2017年成考用数学公式
- 格式:doc
- 大小:40.50 KB
- 文档页数:6
成人高考数学万能公式一、函数部分。
1. 一次函数y = kx + b(k≠0)- 斜率k=(y_2 - y_1)/(x_2 - x_1)(两点(x_1,y_1),(x_2,y_2)在直线上)。
- 当b = 0时,y=kx是正比例函数。
2. 二次函数y=ax^2+bx + c(a≠0)- 顶点坐标(-(b)/(2a),frac{4ac - b^2}{4a})。
- 对称轴方程x =-(b)/(2a)。
- 二次函数的求根公式x=frac{-b±√(b^2)-4ac}{2a}(当y = 0时,求方程ax^2+bx + c = 0的根)。
3. 反比例函数y=(k)/(x)(k≠0)- k = xy(x≠0,y≠0),即图象上任意一点的横纵坐标之积等于k。
二、三角函数部分。
1. 同角三角函数的基本关系。
- sin^2α+cos^2α = 1。
- tanα=(sinα)/(cosα)。
2. 两角和与差的三角函数公式。
- sin(A± B)=sin Acos B±cos Asin B。
- cos(A± B)=cos Acos Bmpsin Asin B。
- tan(A± B)=(tan A±tan B)/(1mptan Atan B)。
3. 二倍角公式。
- sin2α = 2sinαcosα。
- cos2α=cos^2α-sin^2α = 2cos^2α - 1=1 - 2sin^2α。
- tan2α=(2tanα)/(1-tan^2)α。
三、数列部分。
1. 等差数列。
- 通项公式a_n=a_1+(n - 1)d,其中a_1为首项,d为公差。
- 前n项和公式S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。
2. 等比数列。
- 通项公式a_n=a_1q^n - 1,其中a_1为首项,q为公比(q≠1)。
- 前n项和公式S_n=frac{a_1(1 - q^n)}{1 - q}。
成人高考专升本高等数学公式大全1.代数基本公式:-平方差公式:$a^2-b^2=(a+b)(a-b)$-三角恒等式:- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$- 余弦定理:$c^2 = a^2 + b^2 - 2ab\cos C$- 正弦余弦定理:$\sin^2 A + \cos^2 A = 1$- 二项式定理:$(a + b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$2.函数与极限公式:-导数的四则运算:- $(u \pm v)' = u' \pm v'$- $(uv)' = u'v + uv'$- $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$- 泰勒公式:$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)(x - a)^2}{2!} + \cdots$-常用极限:- $\lim_{x \to 0}\frac{\sin x}{x} = 1$- $\lim_{x \to \infty}(1 + \frac{1}{x})^x = e$- $\lim_{x \to \infty}(1 + \frac{k}{x})^x = e^k$- $\lim_{n \to \infty}(1 + \frac{x}{n})^n = e^x$3.微分公式:-求导法则:-$(c)'=0$- $(x^n)' = nx^{n-1}$-$(e^x)'=e^x$- $(\ln x)' = \frac{1}{x}$-高阶导数:-$(f(x)g(x))''=f''(x)g(x)+2f'(x)g'(x)+f(x)g''(x)$-$(f(g(x)))''=f''(g(x))(g'(x))^2+f'(g(x))g''(x)$-微分运算法则:- $\frac{d(u \pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$ - $\frac{d(kv)}{dx} = k\frac{dv}{dx}$- $\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$- $\frac{d(\frac{u}{v})}{dx} = \frac{v\frac{du}{dx} -u\frac{dv}{dx}}{v^2}$4.积分公式:-不定积分法则:- $\int k \,dx = kx + C$- $\int x^n \,dx = \frac{x^{n+1}}{n+1} + C, (n \neq -1)$- $\int e^x \,dx = e^x + C$- $\int \frac{1}{x} \,dx = \ln ,x, + C$-定积分法则:- $\int_a^b kf(x) \,dx = k\int_a^b f(x) \,dx$- $\int_a^b [f(x) + g(x)] \,dx = \int_a^b f(x) \,dx +\int_a^b g(x) \,dx$- $\int_a^b (f(x) - g(x)) \,dx = \int_a^b f(x) \,dx -\int_a^b g(x) \,dx$5.级数公式:-等比级数求和:$S_n = \frac{a(1-q^n)}{1-q}$,其中 $S_n$ 是前n 项和,a 是首项,q 是公比。
高等数学公式导数公式:基本积分表:三角函数的有理式积分: 222212211cos 12sin udu dx x tg u uu x uu x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx xtgx a xxln 1)(logln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin xarcctgx xarctgx xx xx +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x ax dx Cshx chxdx C chx shxdx Caadx aC x ctgxdx x C x dx tgx x Cctgx xdx xdxC tgx xdx x dxxx)ln(ln csc csc sec sec cscsinsec cos 22222222Cax xa dxCx a x a ax a dx C a x a x a a x dx C ax arctg a x a dxCctgx x xdx Ctgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Ca x ax a x dx x a Ca x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n nnn arcsin22ln 22)ln(221cos sin22222222222222222222220ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin2cos cos 2cos 2cos 2cos cos 2sin2cos2sin sin 2cos 2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xx arthx x x archx x x arshx ee e e chxshx thx ee chx ee shx xxx x xxxx-+=-+±=++=+-==+=-=----11ln 21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim==+=∞→→e xx x xx x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctgtg·正弦定理:R Cc Bb Aa 2sin sin sin ===·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k nn uvvuk k n n n v un n v nuv uvuCuv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
高起点数学部分公式考点:数列等差数列与等比数列:考点:三角函数同角三角函数关系式:平方关系是:1cossin22=+αα倒数关系是:1cottan=⋅αα商数关系是:αααcossintan=,αααsincoscot=。
考点:解三角形解斜三角形:余弦定理:2a=Abccb cos222-+2b=Bacca cos222-+2c=Cabba cos222-+正弦定理:abcbaCaccaBbccbA2cos,2bcos,2acos.222222222-+=-+=-+=的余弦乘积的两倍减去这两边与他们夹角于其余两边的平方的和三角形任一边的平方等面积公式:A bcB acC ab S abc sin 21sin 21sin 21===∆斜三角形的解法特点1、由题意画出示意图2、已知角求角用内角和定理求3、已知两角和其中一角的对边时用正弦定理求4、已知三边时用余弦定理求5、已知两边和它们的夹角时用余弦定理求6、已知边、边、角时用正弦定理求R cC R b B R a A R CcB b A a 2sin ,2sin ,2sin ,2sin sin sin 2======倍。
的值为三角形外接圆半径正弦比值都相等,该比三角形各边与它对角的1. 两点的距离公式:已知),(),,(222111y x P y x P 两点,其距离:22122121)()(y y x x P P -+-=2. 中点公式:已知),(),,(222111y x P y x P 两点,线段21P P 的中点的O 的坐标为),(y x ,则:2,22121y y y x x x +=+=考点:直线直线方程的几种形式:斜截式:b kx y += (可直接读出斜率k)一般式:0=++C By Ax (直线方程最后结果尽量让A>0)点斜式:)(00x x k y y -=-,(已知斜率k 和某点坐标),(00y x 求直线方程方法)两条直线的位置关系:直线222111b x k y l b x k y l +=+=:,: 两条直线平行:21k k = 两条直线垂直:121-=⋅k k点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=1.圆:1、圆的标准方程是:222)()(r b y a x =-+-,其中:半径是r ,圆心坐标为(a ,b ), 2、圆的一般方程是: 022=++++F Ey Dx y x 转化为:(x+D 2)2+(y +E 2)2=D 2+E 2−4F42.椭圆:定义 平面内到两定点的距离的和等于常数的点的轨迹:a PF PF 221=+焦点的位置 焦点在X 轴上焦点在Y 轴上标准方程12222=+by a x 12222=+bx a y 图形性质 长轴长是a 2,短轴长是b 2,焦距21F F =2c ,222c b a +=(a 最大)顶点 A 1(-a,0),A 2(a,0) B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a)B 1(-b,0),B 2(b,0)焦点坐标 F 1(c,o) F 2(-c,o)F 1(o,c) F 2(o,-c)离心率ace =(0<e<1) 准线方程 ca x 2±=ca y 2±=3.双曲线:定义 平面内到两定点的距离的差的绝对值等于常数的点的轨迹:a PF PF 2-21=焦点的位置 焦点在X 轴上焦点在Y 轴上标准方程12222=-b y a x 12222=-bx a y yPxyPO xO图 形性质实轴长是a 2,虚轴长是b 2,焦距21F F =2c ,222b a c +=(c 最大)顶点A 1(-a,0),A 2(a,0)B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a)B 1(-b,0),B 2(b,0)焦点坐标 F 1(c,o) F 2(-c,o)F 1(o,c) F 2(o,-c)离心率ace =(e>1) 准线方程ca x 2±=ca y 2±=渐近线x ab y ±= x ba y ±= 1. 若直线b kx y +=与圆锥曲线交于两点A(x 1,y 1),B(x 2,y 2),则弦长为2212))(1(x x k AB -+=4.标准方程焦点的位置焦点坐标准线方程图像px y 22=x 正半轴⎪⎭⎫⎝⎛02,p 2px -=px y 22-=x 负半轴⎪⎭⎫⎝⎛-02,p 2px =py x 22=y 正半轴⎪⎭⎫ ⎝⎛20p , 2p y -=py x 22-=y 负半轴⎪⎭⎫ ⎝⎛-20p ,2py =。
成人高考数学公式大全1. 三角函数公式:- 正弦定理: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$- 余弦定理: $c^2 = a^2 + b^2 - 2ab\cos C$- 正弦函数: $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$- 余弦函数: $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$- 正切函数: $\tan(\alpha \pm \beta) = \frac{\tan \alpha \pm \tan \beta}{1 \mp \tan \alpha \tan \beta}$2. 几何公式:- 三角形面积公式: $S = \frac{1}{2} a b \sin C$- 直角三角形勾股定理: $c^2 = a^2 + b^2$- 圆面积公式: $S = \pi r^2$- 圆周长公式: $C = 2 \pi r$- 四边形面积公式: $S = \frac{1}{2} (\sum_{i=1}^{4} d_i \cdot h_i)$ (其中$d_i$为对边长度,$h_i$为对边之间的距离)3. 代数公式:- 二次方程根公式: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$- 二次展开公式: $(a + b)^2 = a^2 + 2ab + b^2$- 三次展开公式: $(a + b + c)^3 = a^3 + b^3 + c^3 + 3ab(a+b) + 3bc(b+c) + 3ca(c+a)$- 等比数列求和公式: $S_n = \frac{a(1 - r^n)}{1 - r}$ (其中$a$为首项,$r$为公比,$n$为项数)4. 概率公式:- 排列公式: $P(n, m) = \frac{n!}{(n-m)!}$ (其中$n$为总数,$m$为选择数)- 组合公式: $C(n, m) = \frac{n!}{m!(n-m)!}$- 乘法原理: 若活动A有$m$种方式进行,活动B有$n$种方式进行,则A和B一共有$m \cdot n$种方式进行- 加法原理: 若活动A有$m$种方式进行,活动B有$n$种方式进行,并且两个活动不能同时进行,则A或B一共有$m + n$种方式进行5. 应用数学公式:- 复利公式: $A = P(1 + \frac{r}{n})^{nt}$ (其中$A$为终值,$P$为本金,$r$为年利率,$n$为复利次数,$t$为存款年限) - 科学计数法: $a \times 10^n$ (其中$a$为尾数,$n$为次数) - 相似三角形比例关系: $\frac{a}{a'} = \frac{b}{b'} =\frac{c}{c'}$ (当三角形ABC与A'B'C'相似时)- 斜率公式: $k = \frac{y_2 - y_1}{x_2 - x_1}$ (其中$(x_1,y_1)$和$(x_2, y_2)$为直线上的两点坐标)。
成人高考数学公式汇总1、f(x)是奇函数,图像关于原点对称。
f(x)是偶函数,图像关于Y轴对称。
一次函数y=kx+b的定义域和值域都是R.。
2、二次函数y=ax²+bx+c的顶点为(-b/2a,4ac-b²/4a),对称轴为x=-b/2a。
a>0,抛物线图像开口向上;a<0,抛物线图像开口向下。
二次函数定义域是R。
x1+x2=-b/a,x1x2=c/a.3、反比例函数y=k/x,定义域和值域都是(-∞,0)∪(0,+∞),当k>0,图像在一、三象限,是减函数;当k<0,图像在二、四象限,是增函数。
4、指数函数y=a²(a>0,a≠1),定义域为(-∞,+∞)值域为(0,+∞)。
a>1,是增函数;0<a<1,是减函数。
5、对数函数y=㏒aX(a>0,a≠1)的定义域为(0,+∞),值域为(-∞¸+∞)。
a>1,是增函数;0<a<1,是减函数。
㏒1=0,㏒a=16、等差数列通项公式an=a1+(n-1)d,等差中项A=(a+b)/2。
前n项和公式Sn=n(a1+a2)/2,或Sn=na1+n(n-1)/2*d。
7、等比数列通项公式a n=a1q n-1,等比中项G=±√ ̄ab. 前n项和公式Sn=a1(1-q n)/(1-q),或Sn=(a1-a n q)/(1-q)8、函数导数y´=(c)´=0; (X²)´=nX²-1。
9、三角余弦定理 a²=b²+c²-2bccosA; b²=a²+c²-2accosB; c²=a²+b²-2abcosC三角正弦定理 a/sinA=b/sinB=c/sinC=2R(外接圆半径)。
10、两点间距离公式:d= (x2-x1)²+(y2-y1)².线段的中点公式:x=(x1+x2)/2,y=(y1+y2)2.11、直线方程:点斜式 y-y0=k(x-x0)斜截式 y=kx+b(y轴上的截距)两点式 (y-y1)/(y2-y1)=(x-x1)/(x2-x1)(y2≠y1,x2≠x1)截距式 x/a+y/b=1(x轴上截距a,y轴上截距b)一般式 Ax+By+C=0 (k=-―,x轴上截距-―,y轴上截距-―)12、点(x0,y0)到直线Ax+By+C=0的距离: d=∣Ax0+By0+C∣/√ ̄A2+B2.13、圆的标准方程(x-a)²+(y-b)²=r²圆心C为(a,b)圆的一般方程 x²+y²+Dx+Ey+F=0 (D²+E²-4F>0)圆的切线方程 y-y0=-x0/y0(x-x0) 点P(x0,y0)是圆上一点,有 x0x+y0y=r214、椭圆的标准方程 x2/a2+y2/b2=1 (a>b>0,焦点在x轴上,a为长半轴,b为短半轴)y2/a2+x2/b2=1 (a>b>0,焦点在y轴上,a为长半轴,b为短半轴)离心率 e=c/a=√ ̄(a2+b2)/a=√ ̄{1-(b/a)2} (c为半焦距) c= a²-b²180º=π弧度;1º=(π/180)弧度≈0.017453弧度;1弧度=(180/π)º≈57.30º=57º18´同角三角函数的基本关系式:倒数关系:sinαcosα=1 cosαsecα=1 tanαcotα=1=tgαctgα商数关系:tanα=sinα/cosα cotα=cosα/sinα平方关系:sin²α+cos²α=1 1+tan²α=sec²α 1+cot²α=csc²α●诱导公式:1、sin(k·360°+α)=sinα,cos(k·360°+α)=cosα,tan(k·360°+α)=tanα,cot(k·360°+α)=cotα, ( k∈Z)2、sin(180°+α)=―sinα,cos(180°+α)= ―cosα, tan(180°+α)=tanα,cot(180°+α)=cotα.3、sin(-α)=- sinα,cos(-sinα)=- cosα,tan(-α)=-tanα,cot(-α)=-cotα4、sin(180°-α)=sinα,cos(180°-α)=-cosα,tan(180°-α)=-tanα,cot(180°-α)=-cotα.5、Sin(360°-α)= ―sinα,cos(360°-α)= cosα,tan(360°-α)=- tanα,cot(360°-α)=- cotα.6、Sin(90°-α)=cosα,cos(90°-α)=sinα,tan(90°-α)=cotα,cot(90°-α)=tanα.7、Sin(90°+α)= cosα,cos(90°+α)= ―sinα,tan(90°+α)= -cotα,cot(90°+α)= -tanα.8、Sin(270°-α)=- cosα,cos(270°-α)=―sinα,tan(270°-α)=cotα,cot(270°-α)=tanα.9、Sin(270°+α)= - cosα,cos(270°+α)= sinα,tan(270°+α)= -cotα,cot(270°+α)= -tanα两角和与两角差的正弦、余弦、正切的公式:Sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβ sinαsinβ,tan(α±β)=(tanα±tanβ)/(1 tanαtanβ)倍角的正弦、余弦、正切的公式:Sin2α=2 sinαcosα,cos2α=cos²α-sin²α=2 cos²α-1=1-2 sinα,tan2α=2tanα/(1-tan²α)降幂公式:cos²α=(1+cos2α)/2,sin²α=(1-cos2α)/2.升幂公式:cos2α=2cos²α-1=1-2sin²α。
成人高考高数必考公式
1.函数相关公式:
-基本初等函数(加减乘除、幂函数、指数函数、对数函数、三角函数、反三角函数等)的性质和公式;
-基本函数的导数公式(如幂函数的导数、指数函数和对数函数的导数、三角函数的导数等);
-基本函数的积分公式(如幂函数的积分、指数函数和对数函数的积分、三角函数的积分等);
-复合函数的求导公式(链式法则)。
2.极限公式:
- 基本初等函数的极限(如无穷小量的定义、极限的四则运算法则、lnx、ex、sinx、cosx等函数的极限等);
-极限运算的性质(如极限的唯一性、有界性、保号性、夹逼定理等);
-数列极限的相关公式和性质(如比较定理、夹逼定理等)。
3.导数和微分公式:
-导数的定义、性质和基本公式(如函数和导函数的关系、四则运算法则、常数函数、幂函数、指数函数、对数函数等导数的公式);
-高阶导数的定义与求法;
-隐函数和参数方程的求导公式;
-微分的定义和微分公式(如微分的四则运算法则、复合函数的微分等)。
4.积分公式与定积分:
-不定积分和定积分的定义和性质;
-基本的定积分公式(如幂函数的定积分、三角函数的定积分、指数函数和对数函数的定积分、反常积分等);
-牛顿-莱布尼茨公式(积分的几何、物理、微分方程等应用)。
5.一阶微分方程和二阶线性微分方程的基本解法:
-一阶微分方程的分离变量法、齐次方程法、一阶线性非齐次方程法等;
-二阶线性微分方程的常系数齐次方程解法、常系数非齐次方程通解公式等。
成人高考高起点数学公式汇总1.平方差公式:(a+b)(a-b)=a^2-b^2,完全平方公式:(a±b)^2=a^2±2ab+b^2.2.一元二次方程ax^2+bx+c=0(a≠0)的求根公式为x=(-b±√(b^2-4ac))/(2a)。
3.充分条件与必要条件:若A能推出B,则A是B的充分条件;若A是B的必要条件,则A能推出B;若A既是B的充分条件又是必要条件,则A与B是充分必要条件。
4.函数定义域的求法:(1)分母不能为0;(2)偶次根内大于等于0;(3)对数的真数大于0.5.函数的奇偶性:奇函数的图像关于原点对称,如y=sin(x)、y=tan(x)、y=x^n(n为奇数);偶函数的图像关于y轴对称,如y=c(常量函数)、y=cos(x)、y=x^n(n为偶数)。
奇函数+奇函数=奇函数,偶函数+偶函数=偶函数,奇函数×奇函数=偶函数,偶函数×偶函数=偶函数,奇函数×偶函数=奇偶函数。
6.二次函数的图像和性质:y=ax^2+bx+c(a≠0)。
当a>0时,图像开口向上,顶点坐标为(-b/(2a)。
c-b^2/(4a)),对称轴为x=-b/(2a),单调性为(-∞,-b/(2a)]为减区间,[ -b/(2a),+∞)为增区间,最小值为c-b^2/(4a);当a<0时,图像开口向下,顶点坐标为(-b/(2a)。
c-b^2/(4a)),对称轴为x=-b/(2a),单调性为(-∞,-b/(2a)]为增区间,[ -b/(2a),+∞)为减区间,最大值为c-b^2/(4a)。
7.指数及其性质:a^-n=1/(a^n),a^0=1,a^m×a^n=a^(m+n),(a^m)^n=a^(mn),a^(-m)=1/(a^m),a^m/a^n=a^(m-n)。
对数:log_a1=0,log_aa=1,log_a(MN)=log_aM+log_aN,log_a(M/N)=log_aM-log_aN,log_a(M^n)=nlog_aM。
【实数的分类】【自然数】表示物体个数的1、2、3、4···等都称为自然数【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。
一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。
【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。
零的相反数是零。
【绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。
从数轴上看,一个实数的绝对值是表示这个数的点离开原点距离。
【倒数】1除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。
【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a的n次方根。
【开方】求一数的方根的运算叫做开方。
【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。
【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。
【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。
【代数式的分类】【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式【无理式】根号下含有字母的代数式叫做无理式【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式直线(不定义)直线向两方无限延伸,它无端点。
射线在直线上某一点旁的部分。
射线只有一个端点。
线段直线上两点间的部分。
它有两个端点。
垂线如果两条直线相交成直角,那么称这两条直线互相垂直。
其中一条叫另一条的垂线,它们的交点叫垂足。
斜线如果两条直线不相交成直角时,其中一条直线叫另一条直线的斜线。
点到直线的距离从直线外一点到这条直线的垂线段的长度,叫做点到直线距离。
1、知识范围(1)不定积分、原函数与不定积分的定义、原函数存在定理不定积分的性质(2)基本积分公式(3)换元积分法、第一换元法(凑微分法)、第二换元法(4)分部积分法(5)一些简单有理函数的积分2、要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。
第一章节公式1、数列极限的四则运算法则 如果,lim ,lim B y A x n n n n ==∞→∞→那么BA y x y x n n n n n n n -=-=-∞→∞→∞→lim lim )(lim B A y x y x n n n n n n n +=+=+∞→∞→∞→lim lim )(limBA y x y x n n n n n n n .(lim ).(lim ).(lim ==∞→∞→∞→) )0(lim lim lim ≠==∞→∞→∞→B B A y x y x n n n n n n n推广:上面法则可以推广到有限..多个数列的情况。
例如,若{}na ,{}nb ,{}nc 有极限,则:n n n n n n n n n n c b a c b a ∞→∞→∞→∞→++=++lim lim lim )(lim特别地,如果C 是常数,那么CA a C a C n n n n n ==∞→∞→∞→lim .lim ).(lim2、函数极限的四算运则如果,)(lim ,)(lim B x g A x f ==那么B A x g x f x g x f ±=±=±)(lim )(lim )(lim )(limBA x g x f x g x f ⋅=⋅=⋅)(lim )(lim )(lim )(lim)0)(lim ()(lim )(lim )()(lim ≠===x g B B A x g x f x g x f推论设)(lim ),(lim ),......(lim ),(lim ),(lim 321x f x f x f x f x f n 都存在,k 为常数,n 为正整数,则有:)(lim ....)(lim )(lim )](....)()([lim 2111x f x f x f x f x f x f n n ±±±=±±)(lim )]([lim x f k x kf =nn x f x f )](lim [)]([lim =3、无穷小量的比较:.0lim ,0lim ,,==βαβα且穷小是同一过程中的两个无设);(,,0lim)1(βαβαβαo ==记作高阶的无穷小是比就说如果;),0(lim)2(同阶的无穷小是与就说如果βαβα≠=C C ;~;,1lim3βαβαβα记作是等价的无穷小量与则称如果)特殊地(= .),0,0(lim)4(阶的无穷小的是就说如果k k C C k βαβα>≠= .,lim)5(低阶的无穷小量是比则称如果βαβα∞= ,0时较:当常用等级无穷小量的比→x.21~cos 1,~1,~)1ln(,~arctan ,~tan ,~arcsin ,~sin 2x x x e x x x x x x x x x x x --+ en e x e x x x n n x x x x x=+=+=+=∞→→→→)11(lim )1(lim .)11(lim .1sin lim 1000对数列有重要极限第二章节公式1.导数的定义:函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0f (x 0+Δx )-f (x 0)Δx =lim Δx →0ΔfΔx ,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0即f ′(x 0)=lim Δx →0f (x 0+Δx )-f (x 0)Δx.2.导数的几何意义函数f (x )在x =x 0处的导数就是切线的斜率k ,即k =lim Δx →0f (x 0+Δx )-f (x 0)Δx=f ′(x 0).3.导函数(导数)当x 变化时,f ′(x )便是x 的一个函数,我们称它为f (x )的导函数(简称导数),y =f (x )的导函数有时也记作y ′,即f ′(x )=y ′=lim Δx →0f (x +Δx )-f (x )Δx.4.几种常见函数的导数(1)c ′=0(c 为常数),(2)(x n)′=nx n -1(n ∈Z ),(3)(a x)′=a xlna(a >0,a ≠1), (e x)′=e x(4)(ln x )′=1x ,(log a x )′=1xlog a e=ax ln 1(a >0,a ≠1) (5)(sin x )′=cos x ,(6)(cos x )′=-sin x (7) x x 2cos 1)'(tan =, (8)xx 2sin 1)'(cot -= (9) )11(11)'(arcsin 2<<--=x xx , (10) )11(11)'(arccos 2<<---=x xx(11) 211)'(arctan x x +=, (12)211)'cot (xx arc +-= 5.函数的和、差、积、商的导数(u ±v )′=u ′±v ′,(uv )′=u ′v +uv ′⎝ ⎛⎭⎪⎫u v ′=u ′v -uv ′v 2,(ku )′=cu ′(k 为常数).(uvw )′=u ′vw +uv ′w + uvw ′ 微分公式:(1)为常数)c o c d ()(= 为任意实数))(a dx ax x d a a ()(21-=),1,0(ln 1)(log )3(≠>=a a dx a x d xadx x x d 1)(ln = )1,0(ln )(4≠>=a a adx a a d x x )(dxe e d x x =)(xdx x d cos )(sin )5(=xdx x d sin )(cos )6(-=(7) dx x x d 2cos 1)(tan =, (8)dx xx d 2sin 1)(cot -=(9) dx xx 211)'(arcsin -=, (10) dx xx 211)'(arccos --=(11) dx x x d 211)(arctan +=, (12) dx x x arc d 211)cot (+-=6.微分的四算运则d(u ±v )=d u ±d v , d(uv )=v du +udv)0()(2≠-=v v udvvdu v u d d(ku )=k du (k 为常数). 洛必达法则:在一定条件下通过分子分母分别求导,再求极限来确定未定式的值的方法。
2017年成考用数学公式公式分类公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+ b2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcos Acos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+ta nAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ct gB-ctgA)倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r 锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h熟悉考试题型,合理安排做题时间其实,不仅仅是数学考试,在参任何一门考试之前,你都要弄清楚或明确几个问题:考试一共有多长时间,总分多少,选择、填空和其他主观题各占多少分。
二次函数解析式(常见的三中标示形式)一样式:Y=a x2+bx+c(a≠0)依照X,Y坐标计算出a,b,c各值,带入原函数式取得最终解析式一下极点式,交点式想同方式极点式:Y=a(x−m)2+n(a≠0)极点坐标(m,n)交点式:y=a(x-x1)(x-x12)(a≠0)(条件假设Y=a x2+bx+c与X轴交于(x1,0)(x2,0)以上各函数式过坐标一概直接带入函数式中点,对称轴(−b2a ),最大或最小值(4ac−b24a)三角形三边关系:a2+b2=c2边角关系:sinA=accosA=bctanA=abcotA=ba正弦定理:asinA=bsinB=csinC=2R余弦定理:a2=b2+c2-2bc cos Ab2=c2+a2-2ca cos Bc2=a2+b2-2ab cos CcosA=:b2+c2−a22bccosB=:c2+a2−b22cacosC=:a2+b2−c22ab三角型面积S=12ahS=12ab sinC=12BCsinA=12ACsinB向量:A(x1,y1) B(x2,y2)AC→=AB→+BC→=(x1+x2,y1+y2)A(x1,y1) B(x2,y2)BA→=OA→-OB→=(x1-x2,y1-y2)a=(x1,y1) b=(x2,y2)a+b=(x1+x2,y1+y2)a-b=(x1-x2,y1-y2)a//b⇔b=ƛa⇔x1y2--x2y1=0a⊥b⇔a×b=0⇔x1y1+x2y2点A(x1,y1) B(x2,y2)间距离为X√(x1−y1)2+(x2−y2)2=X直线方程:过点p1(x1,y1),p2(x2,y2)的直线斜率公式为:K=y2−y1x2−x1点斜式:y-y1=k(x-x2)(直线l过点P1(x1,y1),且斜率为k)斜截式:y=kx+b(b为直线l在y轴上的截距)两点式:y−y1y2−y1=x−x1x2−x1(y1≠y2)(p1(x1, y1),p2(x2, y2))截距式xa+yb=1(a,b别离为直线的横纵截距)一样式:Ax+By+C=0(其中A,B不同时为0)点到直线距离:d=00(点P(x0,y0),直线l:Ax+By+C=0.)圆的一样方程:x2+y2+Dx+By+F=0(D2+F2+4F>0)配方的:(x+D2)2+(y+E2)2=D2+E2+4F4圆的标准方程:(x−a)2+(y−b)2=r2圆的直径方程:(x-x1) (x-x2)+ (y-y1) (y-y2)(圆的直径的端点是A(x1,y1),B(x2,y2))椭圆:动点P到两核心的距离和等于2a即长轴动点P到右核心的距离与动点P到右准线的距离之比等于离心率e=ca;x2 a2+y2b2=1(a>b>0)A(-a,0)(a,0)B(0,-b)(0,b)x2b2+y2a2=1(a>b>0) A(0,-a)(0,a)B(-b,0)(b,0)离心率:e=ca(0<e<1)准线:x=±a 2c几何关系·c2=a2—b2双曲线:动点P到两核心的距离差等于2a即实轴动点P到右核心的距离与动点P到右准线的距离之比等于离心率e=ca;x2 a2—y2b2=1(a>b>0)A(-a,0)(a,0)B(0,-b)(0,b)y2 a2—x2b2=1(a>b>0) A(0,-a)(0,a)B(-b,0)(b,0)几何关系·c2=a2+b2双曲线渐近线:x2 a2—y2b2=1或y=±bax(斜率公式) y2a2—x2b2=1或y=±abx(斜率公式)斜率公式是:y轴坐标除以x轴坐标在乘以x抛物线:抛物线上一点到核心和到准线的距离相等!核心到准线的距离为p标准方程:y2=2px(p>0), y2=-2px(p>0)开口向右!开口向左!定点坐标(0,0)对称轴: x轴核心(p2,0)(−p2,0)准线x= −p2x= p2抛物线离心率都为1标准方程:x2=2py(p>0), x2=-2py(p>0)开口向右!开口向左!定点坐标(0,0)对称轴: y轴核心(p2,0)(−p2,0)准线y= −p2y= p2抛物线离心率都为1数列:前N项和公式:S n=(a1+a n)n2S n=n a1+n(n−1)2d(Na1)(a2-a1=a3-a2=a n-a n−1=d)a1=S1(n=1)a n=S n-S n−1(n≥2)通项公式:a n=a1+(n−1)d三个数x,A,y等差数列,A叫做x,y的中项。
公式分类公式表达式乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b 2)|a-b|≥|a|-|b| -|a|≤a≤|a|根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式 b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAt anB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ct gA)cos2a=cos2a-sin2a=2cos2a-1=1-2sin2ac os(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin ((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 12+22+32+42+52+62+72+8 2+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/4 1*2+2*3+3*4+4*5+5*6+6* 7+…+n(n+1)=n(n+1)(n+2)/3正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径抛物线标准方程 y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c'*h正棱锥侧面积 S=1/2c*h' 正棱台侧面积 S=1/2(c+c')h'圆台侧面积 S=1/2(c+c')l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S'L 注:其中,S'是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h熟悉考试题型,合理安排做题时间其实,不仅仅是数学考试,在参任何一门考试之前,你都要弄清楚或明确几个问题:考试一共有多长时间,总分多少,选择、填空和其他主观题各占多少分。
这样,你才能够在考试中合理分配考试时间,一定要避免在不值得的地方浪费大量的时间,影响了其他题的解答。
数学成人高考题满分为150分,时间是2小时,其中选择题是12道,每题5分,共60分;填空题4道每题是4分,共16分,解答题一共74分。
所以在了解这些内容后,你一定要根据自己的情况,合理安排解题时间。
一般来说,选择题填空题最迟不宜超过40分钟,按照我们的标准是让学生在30分钟之内高效的完成选择填空题。
你必须留下一个多小时甚至更多的时间来处理后面的大题,因为大题意味着你不仅要想,还要写。
二、确保正确率,学会取舍,敢于放弃考试时,一定要根据自己的情况进行取舍,这样做的目的是:确保会做的题目一定能够拿分,部分会做或不太会做的题目尽量多拿分,一定不可能做出的题目,尽量少投入时间甚至压根就不去想。
对于程度较好的学生,如果感觉前面的选择填空题做的很顺利,时间很充裕,在前面几道大题稳步完成的情况下,可以冲击下最后的压轴题向高分冲击。
对于程度一的学生,首先要保证的是前面的填空选择题大部分分值一定能够稳拿,甚至是拿满。
对于大题的前几题,也尽量多花点时间,一定不要在会做的题目上无谓失分,对于大题的后两题,能做几问就做几问,即使后面的几问不去做,也一定要保证前面的分数,因为最后两题题目的性价比远远不如前面的题目实惠。
对于程度较差的学生,首先,填空选择能会做的就一定要做对,对于大题,能写几问就写几问,而最后两道压轴题如果读完之后觉得过难的话,我建议大胆放弃,不要觉得心疼,因为你即使花了很长时间去做去想也不见得能多拿几分,如果把这些时间用在选择填空题中,可能会收益更大。
这个方面,大家也不必盲目模仿别人的做法,还是那句话,要根据自己的情况,自己斟酌。
许多没有考试技巧的学生经常出现的情况是,所有的题目都想做,但所有的题目都完成的匆匆忙忙、漏洞百出,本来会做的题由于匆忙或掉以轻心而失分,而后面的一些大题即使在卷子上写了很“多”,却发现只能得到1分2分。
这样的同学就是在考试的方法上很失败,我们应该吸取这样的教训。
三、快速准确,不择手段考试中有选择题、填空题和解答题,其中选择填空题跟解答题的本质区别是它们是不需要写出解答步骤的,其实命题人已经暗示了我们,选择填空题只要你把答案做出来,无论你用什么方法都是允许的。
许多不会考试的人常犯的错误和大忌,就是把每一道题都当作解答题按部就班的去解答,这样,即使你能把题目做对,但是浪费了大量不必要的时间。
其实,许多选择填空题仔细观察题目中的数字和选项,就可以排除一些选项,完全可以降低难度甚至直接选出正确答案,许多填空题往往有许多灵活的技巧,但由于这些技巧在解答题当中往往不适宜写在卷面中,所以经常被我们所忽视掉了。
比如,做选择填空题常用的巧妙方法有:排除法、数形结合、画图观察、代入验证等等方法。
这些技巧和方法也是我们在平常的题目讲解中要为学生灌输和渗透的内容,我们在教学中也会逐步培养学生的这种意识。
选择填空题大家一定要重视,不仅仅是因为分值,还因为它会直接影响考生考试的心情,往往会成为一场考试成败的关键。
总之,大家一定要根据自己的实际情况去研究或琢磨考试的方法和技巧,在考试中做到心平气和,正确取舍,这样才能取得成功的考试。
最后祝大家在考试中取得好成绩。
公式分类公式表达式乘法与因式分解a2-b2=(a+b)(a-b)a3+b3=(a+b)(a2-ab+b2)a3-b3=(a-b)(a2+ab+b2)三角不等式a+b≤a+ba-b≤a+ba≤b=-b≤a≤ba-b≥a-b-a≤a≤a一元二次方程的解-b+√(b2-4ac)/2a-b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0注:方程有相等的两实根b2-4ac0注:方程有一个实根b2-4ac0注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A)ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2)sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2)cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA))tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA))ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin (A+B)+sin(A-B)2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B)-2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2cosA+cosB=2cos ((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosBtanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB-ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/613+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角圆的标准方程(x-a)2+(y-b)2=r2注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0注:D2+E2-4F0抛物线标准方程y2=2pxy2=-2pxx2=2pyx2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c‘*h正棱锥侧面积S=1/2c*h‘正棱台侧面积S=1/2(c+c‘)h‘圆台侧面积S=1/2(c+c‘)l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h 斜棱柱体积V=S‘L注:其中,S‘是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h。