决问题的学科。
在初中阶段,学生通常会面对各种各样的数学题目,包括代数、几何和概率等不同类型的问题。
为了帮助学生更好地解决数学问题,以下是一些常见的解题思路总结。
一、代数题解题思路代数题通常涉及到方程、函数和不等式等内容。
为了解决代数题,首先需要理解题意,然后利用已知条件建立方程、函数或不等式模型,最后求解解析式或特定值。
1. 方程题解题思路:(1) 利用分配律和合并同类项将方程化简为最简形式。
(2) 尝试消元法、因式分解法或配方法解方程。
(3) 检验解是否满足原方程。
2. 函数题解题思路:(1) 找出问题中涉及的变量和函数关系,并建立函数模型。
(2) 利用函数图像、函数值和增减性等特点推导并求解问题。
3. 不等式题解题思路:(1) 利用加法、乘法、平方等性质化简不等式。
(2) 尝试数轴法、试位法或区间法解决不等式。
二、几何题解题思路几何题主要包括平面几何和空间几何。
为了解决几何问题,需要理解几何概念、性质和定理,并将其应用到具体的问题当中。
1. 平面几何解题思路:(1) 找出已知条件,并根据条件求证或推导结论。
(2) 利用几何图形的性质和定理进行问题求解,如平行线性质、相似三角形性质等。
2. 空间几何解题思路:(1) 找出三维几何体的已知条件,并建立几何模型。
(2) 利用几何体的性质和定理解决问题,如平行面性质、垂直关系等。
三、概率题解题思路概率题主要涉及到随机事件的概率计算和事件间的关系。
为了解决概率问题,需要理解概率的基本概念和计算方法。
1. 概率计算解题思路:(1) 根据题目给出的条件,确定样本空间和事件。
(2) 利用计数法或几何法计算事件的概率。
(3) 根据概率的性质和公式,计算所求概率。
2. 条件概率解题思路:(1) 根据题目给出的条件,确定条件事件和所求事件。
(2) 利用条件概率公式计算所求条件概率。
总结起来,初中数学解题的常见思路主要包括代数题的方程、函数和不等式求解,几何题的证明和性质应用,以及概率题的概率计算和条件概率分析。
初中数学必考模型及解题方法初中数学是中学阶段的重要学科之一,也是学生日后职业发展中不可或缺的知识。
在初中数学考试中,模型化问题是很关键的一部分。
以下是初中数学必考模型及解题方法的列表:1. 百分数问题百分数问题是初中数学中最基础的模型之一。
通常,百分数问题涉及到以下类型的问题:百分数的计算,百分数的转化等等。
其解题方法如下:(1)计算百分数:a. 计算百分数的值:将百分数表示成小数,乘以对应的数值。
b. 计算数值对应的百分数:将给定的数值除以总数,把结果转成百分数即可。
(2)转化百分数:a. 百分数转化为小数:直接将百分数除以100。
b. 小数转化为百分数:将小数乘以100即可。
2. 比例问题比例问题通常涉及到两个数值之间的比值关系,其解题方法如下:(1)计算比例值:将给定的比例值化为分数,根据题目要求进行计算。
(2)计算比例数值:将给定的两个数值相除,得出对应的比例值。
(3)利用比例解决问题:通过构建等比例关系,解决实际问题。
3. 均值问题均值问题通常涉及到多个数值之间的加减运算关系,其解题方法如下:(1)计算平均数值:将给定的数值加起来,再除以数值的个数。
(2)解决均值问题:通过平均数的特点,解决实际问题。
4. 几何问题几何问题通常涉及到图形的构造和运算,其解题方法如下:(1)计算几何图形的面积、周长等:根据给定的几何图形,选择相应的公式进行计算。
(2)构造几何图形:通过给定的信息,构造出符合要求的几何图形。
5. 等价关系问题等价关系是初中数学中比较难的模型,通常涉及到不同数值之间的等价关系。
其解题方法如下:(1)确定等价的数值:通过给定的条件,确定两个或多个数值之间的等价关系。
(2)解决等价关系问题:通过等价关系的特点,解决实际问题。
总之,初中数学必考模型及解题方法对于初中数学学习非常重要,学生需要借助规律和公式,灵活运用解题方法,多加练习,才能在数学中取得更好的成绩。
初中数学常见解题思路初中数学是培养学生数学思维能力和解决问题能力的重要阶段。
在初中数学的学习中,我们经常会遇到一些常见的数学问题,针对这些问题,也有一些常见的解题思路。
下面就让我们来了解一些初中数学常见解题思路。
一、代入法代入法是一种常见的解题思路,用于解决带有未知数的方程或不等式的问题。
它的核心思想是将方程或不等式中的未知数,代入已知条件,从而得到一个具体的解。
这种方法常用于解决一些实际应用题,比如“甲、乙两个数的和是20,差是10,求甲、乙两个数各是多少?”我们可以设甲的值为x,则乙的值为20-x,根据给定的条件可得方程x-(20-x)=10,通过求解方程可以得知甲、乙两个数的值。
二、逆向思维逆向思维是解决问题时的一种常见方法,它的核心思想是从问题的要求出发,逆推求解问题的前提条件。
这种方法常用于解决一些逻辑推理题或概率问题。
比如“现有一对父母和一个孩子,问这个家庭中有至少一个女孩的概率是多少?”我们可以采用逆向思维,从问题的要求出发,考虑没有女孩的情况,即只有一个孩子且为男孩的情况;然后再考虑有1个女孩的情况,即只有一个孩子且为女孩的情况;最后将这两种情况的概率相加,即可得到有至少一个女孩的概率。
三、分析法分析法是解决问题时的一种常见方法,它的核心思想是将复杂的问题分解为简单的小问题,通过分析和解决小问题,再整合得到复杂问题的解。
这种方法常用于解决一些几何题或函数题。
比如“已知一个三角形的两边长分别是3cm和4cm,夹角的度数可以取多少?”我们可以通过分析题目的条件,将这个问题分解为求解两边之和大于第三边的条件,然后根据三角形的性质,可以得到夹角的度数的范围。
四、设变量法设变量法是一种常见的解题思路,它的核心思想是通过引入适当的变量,将复杂的问题转化为简单的方程或不等式,从而求解问题。
这种方法常用于解决一些实际应用题,比如“一辆汽车以80km/h的速度行驶2小时的距离与以60km/h的速度行驶3小时的距离相等,求这个距离是多少?”我们可以设这个距离为x km,则根据题目的条件可以得到方程80*2=60*3,通过求解方程可以得到这个距离的值。
初中数学压轴题常见解题模型及套路
初中数学压轴题常见解题模型及套路初中数学的压轴题往往是学生们最为担心的,因为这些题目难度较高,需要运用多种解题技巧。
以下是几种常见的解题模型及套路。
1. 分类讨论法
这种方法适用于需要分类讨论的题目,如排列组合、几何题等。
首先将题目分成不同的情况,然后分别解决每种情况,最后将答案综合起来即可。
2. 反证法
反证法是通过假设结论不成立,然后推导出矛盾的结论,从而证明原结论成立的方法。
这种方法适用于需要证明某个结论的题目,如证明两个角相等、证明两个数相等等。
3. 数学归纳法
数学归纳法是一种递推证明方法,适用于需要证明某个结论对于所有自然数都成立的题目。
首先证明该结论对于某个自然数成立,然后证明该结论对于下一个自然数也成立,最后通过归纳证明该结论对于所有自然数都成立。
4. 等式变形法
等式变形法是通过对等式进行变形,从而达到解题的目的。
这种方法适用于需要利用等式求解的题目,如方程、不等式等。
以上是初中数学压轴题常见解题模型及套路,希望能对学生们在解题时有所帮助。
初中数学压轴题常见解题模型及套路(自有定理)A .代数篇:1.循环小数化分数:设元—扩大——相减(无限变有限)相消法。
例.把0.108108108化为分数。
设S=0.108108108(1)两边同乘1000得:1000S=108.108108(2)(2)-(1)得:999S=108 从而:S=108999余例仿此——2.对称式计算技巧:“平方差公式—完全平方公式”—整体思想之结合:x+y ;x-y ;xy ;22xy中,知二求二。
222222()2()2x y x y x y xy x y x y2222()2()4xy xyx y x y x y加减配合,灵活变型。
3.特殊公式22112x xx x2()的变型几应用。
4.立方差公式:3322a b a b a abb m ()()5.等差数列求和的三种方法:首尾相加法;梯形大法;倒序相加法。
例.求:1+2+3+···+2017的和。
三种方法举例:略6.等比数列求和法:方法+公式:设元—乘等比—相减—求解。
例.求1+2+4+8+16+32+ (2)n令S=1+2+4+8+16+32+···+2n(1)两边同乘2得:2S=2+4+8+32+64+ (2)+12n (2)(2)-(1)得:2S-S=12n - 1 从而求得S 。
7.11nmmnmn的灵活应用:如:111162323等。
8.用二次函数的待定系数法求数列(图列)的通项公式f (n )。
9.韦达定理求关于两根的代数式值的套路:⑴.对称式:变和积。
22221111xy xy xy22;;;xy +x y 等(x 、y 为一元二次方程方程的两根)⑵.非对称式:根的定义—降次—变和积(一代二韦)。
10. 三大非负数:三大永正数;11.常用最值式:2x y ()正数等(非负数+正数)。
12.换元大法。
13.自圆其说加减法与两肋插刀法。
代数式或函数变型(如配方)只能加一个数,同时减去同一个数;如果是方程则只需要两边同时加上或者减去同一个数即可。
初中数学竞赛必备——42个定理与解题模型一、概述1. 数学竞赛在培养学生的逻辑思维能力、数学解决问题的能力以及快速计算的能力方面具有重要的作用。
2. 初中数学竞赛中,掌握一定的数学定理和解题模型对于取得好成绩至关重要。
3. 本文将介绍初中数学竞赛必备的42个定理与解题模型,希望能为参加数学竞赛的同学们提供帮助。
二、数学定理与解题模型1. 代数部分1.1. 一元二次方程的求解方法1.2. 因式分解1.3. 角平分线定理1.4. 勾股定理1.5. 平方差公式1.6. 公式a^2-b^2=(a+b)(a-b)1.7. a^3-b^3=(a-b)(a^2+ab+b^2)2. 几何部分2.1. 同位角性质2.2. 对顶角性质2.3. 三角形的内角和2.4. 三角形的外角和2.5. 圆的性质2.6. 相似三角形的性质2.7. 三角形的高到底边的距离是线段的中线3. 概率部分3.1. 随机事件的概率计算3.2. 排列组合问题的概率计算3.3. 互斥事件和对立事件4. 数论部分4.1. 奇数与偶数的性质4.2. 质数与合数4.3. 最大公约数与最小公倍数5. 解题模型5.1. 分析题目5.2. 构建数学模型5.3. 运用定理解题5.4. 推理思路与方法三、数学竞赛练习与应用1. 多做数学竞赛题目,提高解题速度和正确率。
2. 运用所学的定理和解题模型解决实际问题,提高数学应用能力。
3. 对于涉及到竞赛的数学知识点,进行整体性的复习和整理。
四、结语1. 数学竞赛对于学生的数学能力提升有着一定的促进作用。
2. 要想在数学竞赛中取得好成绩,掌握基本数学定理和解题模型至关重要。
3. 希望本文介绍的42个定理与解题模型能为广大初中生在数学竞赛中取得优异成绩提供一定帮助。
五、举例演练1. 代数部分:一元二次方程的求解方法:解方程x^2+5x+6=0,可以使用因式分解或者配方法来进行求解。
因式分解:对于表达式x^2-4,可以因式分解为(x+2)(x-2)。
初中数学解题方法总结一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关,在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
初中数学常见解题模型及思路初中数学是数学学习的重要阶段,在这个阶段,学生需要掌握一些基本的数学概念和技能,如代数、几何、概率和统计等。
为了帮助学生更好地理解和掌握这些数学知识,本文将介绍一些常见的初中数学解题模型和思路。
一、基础知识初中数学的基础知识包括平面几何、立体几何、代数等。
平面几何涉及到点、线、面、三角形等基本概念,而立体几何则涉及到立体图形的性质和面积计算等。
代数方面则涉及到方程、不等式、方程组等基本概念和运算规则。
二、常见解题模型1.数轴模型数轴模型是初中数学中最基本的解题模型之一,它通过将数轴上的点与实数一一对应,将抽象的数学问题转化为直观的图形问题。
例如,在求解一些绝对值问题时,可以通过在数轴上标出绝对值的位置来帮助理解。
2.三角形模型三角形模型是平面几何中最为常见的模型之一,它通过将三角形与方程、不等式等代数概念相结合,将代数问题转化为几何问题。
例如,在求解一些二元一次方程组的解时,可以通过画出该方程组所表示的三角形来帮助理解。
3.函数模型函数模型是初中数学中最为重要的模型之一,它通过将变量之间的关系用函数来表示,将复杂的问题简化为一元一次方程或一元二次方程。
例如,在求解一些实际问题时,如鸡兔同笼问题,可以通过建立方程来求解。
4.统计模型统计模型是初中数学中较为独立的一个模型,它通过将数据用统计图表来表示,来帮助人们分析和预测一些现象。
例如,在预测一些商品的销售情况时,可以通过制作折线图或柱状图来帮助预测。
三、思维导图在介绍完常见的解题模型后,可以通过思维导图来总结这些模型的特点和应用方法。
思维导图可以清晰地展示各个模型之间的联系和差异,帮助学生更好地理解和掌握这些解题模型。
例如,可以制作一个以初中数学解题模型为主题的思维导图,包括数轴模型、三角形模型、函数模型和统计模型等,并详细阐述每个模型的特点和应用方法。
四、实战演练为了让学生更好地掌握这些解题模型,可以通过一些典型例题来进行实战演练。
初中数学48个解题模型数学是一门需要理解和掌握的学科,而解题模型则是数学学习中非常重要的一部分。
解题模型是指在解决数学问题时,根据问题的特点和要求,采用合适的方法和步骤,运用数学知识进行分析、计算和推理的一种解题方式。
在初中数学学习中,掌握一定的解题模型,可以更好地提高数学解题的能力和效率。
下面,我们将介绍初中数学中常用的48个解题模型,其中包括了初中数学的各个方面,希望对初中数学学习有所帮助。
1. 等式变形模型:根据等式变形的性质,对等式进行变形,使其更加简单易解。
2. 分式化简模型:根据分式化简的原理,对分式进行化简,使其更加简单易解。
3. 去括号模型:根据去括号的原理,将括号内的式子进行展开,使其更加简单易解。
4. 合并同类项模型:根据合并同类项的原理,将同类项进行合并,使其更加简单易解。
5. 因式分解模型:根据因式分解的原理,将式子进行因式分解,使其更加简单易解。
6. 基本不等式模型:根据基本不等式的原理,对不等式进行变形,使其更加简单易解。
7. 二次函数解析式模型:根据二次函数解析式的原理,求出二次函数的解析式。
8. 三角函数解析式模型:根据三角函数解析式的原理,求出三角函数的解析式。
9. 解方程模型:根据解方程的原理,对方程进行变形,求出方程的解。
10. 解不等式模型:根据解不等式的原理,对不等式进行变形,求出不等式的解。
11. 平面几何基本定理模型:根据平面几何基本定理的原理,对几何问题进行求解。
12. 空间几何基本定理模型:根据空间几何基本定理的原理,对几何问题进行求解。
13. 三角形的性质模型:根据三角形的性质,对三角形问题进行求解。
14. 相似三角形模型:根据相似三角形的原理,对相似三角形问题进行求解。
15. 同余模型:根据同余的原理,对同余问题进行求解。
16. 勾股定理模型:根据勾股定理的原理,对勾股定理问题进行求解。
17. 三角函数基本关系式模型:根据三角函数的基本关系式,对三角函数问题进行求解。
【最新整理,下载后即可编辑】初中数学解题方法和思路大汇总一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关;在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略;每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义;使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查;这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
初中数学48个几何模型解题技巧1.相似三角形定理:两个三角形中,三个对应的角相等,对应的边成比例。
2.相等三角形的性质:两个三角形中,三边分别相等,或者两边分别相等且夹角相等。
3.三角形中,一个内角和一边:根据一个三角形角度和一边的已知信息,可以推导出其他角度和边的关系。
4.三角形的面积计算公式:可以根据底边和高的关系来计算三角形的面积。
5.正方形的性质:四个内角都是直角,四条边相等。
6.正方形的对角线:两条对角线相等且垂直。
7.矩形的性质:四个内角都是直角,对角线相等。
8.矩形的面积:可以通过长和宽的长度相乘计算矩形的面积。
9.菱形的性质:对角线互相垂直,对角线互相平分。
10.菱形的面积:可以通过对角线的乘积除以2来计算菱形的面积。
11.平行四边形的性质:对边平行,对角线互相平分。
12.平行四边形的面积:可以通过底边长度乘以高来计算平行四边形的面积。
13.梯形的性质:有两条平行边。
14.梯形的面积:可以通过上底和下底的和乘以高除以2来计算梯形的面积。
15.直角三角形的性质:有一个内角是直角。
16.直角三角形的勾股定理:直角三角形的两个直角边的平方之和等于斜边的平方。
17.直角三角形的正弦定理:直角三角形的斜边和对应的直角边之间的正弦值成比例。
18.直角三角形的余弦定理:直角三角形的斜边的平方等于两个直角边的平方之和减去两倍直角边的乘积。
19.直角三角形的正切定理:直角三角形的两个直角边的商等于对应的正切值。
20.平行线与横截线的性质:平行线与横截线之间的对应角相等。
21.平面镜映射的性质:物体与其镜像之间的对应角相等。
22.等腰三角形的性质:两个底角相等。
23.等边三角形的性质:三个内角都是60度。
24.角平分线的性质:角平分线可以将一个角分成两个相等的角。
25.外角的性质:外角等于其对应的内角的补角。
26.平面图形的旋转:点、线、图形按一定角度旋转后,与原来的点、线、图形相对应。
27.平行线的判定:两条直线的斜率相等即为平行线。
初中数学常见模型解题思路代 数 篇1、循环小数化分数:(1)设元(2)扩大(3)相减相消法【等式性质的运用】例:把0.108108108...化为分数.设a =0.108108108...①两边同时乘以1000,得 1000a =108.108108...②②-①,得999a =108,从而得a =108/999.2、对称式计算技巧:“平方差公式、完全平方公式”【整体思想的结合】 22,,,y x xy y x y x +-+中,知二求二. (加减配合,灵活变形.)如xy y x y x 2)(222++=+⇒xy y x y x 2)(222-+=+;xy y x xy y x y x 4)(2)(2222-+=-+=-.3、特殊公式21)1(222±+=±xx x x 的变型及应用. 4、立方和/差公式:).)(())((22332233y xy x y x y x y xy x y x y x ++-=-+-+=+;5、等差数列求和的法:首尾相加法. (方法+公式)例:计算1+2+3+4+ (2018)6、等比数列求和法:(1)设元(2)乘等比(3)相减(4)求解.例:计算1+2+4+8+...+2n . 【这两种数列均可用等式性质进行推导】7、mnm n n m mn m n n m +=+-=-11;11的灵活应用. 例:计算(1)3801...3012011216121++++++;(2).171532151328...97167512538314⨯-⨯++⨯-⨯+⨯-⨯ 8、韦达定理求关于两根的代数式的值.(1) 对称式:变和积..1111222222yx y x y x xy y x ++++;;;(x 、y 为一元二次方程的两根) (2) 非对称式:根的定义 降次 变和积(一代入二韦达)9、三大非负数、三大永正数.10、常用最值式:正数+±2)(y x 等11、换元大法.12、自圆其说加减法与两肋插刀法。
初中数学几何模型大全及解析一中点模型【模型1】倍长1、倍长中线;2、倍长类中线;3、中点遇平行延长相交【模型2】遇多个中点,构造中位线1、直接连接中点;2、连对角线取中点再相连【例】在菱形ABCD和正三角形BEF中,∠ABC=60°,G是DF的中点,连接GC、GE.(1)如图1,当点E在BC边上时,若AB=10,BF=4,求GE的长;(2)如图2,当点F在AB的延长线上时,线段GC、GE有怎样的数量和位置关系,写出你的猜想;并给予证明;(3)如图3,当点F在CB的延长线上时,(2)问中关系还成立吗?写出你的猜想,并给予证明.二角平分线模型【模型1】构造轴对称【模型2】角平分线遇平行构造等腰三角形【例】如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于F,交AD边于H,延长BA到点G,使AG=CF,连接GF.若BC=7,DF=3,EH=3AE,则GF的长为 .三手拉手模型【例】如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为 .四邻边相等的对角互补模型五半角模型六一线三角模型七弦图模型八最短路径模型【两点之间线段最短】1、将军饮马2、费马点【垂线段最短】【两边之差小于第三边】综合练习已知:如图1,正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.⑴求证:EG=CG且EG⊥CG;⑵将图1中△BEF绕B点逆时针旋转45º,如图2所示,取DF中点G,连接EG,CG.问⑴中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.⑶将图1中△BEF绕B点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?。
初中几何48个模型及35个解题技巧嘿,同学们!今天咱就来聊聊初中几何的那 48 个模型和 35 个解题技巧。
这可真是个宝库啊!你想想看,几何就像是一个神秘的大迷宫,那 48 个模型就是迷宫里的一条条秘密通道,而 35 个解题技巧呢,就是打开这些通道大门的钥匙。
有了它们,我们就能在几何的世界里畅游无阻啦!比如说那个相似三角形模型,哎呀,就像找到了两个长得很像的“双胞胎”,它们之间的关系可有趣啦。
一旦你发现了它们,很多难题就迎刃而解了,这感觉不就跟发现了宝藏一样惊喜嘛!还有那个圆的模型,圆啊,就像一个神奇的魔法圈,里面藏着好多好多的秘密和技巧。
什么切线定理啦,圆周角定理啦,掌握了这些,就像是拥有了魔法力量,能轻松搞定各种圆相关的问题。
再说说那些解题技巧吧,就像是一个个小巧玲珑的工具,用对了就能事半功倍。
比如那个辅助线的技巧,有时候一条恰到好处的辅助线一画,哇塞,原本乱七八糟的图形一下子就清晰明了,难题瞬间变得简单起来,你说神奇不神奇?就好像你走路遇到了一堵高墙,正愁怎么过去呢,这时候突然发现旁边有个梯子,一下子就翻过去了,那种感觉,爽!而且啊,学习这些模型和技巧可不能死记硬背哦,得像和它们交朋友一样,去理解它们,熟悉它们。
就像你了解你的好朋友一样,知道他们的脾气、性格。
只有这样,在遇到问题的时候,你才能第一时间想起它们,让它们来帮你解决问题。
咱可不能小瞧了这些模型和技巧,它们可是我们在几何世界里披荆斩棘的利器啊!想想看,当你用这些模型和技巧轻松解决了一道又一道难题,那种成就感,那可不是一般的爽啊!是不是感觉自己就像个几何大侠,拿着这些秘密武器,在几何的江湖里闯荡,威风凛凛的!同学们,好好去探索这 48 个模型和 35 个解题技巧吧,相信我,它们会给你带来意想不到的收获和惊喜。
别犹豫啦,赶紧行动起来,让我们一起在初中几何的海洋里尽情遨游吧!这绝对会是一次超级棒的学习之旅,你准备好了吗?。
超级全的初中数学解题方法和思路汇总初中数学作为学生理科学习的一门重要科目,对于培养逻辑思维能力和解决问题的能力具有重要作用。
然而,数学题目复杂多样,很多学生常常感到头疼。
在本文中,将为大家总结一些初中数学解题方法和思路,希望能够帮助广大学生更好地应对各类数学题目。
一、代数方程解题方法和思路在初中数学中,最常见的题型之一就是代数方程的解题。
解代数方程的关键在于运用适当的方法将未知数从方程中解出。
以下是一些常见的解代数方程的方法和思路:1. 定义法:根据题目所给条件定义未知数,列出方程,通过求解方程得出结果。
2. 因式分解法:将方程进行因式分解,寻找其根的值。
3. 移项法:通过移项将含有未知数的项移到等号两侧,从而解出方程。
4. 通分法:对于含有分式的方程,可以通过通分的方法将方程化简,然后求解。
5. 二次方程求根公式:对于二次方程,可以使用求根公式来得出方程的解。
二、几何图形解题方法和思路几何图形是初中数学课程中的重要内容,解决几何图形问题需要一定的几何直觉和几何知识。
以下是一些常见的几何图形解题方法和思路:1. 图形分析法:通过观察图形的特点和性质,运用几何知识解决问题。
2. 利用相似性质:对于相似的几何图形,可以利用其相似性质来解题。
3. 利用等边、等角性质:对于等边、等角的几何图形,可以利用其性质解决问题。
4. 利用面积和体积公式:对于涉及到面积和体积的几何图形问题,可以利用相应的公式求解。
三、数据统计解题方法和思路数据统计是数学中的重要概念,掌握数据统计的解题方法和思路对于解决实际问题具有重要意义。
以下是一些常见的数据统计解题方法和思路:1. 数据分类整理:对于大量的数据,可以通过分类整理的方法得出有关信息。
2. 图表分析法:通过查看、分析并理解图表(如表格、柱状图、折线图等),找出问题的解决思路。
3. 倍数关系:对于涉及倍数关系的数据统计问题,可以通过计算倍数或利用倍数关系进行解题。
总结:初中数学解题方法和思路是培养学生数学思维和解决问题能力的重要途径。
初中数学常考题型的解题思路总结在初中数学的学习中,有一些常见的题型是经常出现的。
这些题型不仅出现在日常课堂练习中,也经常作为考试中的重点。
掌握这些题型的解题思路是学生提高数学能力的关键。
本文将总结一些常见的初中数学题型的解题思路,并附上具体的例题进行说明。
一、代数式求值代数式求值是初中数学中极为常见的题型之一。
解题思路是将代数式中的未知数替换成给定的数值,并逐步计算得出结果。
下面以一个例题来说明:例题:已知x = 2,求f(x) = 3x + 5的值。
解题思路:将x = 2代入f(x) = 3x + 5,得到f(2) = 3 × 2 + 5 = 11。
所以f(x) = 3x + 5在x = 2时的值为11。
二、已知函数求函数值已知函数求函数值也是初中数学中常见的题型。
解题思路是根据给定的函数表达式和自变量的值,计算出函数的值。
下面是一个例题:例题:已知函数f(x) = 2x + 3,求f(4)的值。
解题思路:将x = 4代入f(x) = 2x + 3,得到f(4) = 2 × 4 + 3 = 11。
所以f(4)的值为11。
三、比例问题比例问题是初中数学中常见的实际问题之一。
解题思路是根据已知的比例关系,求解未知量的值。
下面是一个例题:例题:甲地距离目的地100千米,乙地距离目的地200千米。
甲乙两地之间有一辆车以60千米/小时的速度行驶,那么从乙地出发到达目的地所需的时间是多少小时?解题思路:根据速度等于路程除以时间的关系,设乙地到达目的地所需的时间为t小时,则由题意可知200千米 = 60千米/小时 × t小时,解得t = 10小时。
所以从乙地出发到达目的地所需的时间是10小时。
四、解方程解方程是初中数学中的重点内容。
解题思路是将方程中的未知数代入,并通过移项、合并同类项等操作,求解出未知数的值。
下面是一个例题:例题:求方程2x + 3 = 7的解。
解题思路:通过移项操作,将方程变形为2x = 7 - 3,再合并同类项得到2x = 4。
初中数学常见模型初中数学中的常见模型有很多,下面列举一些常见的模型及其解题思路。
1.分数运算模型分数运算是初中数学中必修的一部分,它们的解决方法有很多,其中最常见的是通分、约分、加减乘除以及比较大小。
例如:“小明有2/3个馒头,他一共要平均分给3个人,每个人分到多少馒头?”解题思路:先将小明所有的馒头转化为分数,即2/3,然后乘以3,得到2份馒头。
将2份馒头平均分给3个人,即每个人得到2/3÷3=2/9份馒头。
2.速度、时间、距离模型速度、时间、距离模型是初中数学中另一个重要的模型。
在解决这类问题时,我们需要了解速度是距离和时间的比值,可以用“路程=速度×时间”的公式来计算。
例如:“A、B两人同向行驶,A的速度是20km/h,B的速度是30km/h,当A超过B后,用多长时间可以与B再次相遇?”解题思路:设相遇后A已经行驶了t小时,此时B行驶了30t千米,A行驶了20t千米。
由于A超过B后会比B多行驶一段距离,因此有20t-30t=(20+30)t-30t=10t=路程。
根据两车速度相等的原则,得到(20+30)t=30t+20t,即t=4小时。
因此,用4小时后A与B再次相遇。
3.百分数模型百分数模型是初中数学中常见的一种模型。
在解决这类问题时,我们需要将百分数转换为小数,并将问题转化为数学运算问题,如加减乘除等。
例如:“小明已经学了某科目的65%,如果他想达到90%的水平,还需要学习多久?”解题思路:因为小明已经学了该科目的65%,还需要学习的就是35%。
设他还需要学习的时间为t天。
因此,35%=0.35,得到小明还需要学习的时间为0.35t天。
根据题目要求,0.35t应该等于25%,即0.25,得到方程0.35t=0.25,则t=0.25÷0.35≈0.71。
因此,小明还需要学0.71天。
4.几何模型初中数学中的几何模型包括各种形状的面积、周长和体积计算等。
在计算这些模型时,需要了解计算公式,例如长方形面积公式为长×宽,三角形面积公式为底边×高÷2等。
初中数学解题方法总结一、选择题的解法1、直接法:根据选择题的题设条件,通过计算、推理或判断,,最后得到题目的所求。
2、特殊值法:(特殊值淘汰法)有些选择题所涉及的数学命题与字母的取值范围有关,在解这类选择题时,可以考虑从取值范围内选取某几个特殊值,代入原命题进行验证,然后淘汰错误的,保留正确的。
3、淘汰法:把题目所给的四个结论逐一代回原题的题干中进行验证,把错误的淘汰掉,直至找到正确的答案。
4、逐步淘汰法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,既采用“走一走、瞧一瞧”的策略,每走一步都与四个结论比较一次,淘汰掉不可能的,这样也许走不到最后一步,三个错误的结论就被全部淘汰掉了。
5、数形结合法:根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解题思路,使问题得到解决。
二、常用的数学思想方法1、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。
2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。
3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。
4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。
为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。
5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。
配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。
7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。
这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。
10、归纳法:由一般到特殊的推理方法。
11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。
类比法既可能是特殊到特殊,也可能一般到一般的推理。
三、函数、方程、不等式常用的数学思想方法:⑴数形结合的思想方法。
⑵待定系数法。
⑶配方法。
⑷联系与转化的思想。
⑸图像的平移变换。
四、证明角的相等1、对顶角相等。
2、角(或同角)的补角相等或余角相等。
3、两直线平行,同位角相等、内错角相等。
4、凡直角都相等。
5、角平分线分得的两个角相等。
6、同一个三角形中,等边对等角。
7、等腰三角形中,底边上的高(或中线)平分顶角。
8、平行四边形的对角相等。
9、菱形的每一条对角线平分一组对角。
10、等腰梯形同一底上的两个角相等。
11、关系定理:同圆或等圆中,若有两条弧(或弦、或弦心距)相等,则它们所对的圆心角相等。
12、圆内接四边形的任何一个外角都等于它的内对角。
13、同弧或等弧所对的圆周角相等。
14、弦切角等于它所夹的弧对的圆周角。
15、同圆或等圆中,如果两个弦切角所夹的弧相等,那么这两个弦切角也相等。
16、全等三角形的对应角相等。
17、相似三角形的对应角相等。
18、利用等量代换。
19、利用代数或三角计算出角的度数相等20、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两条切线的夹角。
五、证明直线的平行或垂直1、证明两条直线平行的主要依据和方法:⑴、定义、在同一平面内不相交的两条直线平行。
⑵、平行定理、两条直线都和第三条直线平行,这两条直线也互相平行。
⑶、平行线的判定:同位角相等(内错角或同旁内角),两直线平行。
⑷、平行四边形的对边平行。
⑸、梯形的两底平行。
⑹、三角形(或梯形)的中位线平行与第三边(或两底)⑺、一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,则这条直线平行于三角形的第三边。
2、证明两条直线垂直的主要依据和方法:⑴、两条直线相交所成的四个角中,由一个是直角时,这两条直线互相垂直。
⑵、直角三角形的两直角边互相垂直。
⑶、三角形的两个锐角互余,则第三个内角为直角。
⑷、三角形一边的中线等于这边的一半,则这个三角形为直角三角形。
⑸、三角形一边的平方等于其他两边的平方和,则这边所对的内角为直角。
⑹、三角形(或多边形)一边上的高垂直于这边。
⑺、等腰三角形的顶角平分线(或底边上的中线)垂直于底边。
⑻、矩形的两临边互相垂直。
⑼、菱形的对角线互相垂直。
⑽、平分弦(非直径)的直径垂直于这条弦,或平分弦所对的弧的直径垂直于这条弦。
⑾、半圆或直径所对的圆周角是直角。
⑿、圆的切线垂直于过切点的半径。
⒀、相交两圆的连心线垂直于两圆的公共弦。
六、证明线段的比例式或等积式的主要依据和方法:1、比例线段的定义。
2、平行线分线段成比例定理及推论。
3、平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例。
4、过分点作平行线;5、相似三角形的对应高成比例,对应中线的比和对应角平分线的比都等于相似比。
6、相似三角形的周长的比等于相似比。
7、相似三角形的面积的比等于相似比的平方。
8、相似三角形的对应边成比例。
9、通过比例的性质推导。
10、用代数、三角方法进行计算。
11、借助等比或等线段代换。
七、几何作图1、掌握最基本的五种尺规作图⑴、作一条线段等于已知线段。
⑵、作一个角等于已知角。
⑶、平分已知角。
⑷、经过一点作已知直线的垂线。
⑸、作线段的垂直平分线。
2、掌握课本中各章要求的作图题⑴、根据条件作任意的三角形、等要素那角性、直角三角形。
⑵、根据给出条件作一般四边形、平行四边形、矩形、菱形、正方形、梯形等。
⑶、作已知图形关于一点、一条直线对称的图形。
⑷、会作三角形的外接圆、内切圆。
⑸、平分已知弧。
⑹、作两条线段的比例中项。
⑺、作正三角形、正四边形、正六边形等。
八、几何计算(一)、角度与弧度的计算1、三角形和四边形的角的计算主要依据⑴、三角形的内角和定理及推论。
⑵、四边形的内角和定理及推论。
⑶、圆内接四边形性质定理。
2、弧和相关的角的计算主要依据⑴、圆心角的度数等于它所对的弧的度数。
⑵、圆周角的度数等于它所对的弧的度数的一半。
⑶、弦切角的度数等于所夹弧度数的一半。
3、多边形的角的计算主要依据⑴、n边形的内角和=(n-2)*180°⑵、正n边形的每一内角=(n-2)*180°÷n⑶、正n边形的任一外角等于各边所对的中心角且都等于(二)、长度的计算1、三角形、平行四边形和梯形的计算用到的定理主要有三角形全等定理,中位线定理,等腰三角形、直角三角形、正三角形及各种平行四边形的性质等定理。
关于梯形中线段计算主要依据梯形中位线定理及等腰梯形、直角梯形的性质定理等。
2、有关圆的线段计算的主要依据⑴、切线长定理⑵、圆切线的性质定理。
⑶、垂径定理。
⑷、圆外切四边形两组对边的和相等。
⑸、两圆外切时圆心距等于两圆半径之和,两圆内切时圆心距等于两半径之差。
3、直角三角形边的计算直角三角形边长的计算应用最广,其理论依据主要是勾股定理和特殊角三角形的性质及锐角三角函数等。
4、成比例线段长度的求法⑴、平行线分线段成比例定理;⑵、相似形对应线段的比等于相似比;⑶、射影定理;⑷、相交弦定理及推论,切割线定理及推论;⑸、正多边形的边和其他线段计算转化为特殊三角形。
三、图形面积的计算1、四边形的面积公式⑴、S= a·h□ABCD⑵、S菱形= 1/2a·b(a、b为对角线)⑶、S梯形= 1/2(a + b)·h = m·h(m为中位线)2、三角形的面积公式⑴、S△= 1/2·a·h⑵、S△= 1/2·P·r(P为三角形周长,r为三角形内切圆的半径)3、S正多边形= 1/2·P n·r n = 1/2·n a n·r n4、S圆=πR25、S扇形=nπ= 1/2LR6、S弓形= S扇- S△九、证明两线段相等的方法:⑴、利用全等三角形对应线段相等;⑵、利用等腰三角形性质;⑶、利用同一个三角形中等角对等边;⑷、利用线段垂直平分线;⑸、角平分线的性质;⑹、利用轴对称的性质;⑺、平行线等分线段定理;⑻、平行四边形性质;⑼、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
推论1:平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
⑽、圆心角、弧、弦、弦心距的关系定理及推论;⑾、切线长定理。
十、证明弧相等的方法:⑴、定义;同圆或等圆中,能够完全重合的两段弧。
⑵、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
推论1:①平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧。
②垂直平分一条弦的直线,经过圆心,并且平分弦所对的两条弧。
③平分一条弦所对的弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:两条平行弦所夹的弧相等⑶、圆心角、弧、圆周角之间度数关系;(圆心角 = 弧 = 2圆周角)⑷、圆周角定理的推论1;(同弧或等弧所对的圆周角相等,同圆或等圆中相等的圆周角所对的弧相等)十一、切线小结1、证明切线的三种方法:⑴、定义——一个交点;⑵、d=r;(若一条直线到圆心的距离等于半径,则这条直线是圆的切线)⑶、切线的判定定理;(经过半径外端,并且垂直这条半径的直线是圆的切线)2、切线的八个性质:⑴、定义:唯一交点;⑵、切线和圆心的距离等于半径;(d=r)⑶、切线的性质定理:圆的切线垂直于过切点的半径;⑷、推论1:过圆心(且垂直于切线的直线)必过切点;⑸、推论2:过切点(且垂直于切线的直线)必过圆心;⑹、切线长相等;过圆外一点作圆的两条切线,它们的切线长相等,并且这一点和圆心的连线平分两切线的夹角。