【人教版】2017年数学必修三:2.2.2《用样本的数字特征估计总体的数字特征》课件
- 格式:ppt
- 大小:10.00 MB
- 文档页数:34
§2.2.2用样本的数字特征估计总体的数字特征学习目标(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。
(3)会用样本的基本数字特征估计总体的基本数字特征。
(4)形成对数据处理过程进行初步评价的意识。
重点难点重点:用样本平均数和标准差估计总体的平均数与标准差。
难点:能应用相关知识解决简单的实际问题。
学法指导在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。
知识链接用样本的频率分布去估计总体的分布,当总体中的个体取值很少时,用茎叶图估计总体的分布;当总体中的个体取值较多时,将样本数据恰当分组,用各组的频率分布描述总体的分布,方法是用频率分布表或频率分布直方图。
问题探究一、情景设置:美国NBA在2006——2007年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,31, 36,36,37,39,44,49.乙运动员得分:8,13,14,16,23,26,28,38,39,51,31,29.如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就得有相应的数据作为比较依据,即通过样本数据对总体的数字特征进行研究,用样本的数字特征估计总体的数字特征.二、探究新知:知识探究(一):众数、中位数和平均数思考1:在初中我们学过众数、中位数和平均数的概念,这些数据都是反映样本信息的数字特征,对一组样本数据如何求众数、中位数和平均数?思考2:在城市居民月均用水量样本数据的频率分布直方图中(参考课本72页图2-2-5),你认为众数应在哪个小矩形内?由此估计总体的众数是什么?思考3:在频率分布直方图中,每个小矩形的面积表示什么?中位数左右两侧的直方图的面积应有什么关系?思考4:在城市居民月均用水量样本数据的频率分布直方图中,从左至右各个小矩形的面积分别是0.04,0.08,0.15,0.22,0.25,0.14,0.06,0.04,0.02.由此估计总体的中位数是什么?思考5:平均数是频率分布直方图的“重心”,在城市居民月均用水量样本数据的频率分布直方图中,各个小矩形的重心在哪里?从直方图估计总体在各组数据内的平均数分别为多少?思考6:根据统计学中数学期望原理,将频率分布直方图中每个小矩形的面积与小矩形底边中点的横坐标之积相加,就是样本数据的估值平均数. 由此估计总体的平均数是什么?思考7:从居民月均用水量样本数据可知,该样本的众数是2.3,中位数是2.0,平均数是1.973,这与我们从样本频率分布直方图得出的结论有偏差,你能解释一下原因吗?思考8:一组数据的中位数一般不受少数几个极端值的影响,这在某些情况下是一个优点,但它对极端值的不敏感有时也会额成为缺点,你能举例说明吗?样本数据的平均数大于(或小于)中位数说明什么问题?你怎样理解“我们单位的收入水平比别的单位高”这句话的含义?知识探究(二):标准差样本的众数、中位数和平均数常用来表示样本数据的“中心值”,其中众数和中位数容易计算,不受少数几个极端值的影响,但只能表达样本数据中的少量信息. 平均数代表了数据更多的信息,但受样本中每个数据的影响,越极端的数据对平均数的影响也越大.当样本数据质量比较差时,使用众数、中位数或平均数描述数据的中心位置,可能与实际情况产生较大的误差,难以反映样本数据的实际状况,因此,我们需要一个统计数字刻画样本数据的离散程度.思考1:在一次射击选拔赛中,甲、乙两名运动员各射击10次,每次命中的环数如下:甲:7 8 7 9 5 4 9 10 7 4乙:9 5 7 8 7 6 8 6 7 7 甲、乙两人本次射击的平均成绩分别为多少环?思考2:甲、乙两人射击的平均成绩相等,观察两人成绩的频率分布条形图,你能说明其水平差异在那里吗?思考3:对于样本数据x1,x2,…,xn ,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差,一般用频率 0.4 0.30.20.14 5 6 78 9 10 环数 O (甲) 环数 频率 0.4 0.3 0.2 0.14 5 6 7 8 9 O (乙)。
组长评价: 教师评价:§2.2.2用样本的数字特征估计总体的数字特征编者:1.正确理解样本数据众数、中位数、平均数、标准差的意义和作用。
2.通过具体的实例,会用样本的基本数字特征估计总体的基本数字特征。
3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。
重点:用样本众数、中位数、平均数、标准差估计总体的平均数与标准差。
难点:能通过样本的数字特征估计总体的分布。
使用说明: (1)预习教材P 65 ~ P 71,用红色笔画出疑惑之处,并尝试完成下列问题,总结规律方法;(2)用严谨认真的态度完成导学案中要求的内容; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。
预习案(20分钟)一.知识链接在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕ 甲运动员﹕7,8,6,8,6,5,8,10,7,4; 乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究。
——用样本的数字特征估计总体的数字特征。
二.新知导学问题1:什么叫平均数?有什么意义?什么叫中位数?有什么意义? 什么叫众数?有什么意义?问题2:什么叫极差?有什么意义?什么叫标准差?有什么意义?探究案(30分钟)三.新知探究【知识点一】(★)众数、中位数、平均数、标准差的意义例1:某公司员工的月工资情况如表所示:分别计算该公司员工月工资的平均数、中位数、和众数。
例2:从甲、乙两个城市随机抽取的16台自动售货机的销售额可以用茎叶图表示,如图(1)甲乙两组数据的中位数、众数、极差分别是多少?(2)你能从图中分别比较甲乙两组数据平均数和标准差的大小吗?【知识点二】利用众数、中位数、平均数、标准差对总体进行估计例3:甲、乙两台机床同时生产直径是40mm的零件。
为了检验产品质量,从两台机床生产的产品中各抽取10件进行测量,结果如下表所示你能选择适当的数来估计甲、乙两台机床的优劣情况吗?四.我的疑惑(把自己在使用过程中遇到的疑惑之处写在下面,先组内讨论尝试解决,能解决的划“√”,不能解决的划“×”)(1)()(2)()(通过解决本节导学案的内容和疑惑点,归纳一下自己本节的收获,和大家交流一下,写下自己的所得)随堂评价(15分钟)※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:15分钟满分:30分)计分:1.回答下列问题(1)平均数描述了数据的,定量地放映了数据的集中趋势所处的水平;(2)一般的,称为平均数或均值;(3)数据的离散程度可以用来描述;(4)一般地,称为样本标准差。
第四课时2.2.2 用样本的数字特征估计总体数字特征(二)教学要求:正确理解样本数据标准差的意义和作用,学会计算数据的标准差. 能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释. 会用样本的数字特征估计总体的数字特征,形成对数据处理过程进行初步评价的意识.教学重点:用样本平均数和标准差估计总体的平均数与标准差。
教学难点:能应用相关知识解决简单的实际问题。
教学过程:一、复习准备:1. 提问:如何通过频率分布直方图估计数字特征(中位数、众数、平均数)?2. 在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4;乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,试比较两个运动员的水平?(平均数公式:12n x x x x n ++⋅⋅⋅+=;或1122m m x f x f x f x n++⋅⋅⋅+=.) 3. 讨论:判断哪个运动员发挥的更稳定些吗? → 引入课题(标准差、方差)二、讲授新课:1、教学标准差与方差:① 讨论:频率分布直方图能否反映数据的离散程度?(极差反映了数据的变化的幅度. → 去掉最高分、最低分的统计策略)② 定义标准差:样本数据到平均数的平均距离,也是我们统计中经常用到的量.“平均距离”,用s 表示,12||||||n x x x x x x s n -+-+⋅⋅⋅-=,其中x 为样本数据12,,,n x x x ⋅⋅⋅的平均数. 由于含有绝对值,运算不方便,用s =.意义:标准差用来表示稳定性,标准差越大,数据的离散程度就越大,也就越不稳定. 同时,[2,2]x s x s -+几乎包含了所有样本数据. ③ 练习:计算复习题2中所给数据的标准差. (笔算、计算器算) ④习惯用标准差的平方2s ——方差来表示数据的分散程度,即222212()()()n x x x x x x s n -+-+⋅⋅⋅+-=. 两者都是描述一组数据围绕平均数波动的大小,实际应用中比较广泛的是标准差.⑤ 练习:计算复习题2中所给数据的方差. (笔算); 教材P67页 例1,比较平均数与标准差.2、教学例题:① 出示例2:教材P68页 . (学生用计算器计算——老师分析——总结方法)方法点拔:在应用平均数与方差解决实际问题时,先比较平均数,再看方差(或标准差)② 练习:P70第2、3题.3. 小结:处理样本数据特征进而估计总体的数据特征,我们主要从平均数与方差(或标准差)两个方向去分析. 先比较平均数,再看方差(或标准差).三、巩固练习:1. 练习:教材 P73第7题.2. 作业:教材 P73第6题.。
用样本的数字特征估计总体的数字特征(1)1、知识与技能(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。
(3)会用样本的基本数字特征估计总体的基本数字特征。
(4)形成对数据处理过程进行初步评价的意识。
2、过程与方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。
3、情感态度与价值观会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系。
【教学重点】用样本平均数和标准差估计总体的平均数与标准差。
【教学难点】能应用相关知识解决简单的实际问题。
(一)知识回顾回顾初中所学三数概念:1、众数:在一组数据中,出现次数最多的数据叫做这一组数据的众数。
2、中位数:将一组数据按大小依次排列,把处在最中间位置的一个数据(或两个数据的平均数)叫做这组数据的中位数。
3、平均数:一组数据的总和除以数据的个数所得的值。
(二)新课导入美国NBA在2011——2012年度赛季中,甲、乙两名篮球运动员在随机抽取的12场比赛中的得分情况如下:甲运动员得分:12,15,20,25,31,30, 36,36,37,39,44,49;乙运动员得分:8,13,14,16,23,26, 28,38,39,51,31,39.如果要求我们根据上面的数据,估计、比较甲,乙两名运动员哪一位发挥得比较稳定,就应有相应的数据作为比较依据,即通过样本数字特征对总体的数字特征进行研究.所以今天我们开始学习用样本的数字特征估计总体的数字特征。
(三)新课讲授探究:众数、中位数、平均数与频率分布直方图的关系思考1:如何在样本数据的频率分布直方图中,估计出众数的值?举例加以说明。
答:众数大致的值就是样本数据的频率分布直方图中最高矩形的中点的横坐标。
人教版2017高中数学—PPT课件—1问题:众数、中位数、平均数这三个数一般都会来自于同一个总体或样本,它们能表明总体或样本的什么性质?众数:反映的往往是局部较集中的数据信息中位数:是位置型数,反映处于中间部位的数据信息平均数:反映所有数据的平均水平例1、求下列各组数据的众数和中位数(1)、1 ,2,3,3,3,5,5,8,8,8,9,9众数是:3和8(2)、1 ,2,3,3,3,5,5,8,8,9,9众数是:3练习、求下列各组数据的众数和中位数(1)、1 ,2,3,3,3,4,6,8,8,8,9,9(2)1 ,2,3,3,3,4,8,8,8,9,9中位数是:5中位数是:4中位数是5中位数是5众数是3,8众数是3,8练习:高一(3)班有男同学27名,女同学21名,在一次语文测验中,男同学的平均分是82分,中位数是75分,女同学的平均分是80分,中位数是80分.(1)求这次测验全班平均分(精确到0.01);(2)估计全班成绩在80分以下(含80分)的同学至少有多少人?(3)分析男同学的平均分与中位数相差较大的主要原因是什么?00.10.20.30.40.50.6月均用水量/t0.5 2.521.5143.53 4.5频率组距0.040.080.150.220.250.140.060.040.02前四个小矩形的面积和=0.49后四个小矩形的面积和=0.262.02如何在频率分布直方图中估计中位数求考试平均分=2.02x =00.50.514 4.50.040.080.02222++++++L =2.02平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和。
可将平均数看作整个直方图面积的“重心”3、假设你是一名交通部门的工作人员。
你打算向市长报告国家对本市26条公路项目投资的平均资金数额,其中一条新公路的建设投资为2 200万元人民币,另外25个项目的投资在20万与100万.中位数是25万,平均数是100万,众数是20万元。
湖南省蓝山二中高一数学《2.2.2 用样本的数字特征估量整体的数字特征(2)》教案 新人教A 版必修3教学目标: 知识与技术(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差;(2)能按如实际问题的需要合理地选取样本,从样本数据中提取大体的数字特征(如平均数、标准差),并做出合理的解释;(3)会用样本的大体数字特征估量整体的大体数字特征; (4)形成对数据处置进程进行初步评价的意识. 进程与方式在解决统计问题的进程中,进一步体会用样本估量整体的思想,理解数形结合的数学思想和逻辑推理的数学方式. 重点与难点:重点:用样本平均数和标准差估量整体的平均数与标准差. 难点:能应用相关知识解决简单的实际问题. 教学进程: 一.知识回顾问题1:.如何按照样本频率散布直方图,别离估量整体的众数、中位数和平均数? (1)众数:最高矩形下端中点的横坐标.(2)中位数:直方图面积平分线与横轴交点的横坐标.(3)平均数:每一个小矩形的面积与小矩形底边中点的横坐标的乘积之和. 二.知识讲解 1.标准差平均数为咱们提供了样本数据的重要信息,可是,有时平均数也会使咱们作出对整体的片面判断。
某地域的统计显示,该地域的中学生的平均身高为176㎝,给咱们的印象是该地域的中学生生长发育好,身高较高。
可是,假设那个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,那个平均数就不能代表该地域所有中学生的身体素质。
因此,只有平均数难以归纳样本数据的实际状态。
问题2:在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕甲运动员﹕7,8,6,8,6,5,8,10,7,4; 乙运动员﹕9,5,7,8,7,6,8,6,7,7.观察上述样本数据,你能判断哪个运动员发挥的更稳固些吗?若是你是教练,选哪位选手去参加正式比赛?咱们明白,77x x ==乙甲, 。
问题3:两个人射击的平均成绩是一样的。
那么,是不是两个人就没有水平差距呢?直观上看,仍是有不同的。
0.01频率组距"山西省芮城县风陵渡中学高一数学 2.2.2用样本的数字特征估量样本的整体特征学案 新人教A 版必修3 "一、自学要求:(1)理解样本数据标准差的意义和作用,学会计算数据的标准差。
(2)合理地选取样本,从样本数据中提取大体的数字特征(如中位数、众数、平均数、标准差),并做出合理的解释。
(3)会用样本的大体数字特征估量整体的大体数字特征。
二、自学进程:一、平均数对数据有“取齐”的作用,平均数代表一组数据的 ,在频率散布直方图中,平均数是直方图的 。
有时平均数也会使咱们作出对整体的片面判断。
二、数据的离散程度,能够用极差、 或标准差来描述。
样本标准差,一般用s 表示。
其计算公式为:S ==3、标准差较大,数据的离散程度 ;标准差较小,数据离散程度 。
当样本数据都相等,则标准差为 ,当个体值与平均值数的差的绝对值较大,则标准差 。
三.例题精析例 1. 如图是2008年元旦晚会举行的挑战主持人大赛上,七位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的众数和中位数别离为____,____. 例2. 从甲、乙两名学生当选拔一人参加射击比赛,对他们的射击水平进行测试,两人在相同条件下各射击10次,命中的环数如下: 甲 7 8 6 8 6 5 9 10 7 4 乙 9 5 7 8 7 6 8 6 7 7 (1)计算两人射击命中环数的平均数和标准差。
(2)比较两人的成绩,然后决定选择哪一人参赛。
例3. 某校从参加高一年级期末考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[)50,40,[)60,50…[]100,90后画出如下部份频率散布直方图.观察图形的信息,回答下列问题: (Ⅰ)求第四小组的频率,并补全那个频率散布直方图;(Ⅱ)估量这次考试的合格率(60分及以上为合格)和平均分;7 8 9 94 5 6 4 7 3例1题图例4.某中学高二(2)班甲、乙两名同窗自高中以来每场数学考试成绩如下:甲的得分:95,81,75,91,86,89,71,65,76,88, 乙的得分:83,86,93,99,88,90,98, 98,79,91.画出两人数学成绩茎叶图,请按照茎叶图对两人的成绩进行比较.四、课堂小结五.课堂检测:1.能反映一组数据的离散程度的是A.众数B.平均数C.标准差D.中位数2.与原数据单位不一样的是A.众数B.平均数C.标准差D.方差3. 管理人员从一水池内捞出30条鱼,做上标记后放回水池。
2.2.2 用样本的数字特征估计总体的数字特征●三维目标1.知识与技能(1)能利用频率分布直方图估计总体的众数,中位数,平均数.(2)结合实际,能选取恰当的样本数字特征,对问题作出合理判断,制定解决问题的有效方法.2.过程与方法在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法.3.情感、态度与价值观通过对有关数据的搜集、整理、分析、判断培养学生“实事求是”的科学态度和严谨的工作作风.●重点难点重点:利用频率分布直方图估计总体的众数、中位数、平均数.难点:(1)从频率分布直方图中计算出中位数;(2)选取恰当的样本数字特征来估计总体,从而正确的对实际问题做出决策.●教学建议1.本节课让学生通过熟知的一组数据的代表-众数、中位数、平均数,并辅以计算器、多媒体手段,通过一定手脑结合的训练,让学生感受在只能得到频率分布直方图的情况下也可以估计总体数字特征.在课堂结构上,建议根据学生的认知水平,采取“仔细观察—分析研究—小组讨论—总结归纳”的方法,使知识的获得与知识的发生过程环环相扣,层层深入,从而顺利完成教学目标.2.教学方法与手段分析(1)教学方法:结合本节课的教学内容和学生的认知水平,在教法上,建议采用“问答探究”式的教学方法,层层深入.充分发挥教师的主导作用,让学生真正成为教学活动的主体.(2)教学手段:通过多媒体辅助教学,充分调动学生参与课堂教学的主动性与积极性.(3)本节课的教学过程重视学生探究知识的过程,突出了以教师为主导,学生为主体的教学理念.教师通过提供一些可供学生研究的素材,引导学生自己去研究问题,探究问题的结论.●教学流程创设问题情境引出问题⇒引导学生结合初中学过的众数、中位数、平均数的概念感受这三个数字特征⇒教师通过多媒体展示这三个数字特征,通过分组讨论总结求法⇒通过例1的展示及变式训练的强化使学生进一步体会这三个数字特征通过例2及变式训练使学生掌握求方差及标准差的方法,体会方差的应用⇒引导学生探究方差及标准差的特征及求法,分组讨论说明方差的实际意义⇒归纳整理进行课堂小结,整体把握本节知识⇒完成当堂双基达标,巩固所学知识并进行反馈矫正课标解读1.会求样本的众数、中位数、平均数、标准差、方差.(重点) 2.理解用样本的数字特征来估计总体数字特征的方法.(重点) 3.会应用相关知识解决统计实际问题.(难点)众数、中位数、平均数的概念1.众数:一组数据中重复出现次数最多的数叫做这组数的众数.2.中位数:把一组数据按从小到大的顺序排列,把处于最中间位置的那个数称为这组数据的中位数.当数据个数为奇数时,中位数是按从小到大的顺序排列的最中间的那个数;当数据个数为偶数时,中位数是按从小到大的顺序排列的最中间两个数的平均数.3.平均数:如果有n个数x1,x2,x3,…,x n,那么x=1n(x1+x2+…+x n)叫这n个数的平均数.标准差、方差【问题导思】甲、乙两名战士在相同条件下各射靶两次,每次命中的环数分别是:甲:8,6,7,8,6,5,9,10,4,7乙:6,7,7,8,6,7,8,7,9,51.甲、乙两战士命中环数的平均数x甲、x乙各是多少?【提示】x甲=7环;x乙=7环.2.由x甲,x乙能否判断两人的射击水平?【提示】由于x甲=x乙,故无法判断.3.观察上述两组数据,你认为哪个人的射击水平更稳定?【提示】从数字分布来看,甲命中的环数较分散,乙命中的环数较集中,故乙的射击水平更稳定.1.标准差的计算公式标准差是样本数据到平均数的一种平均距离,一般用s表示,s=1n x1-x2+x2-x2+…+x n-x2].2.方差的计算公式标准差的平方s2叫做方差.s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2].其中,xi(i=1,2,…,n)是样本数据,n是样本容量,x是样本平均数.众数、中位数、平均数的应用例题1某公司的33名人员的月工资如下:职务董事长副董事长董事总经理经理管理员职员人数11215320工资(元)5500500035003000250020001500(1)求该公司人员月工资的平均数、中位数、众数(精确到元);(2)假设副董事长的工资从5000元提升到20000元;董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)(3)你认为哪个统计量更能反映这个公司人员的工资水平?结合此问题谈一谈你的看法.【思路探究】由平均数定义→计算平均数→将数据从小到大排列→得中位数、平均数→结论【自主解答】(1)平均数是x=(5500+5000+3500×2+3000+2500×5+2000×3+1500×20)÷33≈2091(元),中位数是1500元,众数是1500元.(2)平均数是x′=(30000+20000+3500×2+3000+2500×5+2000×3+1 500×20)÷33≈3288(元),中位数是1500元,众数是1500元.(3)在这个问题中,中位数和众数均能反映该公司人员的工资水平.因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司人员的工资水平.规律方法1.深刻理解和把握平均数、中位数、众数在反映样本数据上的特点,并结合实际情况,灵活应用.2.如果样本平均数大于样本中位数,说明数据中存在许多较大的极端值;反之,说明数据中存在许多较小的极端值.在实际应用中,如果同时知道样本中位数和样本平均数,可以使我们了解样本数据中极端数据的信息,帮助我们作出决策.3.平均数对极端值敏感,而中位数对极端值不敏感.因此两者结合,可较好地分析总体的情况.变式训练高一(3)班有男同学27名,女同学21名,在一次语文测验中,男同学的平均分是82分,中位数是75分,女同学的平均分是80分,中位数是80分.(1)求这次测验全班平均分(精确到0.01);(2)估计全班成绩在80分以下(含80分)的同学至少有多少人?(3)分析男同学的平均分与中位数相差较大的主要原因是什么?【解】(1)利用平均数计算公式得x=148(82×27+80×21)≈81.13(分).(2)∵男同学的中位数是75,∴至少有14名男同学得分不超过75分.又∵女同学的中位数是80,∴至少有11名女同学得分不超过80分.∴全班至少有25人得分低于80分(含80分).(3)男同学的平均分与中位数的差别较大,说明男同学中两极分化现象严重,得分高的和低的相差较大.用频率分布表或直方图求数字特征例题2已知一组数据:125121123125127129125128130129126 124125127126122124125126128(1)填写下面的频率分布表:分组频数累计频数频率[120.5,122.5)[122.5,124.5)[124.5,126.5)[126.5,128.5)[128.5,130.5]合计(2)作出频率分布直方图;(3)根据频率分布直方图或频率分布表求这组数据的众数、中位数和平均数.【思路探究】将数据分组后依次填写分布表.然后画出直方图,最后根据数字特征在直方图中的求法求解.【自主解答】(1)分组频数累计频数频率[120.5,122.5)20.1[122.5,124.5)30.15[124.5,126.5) 8 0.4 [126.5,128.5) 4 0.2 [128.5,130.5]3 0.15 合计201(2)(3)在[124.5,126.5)中的数据最多,取这个区间的中点值作为众数的近似值,得众数为125.5,事实上,众数的精确值为125.图中虚线对应的数据是124.5+2×58=125.75,事实上中位数为125.5.使用“组中值”求平均数:x -=121.5×0.1+123.5×0.15+125.5×0.4+127.5×0.2+129.5×0.15=125.8,事实上平均数的精确值为x -=125.75.规律方法1.利用频率分布直方图求数字特征: (1)众数是最高的矩形的底边的中点. (2)中位数左右两侧直方图的面积相等.(3)平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.2.利用直方图求众数、中位数、平均数均为近似值,往往与实际数据得出的不一致,但它们能粗略估计其众数、中位数和平均数.变式训练下表是某校学生的睡眠时间抽样的频率分布表(单位:h ),试估计该校学生的日平均睡眠时间.睡眠时间 [6, 6.5) [6.5, 7) [7, 7.5) [7.5, 8) [8, 8.5) [8.5, 9] 合计 频数 5 17 33 37 6 2 100 频率0.050.170.330.370.060.021【解】 法一 日平均睡眠时间为x =1100×(6.25×5+6.75×17+7.25×33+7.75×37+8.25×6+8.75×2)=1100×739=7.39(h ).法二 求组中值与对应频率之积的和:x =6.25×0.05+6.75×0.17+7.25×0.33+7.75×0.37+8.25×0.06+8.75×0.02=7.39(h ).所以,估计该校学生的日平均睡眠时间约为7.39 h .标准差与方差的应用例题3 甲、乙两机床同时加工直径为100 cm 的零件,为检验质量,从中抽取6件测量数据为:甲:99 100 98 100 100 103 乙:99 100 102 99 100 100 (1)分别计算两组数据的平均数及方差;(2)根据计算说明哪台机床加工零件的质量更稳定. 【思路探究】 着 眼 点—错误!)【自主解答】 (1)x 甲=16[99+100+98+100+100+103]=100,x 乙=16[99+100+102+99+100+100]=100,s 2甲=16[(99-100)2+(100-100)2+(98-100)2+(100-100)2+(100-100)2+(103-100)2]=73, s 2乙=16[(99-100)2+(100-100)2+(102-100)2+(99-100)2+(100-100)2+(100-100)2]=1.(2)由(1)知x 甲=x 乙,比较它们的方差,∵s 2甲>s 2乙,故乙机床加工零件的质量更稳定.规律方法1.在实际问题中,仅靠平均数不能完全反映问题,还要研究其偏离平均值的离散程度(即方差或标准差):方差大说明取值分散性大,方差小说明取值分散性小或者取值集中、稳定.2.关于统计的有关性质及规律:(1)若x 1,x 2,…,x n 的平均数为x ,那么mx 1+a ,mx 2+a ,…,mx n +a 的平均数是m x +a .(2)数据x 1,x 2,…,x n 与数据x 1+a ,x 2+a ,…,x n +a 的方差相等. (3)若x 1,x 2,…,x n 的方差为s 2,那么ax 1,ax 2,…,ax n 的方差为a 2s 2.变式训练对划艇运动员甲、乙在相同的条件下进行了6次测试,测得他们每次的最大速度(m /s )如下:甲:27,38,30,37,35,31 乙:33,29,38,34,28,36根据以上数据,试判断他们谁更优秀. 【解】x 甲=16×(27+38+30+37+35+31)=33,s 2甲=16×[(27-33)2+(38-33)2+…+(31-33)2]=16×94≈15.7, x 乙=16×(33+29+38+34+28+36)=1986=33, s 2乙=16×[(33-33)2+(29-33)2+…+(36-33)2]=16×76≈12.7. 所以x 甲=x 乙,s 2甲>s 2乙.这说明甲、乙两运动员的最大速度的平均值相同,但乙比甲更稳定,故乙比甲更优秀.巧用分类讨论思想求数字特征典例 (12分)某班4个小组的人数为10,10,x ,8,已知该组数据的中位数与平均数相等,求这组数据的中位数.【思路点拨】 x 的大小未知,可根据x 的取值不同分别求中位数.【规范解答】 该组数据的平均数为14(x +28),中位数一定是其中两个数的平均数,由于x 不知是多少,所以要分几种情况讨论.(1)当x ≤8时,原数据按从小到大的顺序排列为x ,8,10,10,其中位数为12×(10+8)=9.若14(x +28)=9,则x =8,此时中位数为9.4分 (2)当8<x ≤10时,原数据按从小到大的顺序排列为8,x ,10,10,其中位数为12(x +10).若14(x +28)=12(x +10),则x =8,而8不在8<x ≤10的范围内,所以舍去.8分 (3)当x >10时,原数据按从小到大的顺序排列为8,10,10,x ,其中位数为12×(10+10)=10.若14(x +28)=10,则x =12,此时中位数为10.综上所述,这组数据的中位数为9或10.12分启迪思维当在数据中含有未知数x ,求该组数据的中位数时,由于x 的取值不同,所以数据由小到大(或由大到小)排列的顺序不同,由于条件的变化,问题的结果有多种情况,不能用同一标准或同一种方法解决,故需分情况讨论,讨论时要做到全面合理,不重不漏.课堂小结1.一组数据的中位数是唯一的,求中位数时,必须先将这组数据按从小到大(或从大到小)的顺序排列,如果数据的个数为奇数,那么,最中间的一个数据是这组数据的中位数,如果数据的个数为偶数,那么,最中间两个数据的平均数是这组数据的中位数.2.利用直方图求数字特征:①众数是最高的矩形的底边的中点.②中位数左右两边直方图的面积应相等.③平均数等于每个小矩形的面积乘以小矩形底边中点的横坐标之和.3.样本标准差反映了各样本数据聚集于样本平均值周围的程度,标准差越小,表明各个样本数据在样本平均数周围越集中;反之,标准差越大,表明各样本数据在样本平均数的两边越分散.基础达标训练1.一组观察值4,3,5,6出现的次数分别为3,2,4,2,则样本平均值为( )A .4.55B .4.5C .12.5D .1.64 【解析】x =4×3+3×2+5×4+6×23+2+4+2≈4.55.【答案】 A2.一个样本数据按从小到大的顺序排列为:13,14,19,x ,23,27,28,31,中位数为22,则x =________.【解析】 由题意知x +232=22,则x =21.【答案】 213.五个数1,2,3,4,a 的平均数是3,则a =________,这组数据的标准差是________. 【解析】 由平均数公式得1+2+3+4+a 5=3,则a =5,s 2=15[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2.∴s = 2.【答案】 524.2012年青年歌手大奖赛民族唱法组中,6位评委现场给每位歌手打分,去掉一个最高分和一个最低分后,其余分数的平均数作为歌手的成绩,已知6位评委给某位歌手的打分是:9.2 9.5 9.4 9.6 9.8 9.5求这位歌手的得分及6位评委打分的众数和中位数.【解】 这位歌手的得分为x =14(9.5+9.4+9.6+9.5)=9.5分.在这组数据中,9.5出现了2次,出现的次数最多,所以6位评委打分的众数是9.5分,将这组数据按照从小到大的顺序排列后,位于最中间的两个数都是9.5,所以6位评委打分的中位数是9.5分.课后测试一、选择题1.(2013·济南高一检测)某学习小组在某次数学测验中,得100分的有1人,95分的有1人,90分的有2人,85分的有4人,80分和75分的各1人,则该小组成绩的平均数、众数、中位数分别是( )A .85,85,85B .87,85,86C .87,85,85D .87,90,85【解析】 从小到大排列为75,80,85,85,85,85,90,90,95,100观察可知,众数、中位数分别为85、85,计算得平均数为87.【答案】 C2.甲、乙、丙、丁四名射手在选拔赛中所得的平均环数x 及其方差s 2如下表所示,则选送决赛的最佳人选应是( )甲 乙 丙 丁 x7 8 8 7 s 26.36.378.7A .甲B .乙C .丙D .丁【解析】 ∵x 乙=x 丙>x 甲=x 丁,且s 2甲=s 2乙<s 2丙<s 2丁,∴应选择乙进入决赛. 【答案】 B3.(2012·山东高考)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差【解析】 对样本中每个数据都加上一个非零常数时不改变样本的方差和标准差,众数、中位数、平均数都发生改变.【答案】 D4.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,则由此求出的平均数与实际平均数的差是( )A .3.5B .-3C .3D .-0.5【解析】 少输入90,9030=3,平均数少3,求出的平均数减去实际平均数等于-3.【答案】 B5.(2012·安徽高考)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图2-2-9所示,则( )图2-2-9A .甲的成绩的平均数小于乙的成绩的平均数B .甲的成绩的中位数等于乙的成绩的中位数C .甲的成绩的方差小于乙的成绩的方差D .甲的成绩的极差小于乙的成绩的极差【解析】 由条形统计图得到相关数据,然后利用平均数、中位数、方差、极差的概念求解.由条形统计图知:甲射靶5次的成绩分别为:4,5,6,7,8; 乙射靶5次的成绩分别为:5,5,5,6,9,所以x 甲=4+5+6+7+85=6;x 乙=5+5+5+6+95=6.所以x 甲=x乙.故A 不正确.甲的成绩的中位数为6,乙的成绩的中位数为5,故B 不正确.s 2甲=15[(4-6)2+(5-6)2+(6-6)2+(7-6)2+(8-6)2]=15×10=2,s 2乙=15[(5-6)2+(5-6)2+(5-6)2+(6-6)2+(9-6)2]=15×12=125,因为2<125,所以s 2甲<s 2乙.故C 正确.甲的成绩的极差为:8-4=4,乙的成绩的极差为:9-5=4,故D 不正确.故选C .【答案】 C 二、填空题6.(2013·深圳高一检测)已知样本9,10,11,x ,y 的平均数是10,标准差为2,则xy =________.【解析】 由平均数得9+10+11+x +y =50,∴x +y =20.又由(9-10)2+(10-10)2+(11-10)2+(x -10)2+(y -10)2=(2)2×5=10,得x 2+y 2-20(x +y )=-192,(x +y )2-2xy -20(x +y )=-192,∴xy =96.【答案】 967.从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为________.分数 5 4 3 2 1 人数2010303010【解析】 平均成绩为5×20+4×10+3×30+2×30+1×10100=3,s 2=1100×[20×(5-3)2+10×(4-3)2+30×(3-3)2+30×(2-3)2+10×(1-3)2]=160100.∴s =2105【答案】21058.(2012·广东高考)由正整数组成的一组数据x 1,x 2,x 3,x 4,其平均数和中位数都是2,且标准差等于1,则这组数据为________.(从小到大排列)【解析】 利用平均数、中位数、标准差公式分类讨论求解. 假设这组数据按从小到大的顺序排列为x 1,x 2,x 3,x 4,则⎩⎪⎨⎪⎧x 1+x 2+x 3+x 44=2,x 2+x 32=2,∴⎩⎨⎧x 1+x 4=4,x 2+x 3= 4.又s = 14x 1-2+x 2-2+x 3-2+x 4-2]=12x 1-2+x 2-2+-x 2-2+-x 1-2=12x 1-22+x 2-2]=1,∴(x 1-2)2+(x 2-2)2=2. 同理可求得(x 3-2)2+(x 4-2)2=2.由x 1,x 2,x 3,x 4均为正整数,且(x 1,x 2),(x 3,x 4)均为圆(x -2)2+(y -2)2=2上的点,分析知x 1,x 2,x 3,x 4应为1,1,3,3.【答案】 1,1,3,3 三、解答题9.某公司销售部有销售人员15人,为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:每人销售件数1 800 510 250 210 150 120 人数113532(1)求这15位销售人员该月销售量的平均数、中位数及众数;(2)假设销售部负责人把每位销售人员的月销售定额定为320件,你认为是否合理,为什么?如不合理,请你制定一个较合理的销售定额.【解】 (1)平均数x =115×(1 800×1+510×1+250×3+210×5+150×3+120×2)=320(件),中位数为210件,众数为210件.(2)不合理,因为15人中就有13人的销售额达不到320件,也就是说320虽是这一组数据的平均数但它却不能反映销售人员的一般水平.销售额定为210件要合理些.由于210既是中位数,又是众数,是绝大部分人都能达到的销售额.10.某篮球队教练要从甲、乙两名运动员中挑选一名运动员,甲、乙两人进行10轮投篮比赛,每轮每人投10次,甲每轮投中的次数分别为9,7,8,7,8,10,7,9,8,7,乙每轮投中的次数分别为7,8,9,8,7,8,9,8,9,7,请你给教练一个人选的建议.【解】 由已知x 甲=110×(9+7+8+7+8+10+7+9+8+7)=8,x 乙=110×(7+8+9+8+7+9+8+9+8+7)=8, s 2甲=110×[(9-8)2+(7-8)2+(8-8)2+(7-8)2+(8-8)2+(10-8)2+(7-8)2+(9-8)2+(8-8)2+(7-8)2]=1.s 2乙=110×[(7-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2+(9-8)2+(8-8)2+(9-8)2+(8-8)2+(7-8)2]=35.∵x 甲=x 乙,s 2甲>s 2乙,∴乙运动员发挥稳定,应选乙.11.为了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图2-2-10,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.图2-2-10(1)求第四小组的频率;(2)问参加这次测试的学生人数是多少?(3)问在这次测试中学生跳绳次数的中位数落在第几小组内?【解】(1)第四小组的频率为1-0.1-0.3-0.4=0.2.(2)参加这次测试的学生人数为50.1=50.(3)由于中位数是所有数据中的中间值,故在频率分布直方图中体现的是中位数的左右两边频数应相等,即频率也相等,从而就是小矩形的面积和相等.因此在频率分布直方图中将频率分布直方图中所有小矩形的面积一分为二的直线所对应的成绩即为所求.∵0.1+0.3=0.4<0.5,0.1+0.3+0.4=0.8>0.5,故这次测试中学生跳绳次数的中位数落在第三小组内.(教师用书独具)备选例题某学校高一A班和高一B班各有49名学生,两班在一次数学测验中的成绩统计如下:班级平均分众数中位数标准差A班79708719.8B班7970795.2(1)请你对下面的一段话给予简要分析:A班的小刚回家对妈妈说:“昨天的数学测验,全班平均分为79分,得70分的人最多,我得了85分,在班里算是上游了!”(2)请你根据表中的数据,对这两个班的数学测验情况进行简要分析,并提出建议.【思路探究】综合考虑四个数字特征对小刚成绩情况进行判断,同时对班级成绩作出分析.【自主解答】(1)由于A班49名学生数学测验成绩的中位数是87,则85分排在全班第25名之后,所以从位次上看,不能说85分是上游,成绩应该属于中游.但也不能以位次来判断学习的好坏,小刚得了85分,说明他对这段的学习内容掌握得较好,从掌握学习的内容上讲,也可以说属于上游.(2)A班成绩的中位数是87分,说明高于87分(含87)的人数占一半以上,而平均分为79分,标准差又很大,说明低分也多,两极分化严重,建议加强对学习困难的学生的帮助.B班的中位数和平均数都是79分,标准差又小,说明学生之间差别较小,学习很差的学生少,但学习优异的也很少,建议采取措施提高优秀率.备选变式某校在一次考试中,甲、乙两班学生的数学成绩统计如下:分数5060708090100人数甲班161211155乙班351531311选用平均数、众数和中位数评估这两个班的成绩?【解】甲班平均数79.6分,乙班平均数80.2分,从平均分看成绩较好的是乙班;甲班众数为90分,乙班众数为70分,从众数看成绩较好的是甲班;甲班的第25个和第26个数据都是80,所以中位数是80分,同理乙班中位数也是80分,但是甲班成绩在中位数以上(含中位数)的学生有31人,占全班学生的62%,同理乙班27人,占全班学生的54%,所以从中位数看成绩较好的是甲班.如果记90分以上(含90分)为优秀,甲班有20人,优秀率为40%,乙班有24人,优秀率为48%,从优秀率来看成绩较好的是乙班.可见,一个班学生成绩的评估方法很多,需视要求而定.如果不考虑优秀率的话,显然以中位数去评估比较合适.。
第一学期高一教案主备人:使用人:时间:生小组讨论并精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。