9.1.1不等式及其解集(2)
- 格式:ppt
- 大小:883.50 KB
- 文档页数:18
9.1.1 不等式及其解集 学习目标:1. 知道不等式的定义,理解不等式的解集和方程的解的不同.2. 会在数轴上表示出不等式的解集,并且能把数轴上的某部分数集用相应的不等式表示.3. 知道一元一次不等式的定义 重点:不等式和不等式解集的概念的理解,利用数轴表示不等式的解集 难点:总结归纳不等式及不等式的解,正确理解不等式解集的概念 学习过程: 1、用“>”或“<”填空. 7+3 4+3 7×2 4×22、以上式子是等式吗?它是用 或 号表示 关系的式子,叫做 .3、求不等式的解集的过程叫做 .4、不等式用符号>,<,≥,≤.“≥”读作“大于等于”,表示大于或等于也就是不小于。
“≤”读作“小于等于”. 表示小于或等于,也就是不大于。
例如:x ≥y 表示 ,也就是 .下列等式哪些是不等式?①42>;②230a +>;③235x x +;④24x x <+;⑤23x x =-;⑥2231x x x +<+;⑦a b c +≠;⑧58>;⑨8x ≥用不等式表示①a 与4的和是正数②m的3倍大于n的2倍③a与b和的2倍是非正数5、当x= 时,35x+=成立当x满足什么数值时,35x+>成立呢?使方程两边相等的未知数的值就是方程的解使成立的的值叫做不等式的解例如:当3,4,5.....x=时,不等式成立当2,1,0...x=时,不等式不成了我们发现,当x 时,不等式35x+>总不x+>总是成立;当x 时,不等式35成立.一般地,一个含有未知数的不等式的 ,组成这个不等式的解集.求不等式的的过程叫做解不等式.一个不等式的解有个.6、在数轴上表示不等式的解集:不等式x+2>5的解集,可以表示成x>3. x>3表示x取哪些数?在数轴上表示大于3的数的点应该数3所对应点的 (填写左边还是右边)?因此我们可以在数轴上把x>3直观地表示出来.画图时要注意方向(向 )和端点(不包括数3,在对应点画圆圈).如图所示:同样,如果某个不等式的解集为x≤-2, 那么它表示x取那些数?此时在作x≤-2的数轴表示时,要包括-2的对应点,因而在该点处应画圆点.如图所示:总结:小于向画,大于向画;无等号画圆圈,有等号画圆点.。
课题:第九章不等式与不等式组9.1 不等式9.1.1 不等式及其解集【附件】讲学稿及当堂验收卷9.1.1 不等式及其解集【学习目标】1.了解不等式的概念;2.理解不等式的解集;3.能正确表示不等式的解集。
【学习重点】不等式解集的表示【学习难点】不等式解集的确定【学习方法】自学课文,独立思考,同桌交流,小组交流,师生互动。
【问题解决】1.不等式的定义:2.一元一次不等式的定义:3.不等式的解:4.不等式的解集:5.解不等式:6.下列各式中,哪些是不等式?(1)a+b=b+a (2)-3>-5 (3)x≠l(4)x十3>6 (5) 2m< n (6)2x-37. 用不等式表示:(1)a与1的和是正数(2)y的2倍与1的和大于3(3)x的一半与x的2倍的和是非正数(4)c与4的和的30%不大于-2(5)x除以2的商加上2最多为5(6)a与b的和的平方不可能大于38.完成课本P123练习第二题9.完成课本P123练习第一题10.下列说法中正确的是( )A.x=3是不是不等式2x>1的解B.x=3是不是不等式2x>1的唯一解;C.x=3不是不等式2x>1的解;D.x=3是不等式2x>1的解集。
11.直接想出不等式的解集,并在数轴上表示出来:(1)x+3>6 (2)2x<8(3)x-2>0(4)0.5x≤2【课堂小结】本节课你的收获是什么?你对自己在本节课中的表现最满意的地方和不太满意的地方分别是什么?请写下一句激励自己的名言。
人教版数学七年级下册《9.1.1不等式及其解集》教学设计一. 教材分析人教版数学七年级下册《9.1.1不等式及其解集》是学生在学习了整式、分式等基础知识后,引入的一种新的数学表达形式。
本节课主要让学生了解不等式的概念,学会用不等号表示两个数的大小关系,以及如何求解不等式的解集。
教材中通过丰富的实例,引导学生探究不等式的性质,培养学生的逻辑思维能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和运算规则有一定的了解。
但学生在学习新知识时,可能对不等式的概念和性质理解不够深入,需要在教学过程中加以引导和巩固。
此外,学生对实际问题中不等式的应用还不够熟练,需要通过大量的练习来提高。
三. 教学目标1.了解不等式的概念,掌握不等式的基本性质。
2.学会求解不等式的解集,并能解决一些实际问题。
3.培养学生的逻辑思维能力,提高学生解决数学问题的能力。
四. 教学重难点1.重难点:不等式的概念、性质以及求解不等式的解集。
2.难点:对不等式性质的理解和应用,求解不等式时的运算技巧。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究不等式的性质。
2.利用多媒体辅助教学,生动展示不等式的图形表示,帮助学生形象理解。
3.运用实例分析,让学生体会不等式在实际问题中的应用。
4.注重练习,让学生在实践中巩固所学知识。
六. 教学准备1.教学课件:制作课件,包括不等式的概念、性质、例题及练习题。
2.教学素材:收集一些实际问题,用于引导学生应用不等式解决问题。
3.练习题:准备一些不等式的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)利用多媒体展示一些实际问题,引导学生思考如何用数学符号表示两个数的大小关系。
通过讨论,引出不等式的概念。
2.呈现(10分钟)介绍不等式的基本性质,如对称性、传递性等。
通过实例演示,让学生直观地感受不等式的性质。
3.操练(15分钟)让学生分组讨论,尝试解决一些不等式问题。
人教版数学七年级下册同步训练: 9.1.1《不等式及其解集》姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分)(2020·重庆模拟) 若关于x的不等式组所有整数解的和为2,且关于y的分式方程=1的解是正数,则符合条件的所有整数k的和是()A . 10B . 13C . 15D . 172. (2分)(2019·福田模拟) 对于任意实数m,n,定义一种运算m※n=mn﹣m﹣n+3,例如:2※5=2×5﹣2﹣5+3=6.请根据上述定义解决问题:若5<2※x<7的整数解为()A . 4B . 5C . 6D . 73. (2分) (2020七上·滨海月考) 如果a+b 0,并且ab 0,那么()A . a 0,b 0B . a 0,b 0C . a 0,b 0D . a 0,b 04. (2分) (2020七下·门头沟期末) 把不等式x ≤1 的解集表示在数轴上,正确的是()A .B .C .D .5. (2分)若a>b,则下列式子中一定成立的是()A . a﹣2<b﹣2B . >C . 2a>bD . 3﹣a>3﹣b6. (2分) (2017八下·宝安期中) 若x>y,则下列式子中错误的是()A . x-3>y-3B . x+3>y+3C . -3x>-3yD .7. (2分) (2020八上·哈尔滨月考) 若,则下列各式中一定不成立的是()A .B .C .D .8. (2分)下列不等关系中,正确的是()A . a不是负数可表示为a>0B . x不大于5可表示为x>5C . x与1的和是非负数可表示为x+1>0D . m与4的差是负数可表示为m-4<09. (2分)(2017·乐清模拟) 若a>b,则下列各式中一定成立的是()A . a+2<b+2B . a﹣2<b﹣2C . >D . ﹣2a>﹣2b10. (2分) (2020八上·下城期末) 设m,n是实数,a,b是正整数,若,则()A .B .C .D .11. (2分) (2020七下·许昌期末) 若是关于的一元一次不等式,则该不等式的解集是()A .B .C .D .12. (2分)下列不等式中,是一元一次不等式的是()A . 2x-1>0B . -1<2C . 3x-2y≤-1D . y2+3>513. (2分) (2018八上·宁波期中) 一元一次不等式x+1>2的解在数轴上表示为()A .B .C .D .14. (2分) (2020八下·西安月考) 下列不等式中,属于一元一次不等式的是()A . x(x-1)+2≤0B . 2(1-y)+y>2C . <1D . x-2y≥015. (2分) (2019七下·唐山期末) 如果不等式组无解,则b的取值范围是A .B .C .D .二、填空题 (共5题;共5分)16. (1分) (2017八上·秀洲月考) 用不等式表示“x与1的和为正数”:________。
9.1.1《不等式及其解集》教学设计【内容】人教版七年级数学下第九章第一节【知识与技能】1.能够从现实问题中抽象出不等式,理解不等式的意义,会根据给定条件列不等式.2.正确理解“非负数”、“不小于”、“不大于”等数学术语.3.理解不等式的解、解集的意义,能举出一个不等式的几个解并且会检验一个数是否是某个不等式的解.4.能用数轴表示不等式的解集.【过程与方法】经历由具体实例建立不等式模型的过程,进一步发展学生的符号感和数学化的能力,体会在解决问题的过程中与他人合作的重要性.【情感、态度与价值观】使学生能独立克服困难,运用知识解决问题,树立学好数学的自信心;在独立思考的基础上,积极参与讨论,在合作交流中有一定收获.教学重点理解不等式、不等式的解和解集,能正确列出不等式.教学难点准确应用不等号,理解不等式的解和解集的意义.学情与教材分析一、学情分析学生在小学对不等量关系、数量大小的比较等知识已经有所了解,但对含有未知数的不等式还是第一次接触,本节就是对“不等式”这一概念进一步明确,使它成为一种有效的数学工具.学生在列不等式时,对数量关系中的“不大于”、“不小于”、“负数”、“非负数”等数学术语的含义不能准确理解,在把用文字语言表述的不等关系转化为用符号表示的不等式时有一定困难,对不等式的解、不等式的解集两个概念容易混淆.二、教材分析不等式是解决实际问题的一种数学模型,它不仅是初中阶段学习的重点内容,而且也是后面学习函数等知识的基础.它是在学习了一元一次方程、二元一次方程组之后的后续内容,贯穿于数学学习的始终,起着承上启下的作用.本节是本章的第一课时,主要学习四个概念:不等式、不等式的解、解集。
同时渗透建模、类比、分类等思想方法.教学方法:引导发现法教学准备:教具:圆规、三角尺、多媒体及课件。
学具:圆规、三角尺。
教学过程:一创设情景引入新知(一)动画演示情景激趣:两个体重相同的孩子正在跷跷板上做游戏,现在换了一个大人上去,跷跷板发生了倾斜,游戏无法继续进行下去了,这是什么原因呢?设计意图:通过实例创设情境,从“等”过渡到“不等”,培养学生的观察能力,分析能力,激发他们的学习兴趣问题1:出示图片(多媒体演示): 若设大象的体重为x吨,你能用式子表示图片中两个小朋友的对话吗?问题2:一辆匀速行驶的汽车在11:20时距离A地50千米。
(1) a+ b=b+a (2)—3>—5 (3) l(4) x 十3>6 (5) 2m v n ( 6) 2x-3我们看到有些不等式不含未知数,有些不等式含有未知数。
类似于一元一次方程,含有一个未知数,并且未知数的次数是1的不等式,叫做一元一次不等式。
注意:像(1 )中分母含有未知数的不等式不是一元一次不等式,这一点与一兀一次方程类似。
(投影)判断下列数中哪些能使不等式2/3x > 50成立:76, 73, 79, 80, 74. 9, 75.1, 90, 6076, 79, 80, 75.1, 90 能使不等式2/3x > 50 成立。
我们把能使不等式成立的未知数的值,叫不等式的解•我们看到不等式的解不是一个,你还能找出这个不等式的其他解吗?它的解到底有多少个?如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。
一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。
如所有大于75的数组成不等式2/3x > 50的解集,与作x >7 5,这个解集可以用数轴来表示。
------ 1 ---------- b--------------------------- k0 75求不等式的解集的过程叫做解不等式.((投影)在数轴上表示下列不等式的解集:(1)x>-1;(2)x > -1;(3)x v -1;(4)x w -1解:------- b----- ■ --------- *■ ------- i ------- 1- --------- 4'1 0 -1 0(1) (2)------ i ------------------ > ------ 1----- 1---------- >0”1Q ( 4)(3)( 4)注意:1.实心点表示包括这个点,空心点表示不包括这个点;2。
步骤:画数轴,定界点,走方向。