高考数学总复习同步测试卷(十九)坐标系与参数方程不等式选讲理新人教版
- 格式:docx
- 大小:30.95 KB
- 文档页数:7
第1节坐标系1.将圆x+y=1上每一点的横坐标变为原来的2倍,纵坐标变为原来的3倍,得曲线Γ.(1)写出Γ的参数方程;(2)设直线l:3x+2y-6=0与Γ的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.解:(1)设(x1,y1)为圆上的点,在已知变换下变为Γ上的点(x,y),依题意,得即由+=1,得()2+()2=1,即曲线Γ的方程为+=1.故Γ的参数方程为(t为参数).(2)由解得或不防设P1(2,0),P2(0,3),则线段P1P2的中点坐标为(1,),所求直线的斜率k=.于是所求直线方程为y-= (x-1),即4x-6y+5=0,化为极坐标方程,得4ρcos θ-6ρsin θ+5=0.2.在直角坐标系xOy中,直线C1:x=-2,圆C2:(x-1)2+(y-2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求C1,C2的极坐标方程;(2)若直线C3的极坐标方程为θ= (ρ∈R),设C2与C3的交点为M,N,求△C2MN的面积.解:(1)因为x=ρcos θ,y=ρsin θ,所以C1的极坐标方程为ρcos θ=-2,C2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-3ρ+4=0,解得ρ1=2,ρ2=.故ρ1-ρ2=,即|MN|=.由于C2的半径为1,所以△C2MN的面积为.3.在极坐标系中,曲线C:ρ=2acos θ(a>0),l:ρcos(θ-)=,C与l有且仅有一个公共点.(1)求a;(2)O为极点,A,B为曲线C上的两点,且∠AOB=,求|OA|+|OB|的最大值.解:(1)曲线C:ρ=2acos θ(a>0),变形ρ2=2aρcos θ,化为x2+y2=2ax,即(x-a)2+y2=a2.所以曲线C是以(a,0)为圆心,a为半径的圆.由l:ρcos(θ-)=,展开为ρcos θ+ρsin θ=,所以l的直角坐标方程为x+y-3=0.由题可知直线l与圆C相切,即=a,解得a=1.(2)不妨设A的极角为θ,B的极角为θ+,则|OA|+|OB|=2cos θ+2cos(θ+)=3cos θ-sin θ=2cos(θ+),当θ=-时,|OA|+|OB|取得最大值2.4. (2017·成都模拟)在直角坐标系xOy中,半圆C的直角坐标方程为(x-1)2+y2=1(0≤y≤1).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求C的极坐标方程;(2)直线l的极坐标方程是ρ(sin θ+cos θ)=5,射线OM:θ=与半圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.解:(1)由x=ρcos θ,y=ρsin θ,所以半圆C的极坐标方程是ρ=2cos θ,θ∈[0,]. (2)设(ρ1,θ1)为点P的极坐标,则有解得设(ρ2,θ2)为点Q的极坐标,则有解得由于θ1=θ2,所以|PQ|=|ρ1-ρ2|=4,所以线段PQ的长为4.。
【高中数学】高考数学《坐标系与参数方程》解析一、131.若,a b ∈R ,且2210a b += ,则-a b 的取值范围是( )A .552,2-⎡⎤⎣⎦B .210,210⎡⎤-⎣⎦C .10,10⎡⎤-⎣⎦D .()5,5-【答案】A 【解析】 【分析】利用参数方程,令10cos ,10sin a b αα==,转化为10(cos sin )25cos 4a b πααα⎛⎫-=+ ⎪⎝-⎭=求解.【详解】令10cos ,10sin a b αα==则10(cos sin )25cos 4a b πααα⎛⎫-=+⎪⎝-⎭= 所以2,255a b -∈-⎡⎤⎣⎦故选:A 【点睛】本题主要考查参数方程的应用,还考查了换元的思想和运算求解的能力,属于基础题.2.在同一直角坐标系中,曲线经过伸缩变换后所得到的曲线A .B .C .D .【答案】C 【解析】 【分析】 由,得代入函数,化简可得出伸缩变换后所得曲线的解析式。
【详解】由伸缩变换得,代入,有,即.所以变换后的曲线方程为.故选:C 。
【点睛】本题考查伸缩变换后曲线方程的求解,理解伸缩变换公式,准确代入是解题的关键,考查计算能力,属于基础题。
3.已知曲线T 的参数方程2111x ky k k ⎧=⎪⎪⎨⎪=-⎪⎩(k 为参数),则其普通方程是()A .221x y +=B .()2210x y x +=≠ C .221,01,0x x y x x ⎧->⎪=⎨--<⎪⎩D .21y x =-0x ≠)【答案】C 【解析】 【分析】 由已知1x k =得1k x=代入另一个式子即可消去参数k ,要注意分类讨论。
【详解】由题意1x k =Q 1k x ∴=代入211y k k =-211y x x ⎛⎫=- ⎪⎝⎭221y x x x-∴=①当0x >时21y x ∴=-②当0x <时21y x ∴=--综上221,01,0x x y x x ⎧->⎪=⎨--<⎪⎩故选:C 【点睛】本题考查曲线的普通方程的求法,考查直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想及分类讨论思想,是基础题.4.已知曲线C 的极坐标方程为:2cos 4sin ρθθ=-,P 为曲线C 上的动点,O 为极点,则PO 的最大值为( ) A .2 B .4CD.【答案】D 【解析】 【分析】把极坐标方程变成直角坐标方程,通过最大距离d r =+求得答案。
高中数学《坐标系与参数方程》知识点归纳一、131.已知曲线C:22{22 x t y at==+(t为参数),(1,0)A-,(1,0)B,若曲线C上存在点P 满足0AP BP⋅=u u u r u u u r,则实数a的取值范围为()A.22,⎡⎤-⎢⎥⎣⎦B.[]1,1-C.2,2⎡⎤-⎣⎦D.[]2,2-【答案】C【解析】曲线C化为普通方程为:y x a=+,由0AP BPu u u r u u u r⋅=,可得点P在以AB为直径的圆221x y+=上,又P在曲线C上,即直线与圆存在公共点,故圆心()0,0到y x a=+的距离小于等于半径1,根据点到直线的距离公式有:12a≤,解得22a-≤≤,故选C.2.如图所示,ABCD是边长为1的正方形,曲线AEFGH……叫作“正方形的渐开线”,其中¶AE,¶EF,·FG,¶GH,……的圆心依次按,,,B C D A循环,则曲线AEFGH的长是()A.3πB.4πC.5πD.6π【答案】C【解析】【分析】分别计算»AE,»EF,»FG,¼GH的大小,再求和得到答案.【详解】根据题意可知,»AE的长度2π,»EF的长度为π,»FG的长度为32π,¼GH的长度为2π,所以曲线AEFGH的长是5π.【点睛】本题考察了圆弧的计算,意在考察学生的迁移能力和计算能力.3.参数方程(为参数)所表示的图象是A.B.C.D.【答案】D【解析】【分析】由,得,代入,经过化简变形后得到曲线方程,但需注意曲线方程中变量、的符号,从而确定曲线的形状。
【详解】由题意知将代入,得,解得,因为,所以.故选:D。
【点睛】本题考查参数方程与普通方程之间的转化,参数方程化普通方程一般有以下几种消参方法:①加减消元法;②代入消元法;③平方消元法。
消参时要注意参数本身的范围,从而得出相关变量的取值范围。
压轴题12极坐标与参数方程和不等式选讲压轴题题型/考向一:极坐标与参数方程题型/考向二:不等式选讲○热○点○题○型一极坐标与参数方程1.极坐标系:极径OM =ρ,即M 点与极点O 间的距离极角=θ∠XOM ,即以极轴OX 为始边,OM 为终边的角2.极坐标与直角坐标的互化例如()1-3-,,则()()33=3-1-=2=1-+3-=22θρtan ,又()1-3-, 在第三象限,所以πθ34=,⎪⎭⎫⎝⎛342∴π,3.常见曲线的极坐标方程4.常见曲线的参数方程①圆222()()x a y b r -+-=的参数方程是:cos sin ()x a r y b r θθθ=+⎧⎨=+⎩为参数②椭圆22221(0,0,)x y a b a b a b +=>>≠的参数方程是:cos ,()sin x a y b θθθ=⎧⎨=⎩为参数③过定点00(,)P x y 倾斜角为α的直线l 的标准参数方程为:00cos ,()sin x x t t y y t αα=+⎧⎨=+⎩为参数5:直线的标准参数方程中t的几何意义过定点00(,)P x y 倾斜角为α的直线l 的标准参数方程为:00cos ,()sin x x t t y y t αα=+⎧⎨=+⎩为参数00(,)P x y 点所对应的参数为0t =0,记直线l 与任意曲线相交于,A B 两点所对应的参数分别为12,t t ,则①线段AB 的中点O 所对应的参数为t =2+21t t ,如果线段AB 的中点恰好是P ,则有0=+21t t ②12AB t t =-=,③1212121212,0t t t t PA PB t t t t t t ⎧+⋅>⎪+=+=⎨-=⋅<⎪⎩,④1212121212,00t t t t PA PB t t t t t t ⎧+⋅<⎪-=-=⎨-=⋅>⎪⎩⑤1212PA PB t t t t ⋅=⋅=⋅注:①将直线的参数方程代入曲线的方程得到关于t 的二次方程,则由韦达定理得出:abt t -=+21、ac t t =216、直线一般式:过定点00(,)P x y 斜率αtan =k =ab的直线的参数方程是⎩⎨⎧+=+=bt y y atx x 00(t 为参数)①若1=+22b a ,即为标准式,此时参数t 具备几何意义②若1≠+22b a ,参数t 不具备标准式中t 的几何意义.标准式与一般式的联系与互化:直线的普通参数方程⎩⎨⎧+=+=bt y y atx x 00(t 为参数)化为直线的标准参数方程的方法是将直线的方向向量化为直线的单位向量,即是化为参数方程⎪⎪⎩⎪⎪⎨⎧++=++=220220t b a b y y t b a a x x (t 为参数)7、经过极点或原点的三种直线方程:①普通方程:②极坐标方程:③参数方程:1.在平面直角坐标系xOy 中,已知直线l 的参数方程为41,535x t y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数),抛物线C的极坐标方程为2sin 4cos ρθθ=.(1)求直线l 和抛物线C 的直角坐标方程;(2)求直线l 被抛物线C 截得的弦长.2.在平面直角标系xOy 中,曲M 的参数方程为2sin y α⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πsin 4ρθ⎛⎫+= ⎪⎝⎭(1)求曲线M 的普通方程;(2)若D 为曲线M 上一动点,求D 到l 距离的取值范围.3.在直角坐标系xOy 中,曲线C 的参数方程为y α=⎧⎪⎨=⎪⎩(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 4ρθ⎛⎫+= ⎪⎝⎭(1)求直线l 的一般方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,直线l 与x 轴相交于点P ,求PA PB ⋅的值.4.在平面直角坐标系xOy 中,曲线C 的参数方程为22sin y ϕ⎨=+⎩(其中ϕ为参数).以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系,直线l πcos 44θ⎛⎫-= ⎪⎝⎭.(1)求直线l 的直角坐标方程和曲线C 的普通方程;(2)设直线l 与曲线C 交于A ,B 两点,点P 是曲线C 上的一动点,求PAB 面积的最大值.5.在平面直角坐标系xOy 中,直线l 过点()1,0M ,且倾斜角为π4,以坐标原点为极点,以x 轴的非负半轴为极轴,建立极坐标系,曲线C 的参数方程是为2cos ,sin x y θθ=⎧⎨=⎩(θ参数).(1)求曲线C 的普通方程和直线l 的参数方程;(2)已知曲线C 与直线l 相交于A ,B 两点,则AB 的值.6.在平面直角坐标系xOy 中,曲线C 的参数方程为cos sin cos sin x y αααα=-⎧⎨=+⎩(α为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为πcos 6ρθ⎛⎫+ ⎪⎝⎭(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)P 为l 上一点,过P 作曲线C 的两条切线,切点分别为A ,B ,若3APB π∠≥,求点P 横坐标的取值范围.1sin ,2APO ∴∠≥∴在Rt OAP △中,||2||22OP OA ∴≤=,22(323)22x x ∴+-≤,两边平方得解得353522x -+≤≤,3⎡-2240x y x +-=,以坐标原点为极点,x 轴非负半轴为极轴建立极坐标系.(1)求直线l 和曲线C 的极坐标方程;(2)设直线l 交曲线C 于两点A ,B ,求AOB ∠的大小.直线l 的参数方程为1cos ,1sin .x t y t ϕϕ=-+⎧⎨=+⎩(t 为参数).(1)若π4ϕ=,求直线l 的普通方程和曲线C 的直角坐标方程;(2)过点()0,3P -向直线l 作垂线,垂足为Q ,说明点Q 的轨迹为何种曲线.9.在平面直角坐标系xOy 中,曲线1C 的参数方程为1sin y ϕ⎧⎨=+⎩(ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为ρθ=.(1)求曲线1C 的极坐标方程与曲线2C 的直角坐标方程;(2)直线l :()6πθρ=∈R 与曲线1C ,2C 分别交于M 、N 两点(异于极点O ),P 为2C 上的动点,求△PMN 面积的最大值.y =⎪⎩极点,x 轴为正半轴建立极坐标,椭圆C 的极坐标方程为2222cos 2sin 4ρθρθ+=,其右焦点为F ,直线l 与椭圆C 交于,A B 两点.(1)求||||FA FB +的值;(2)若点P 是椭圆上任意一点,求PAB 的面积最大值.83○热○点○题○型二不等式选讲【考点1】基本不等式基本不等式的常见结论:(1)222a b ab +≥(,a b R ∈),当且仅当a b =时,等号成立;(2)2a b ab +≥(,0a b >),当且仅当a b =时,等号成立;(3)33a b c abc ++≥a b c ==时,等号成立(4)2b a a b+≥(,a b 同号,a b =时取等号。
专题34 极坐标系与参数方程2⎩2 2考点 116 平面直角坐标系中的伸缩变换 考点 117 极坐标和直角坐标的互化⎧x = t + 1,⎪x = 4cos 2θ, 1.(2023 全国Ⅱ文理 21)已知曲线C 1 , C 2 的参数方程分别为C 1 : ⎨ (θ为参数),C : ⎪ t ( t 为 ⎩ y = 4sin 2θ⎪ y = t - 1参数).(1) 将C 1 , C 2 的参数方程化为一般方程;⎪ t(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系.设C 1 , C 2 的交点为 P ,求圆心在极轴上,且经过极点和 P 的圆的极坐标方程.(解析)(1)由cos 2 θ+ sin 2 θ= 1得C 1 的一般方程为: x + y = 4 ,⎧x = t + 1 ⎧x 2= t 2 + 1 + 2 ⎪ t ⎪ t 2 C 2 2由⎨ 1 得: ⎨1 ,两式作差可得2 的一般方程为: x - y = 4 . ⎪ y = t - ⎪ y 2 = t 2 + - 2 ⎪ t ⎪ t 2⎧x = 5 ⎧x + y = 4 ⎪ (2)由 得: 2 ,即 P ⎛ 5 , 3 ⎫. ⎨x 2 - y 2= 4 ⎨ ⎪ y = 3 ⎩ 2 ⎪ ⎝ ⎭⎛ 5 ⎫2⎛3 ⎫217设所求圆圆心的直角坐标为(a , 0),其中 a > 0 ,则 a - ⎪ + 0 - ⎪ = a 2 ,解得:a = ,⎝2 ⎭⎝2 ⎭10∴ 17 ∴⎛ 17 ⎫2⎛ 17 ⎫222 2 17 所求圆的半径 r = , 10 所求圆的直角坐标方程为: x - 10 ⎪ + y = 10 ⎪ ,即 x + y = x ,5 ∴所求圆的极坐标方程为ρ= 17cos θ.5⎝ ⎭ ⎝ ⎭103⎩⎪x = 2 - t - t 2, 2.(2023 全国Ⅲ文理 22)在直角坐标系 xOy 中,曲线C 的参数方程为⎪ y = 2 - 3t + t 2( t 为参数且t ≠ 1),C与坐标轴交于 A , B 两点.(1) 求 AB ;(2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,求直线 AB 的极坐标方程.(解析)(1)令 x = 0 ,则t 2 + t - 2 = 0 ,解得t = -2 或t =1(舍),则 y = 2 + 6 + 4 = 12 ,即 A (0,12) . 令 y = 0 ,则t 2 - 3t + 2 = 0 ,解得t = 2 或t =1(舍),则 x = 2 - 2 - 4 = -4 ,即 B (-4, 0) .∴ AB == 4 .(2)由(1)可知 k AB =12 - 00 - (-4)= 3 ,则直线 AB 的方程为 y = 3(x + 4) ,即3x - y +12 = 0 .由 x = ρcos θ, y = ρsin θ可得,直线 AB 的极坐标方程为3ρcos θ- ρsin θ+12 = 0 .3.(2023 江苏 22)在极坐标系中,已知点 A (ρ, π) 在直线l : ρcos θ= 2 上,点 B (ρ , π) 在圆C : ρ= 4 sin θ上1 32 6(其中ρ≥ 0 , 0 ≤θ< 2π).(1)求ρ1 , ρ2 的值(2)求出直线l 与圆C 的公共点的极坐标.(解析)(1) Q ρ cos π = 2∴ρ = 4; Q ρ = 4 s inπ2 .131 26 ∴ρ2 = (2) Q ρcos θ= 2, ρ= 4 sin θ∴ 4 sin θcos θ= 2,∴sin 2θ= 1 Q θ∈0, 2π)∴θ= π, 5π,4 4当θ= π时ρ= 2 4;当θ= 5π 时ρ= -2 4 < 0 (舍);即所求交点坐标为当π (2 2, ) . 4 4.(2023 全国 II 文理 22)在极坐标系中,O 为极点,点 M (ρ0 ,θ0 )(ρ0 > 0)在曲线C : ρ= 4 s in θ上,直线 l 过点 A (4, 0) 且与OM 垂直,垂足为 P . (1)当θ = π时,求ρ 及 l 的极坐标方程;3(2)当 M 在 C 上运动且 P 在线段 OM 上时,求 P 点轨迹的极坐标方程.(解析)(1)因为 M (ρ,θ ) 在C 上,当θ = π 时,ρ = 4 s in π= 2 .0 0 0 3 03由已知得| OP |=| OA | cos π= 2 .322333⎢⎥⎢⎥设Q (ρ,θ) 为l 上除P 的任意一点.在Rt △OPQ 中ρcos⎛θ-π ⎫=| OP |= 2 , 3 ⎪ ⎝ ⎭π ⎛ π ⎫经检验,点P (2, ) 在曲线ρcos θ- ⎪ = 2 上. ⎝ ⎭所以,l 的极坐标方程为ρcos ⎛θ- π ⎫= 2 .3 ⎪ ⎝ ⎭(2)设 P (ρ,θ) ,在Rt △OAP 中, | OP |=| OA | cos θ= 4 cos θ,即 ρ= 4 cos θ..因为P 在线段OM 上,且 AP ⊥ OM ,故θ的取值范围是⎡π , π⎤. ⎣ 4 2 ⎦所以,P 点轨迹的极坐标方程为ρ= 4 cos θ,θ∈ ⎡π , π⎤ .⎣4 2 ⎦5.(2023 全国 III 文理 22)如图,在极坐标系 Ox 中, A (2, 0) , B ( 2, π) ,C ( 2, 3π) , D (2, π) ,弧 AB ,4 4 A , A 所在圆的圆心分别是(1, 0) ,π, (1, π) ,曲线 M 是弧 A ,曲线 M 是弧 A ,曲线 M 是BC CD(1, ) 21 AB2 BC3 弧C D .(1) 分别写出 M 1 , M 2 , M 3 的极坐标方程;(2) 曲线 M 由 M 1 , M 2 , M 3 构成,假设点 P 在 M 上,且| OP |= ,求P 的极坐标.(解析)(1)由题设可得,弧 AB , B C ,C D 所在圆的极坐标方程分别为ρ= 2 cos θ,ρ= 2 s in θ,ρ= -2 cos θ,所以 M 的极坐标方程为ρ= 2 cos θ⎛0 θ π ⎫ , M 的极坐标方程为 1 4⎪ 2⎝⎭ρ= 2 sin θ⎛ π θ3π ⎫ , M 的极坐标方程为ρ= -2 cos θ⎛ 3πθ π ⎫ . 4 4 ⎪ 34 ⎪ ⎝ ⎭ ⎝ ⎭(2)设 P (ρ,θ) ,由题设及(1)知3332⎩⎩⎩⎩⎩θ假设0 θπ,则 2 cos θ=,解得θ=π;4 6假设 π θ 3π ,则 2 sin θ= ,解得θ= π 或θ= 2π ; 4 4 3 3 假设 3π θ π ,则-2 cos θ= ,解得θ= 5π .4 ⎛ 综上,P 的极坐标为3, π ⎫ 或⎛3, π ⎫ 或⎛63,2π ⎫ 或⎛3, 5π ⎫ .6⎪ 3⎪ 3 ⎪ 6 ⎪ ⎝⎭ ⎝⎭ ⎝⎭ ⎝ ⎭考点 118 参数方程与一般方程的互化6.(2023 上海 14)已知直线方程3x + 4 y +1 = 0 的一个参数方程可以是()⎧x = 1+ 3t A . ⎨ y = -1+ 4t ⎧x = 1- 4tB . ⎨y = -1- 3t⎧x = 1- 3tC . ⎨y = -1+ 4t ⎧x = 1+ 4t D . ⎨y = -1- 3t(答案)D(解析)A .参数方程可化简为 4x - 3y - 7 = 0 ,故 A 不正确;B .参数方程可化简为3x - 4 y - 7 = 0 ,故B 不正确;C .参数方程可化简为 4x + 3y -1 = 0 ,故 C 不正确;D .参数方程可化简为3x + 4 y +1 = 0 , 故 D 正确.应选 D .7.(2023 全国Ⅲ)选修 4—4:坐标系与参数方程](10 分)在平面直角坐标系 xOy 中, A O 的参数方程为⎧x = cos θ(θ为参数),过点(0, -2) 且倾斜角为α的直线l 与A O 交于 A , B 两点.(1) 求α的取值范围;(2) 求 AB 中点 P 的轨迹的参数方程.⎨ y = sin ,(解析)(1) A O 的直角坐标方程为 x 2 + y 2 = 1. 当α= π时, l 与A O 交于两点.2当α≠ π时,记 tan α= k ,则l 的方程为 y = kx -.l 与A O 交于两点当且仅当< 1 ,解得 k < -1 或2α∈π ππ 3πk > 1,即( , ) 或α∈ ( , ) .4 2 2 4α π 3π 综上,的取值范围是( , ) . 4 4222222⎨(2) l 的参数方程为⎪x = t cos α, (t 为参数, π < α< 3π) . ⎨⎩ y = - + t sin α 4 4 设 A , B , P 对应的参数分别为 t , t , t ,则t =t A + t B,且t , t 满足t 2 - 2 2t sin α+ 1 = 0 .ABPP2A B于是t A + t B= 2 2 sin α, t P =2 sin α.又点 P 的坐标(x , y ) 满足 ⎪x = t P cos α,y = - + t sin α.⎧ ⎪x =2sin 2α, 2 ⎩P π 3π 所以点 P 的轨迹的参数方程是⎨ ⎪ y = - 2 - 2 cos 2α (α为参数, < α< ) . 4 4 ⎪ 2 2考点 119 极坐标方程与参数方程的综合应用8.(2023 北京文理)在极坐标系中,直线ρcos θ+ ρsin θ= a (a > 0) 与圆ρ=2 cos θ相切,则 a =.(答案)1+ (解析)利用 x = ρcos θ, y = ρsin θ,可得直线的方程为 x + y - a = 0 ,圆的方程为(x -1)2 + y 2 = 1 ,所以圆心(1, 0) ,半径 r = 1,由于直线与圆相切,故圆心到直线的距离等于半径,即|1- a |= 1 ,∴ a = 1+ 或1- ,又 a > 0 ,∴ a = 1+ .9.(2023 北京文理)在极坐标系中,点 A 在圆ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 上,点 P 的坐标为(1, 0) ),则| AP | 的最小值为.(答案)1(解析)圆的一般方程为 x 2 + y 2 - 2x - 4y + 4 = 0 ,即(x -1)2 + ( y - 2)2 = 1 .设圆心为C (1, 2) ,所以| AP |min =| PC | -r = 2 -1 = 1 .10.(2023 天津文理)在极坐标系中,直线4ρcos(θ- π) +1 = 0 与圆ρ= 2 s in θ的公共点的个数为.6(答案)2(解析)直线的一般方程为 2 3x + 2 y +1 = 0 ,圆的一般方程为 x 2 + ( y -1)2= 1 ,因为圆心到直 3线的距离 d = < 1 4,所以有两个交点.11.(2023 北京文理)在极坐标系中,直线ρcos θ- | AB |= .3ρsin θ-1 = 0 与圆ρ= 2 cos θ交于 A , B 两点,则(答案)2(解析)将ρcos θ-3ρsin θ-1 = 0 化为直角坐标方程为 x - 3y -1 = 0 ,将ρ=2cos θ化为直角坐标方程为(x -1)2+ y 2= 1 ,圆心坐标为(1,0),半径 r=1,又(1,0)在直线 x - 3y -1 = 0 上,所以|AB|=2r=2.222234y x ⎩⎩⎩)⎩12.(2023 广东文理)已知直线l 的极坐标方程为 2ρsin(θ- π= 47πA (2 2,) ,则点 Α 到直线l 的距离为 .42 ,点 Α 的极坐标为(答案)(解析)由 2ρsin(θ- 2π ) = 得2ρ´ 4 2 7π(sin θ- cos θ) = ,所以 y - x = 1, 故直线l 的直角坐标方程为 x - y +1 = 0 ,而点 A (2 2, ) 对应的直角坐标为4 A (2,-2) ,所以点 A (2,-2) 到直线l : x - y +1 = 0 的距离为| 2 + 2 +1| = 5 2. 213.(2023 安徽文理)在极坐标系中,圆ρ= 8sin θ上的点到直线θ=是.π(ρ∈ R ) 距离的最大值 3(答案)6(解析)圆ρ= 8sin θ即ρ2= 8ρsin θ,化为直角坐标方程为 x 2+ ( y - 4)2= 16 ,π直线θ=,则tan θ=,化为直角坐标方程为 3x - y = 0 ,圆心(0, 4) 到直线3的距离为| -4 |= 2 ,所以圆上的点到直线距离的最大值为 6.14.(2023 全国Ⅰ文理 21)⎧x = cos k t ,在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = sin k t(t 为参数) .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 2 的极坐标方程为 4ρcos θ-16ρsin θ+ 3 = 0 .(1) 当 k = 1时, C 1 是什么曲线?(2) 当 k = 4 时,求C 1 与C 2 的公共点的直角坐标.(解析)(1)当 k = 1时,曲线C 的参数方程为⎧x = cos t ,( t 为参数),两式平方相加得 x 2 + y 2 = 1 ,1⎨y = sin t∴曲线C 1 表示以坐标原点为圆心,半径为 1 的圆.⎧x = cos 4 t ,(2)当 k = 4 时,曲线C 1 的参数方程为⎨ y = sin 4t ( t 为参数),∴ x ≥ 0, y ≥ 0 ,曲线C 1 的参数方程化为⎧ x = cos 2 t ⎨ y = sin 2t(t 为参数),两式相加得曲线C 1 方程为 + = 1,得 = 1 - ,平方得 5 22x yx 77⎩2y = x - 2 + 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 ,曲线C 2 的极坐标方程为4ρcos θ-16ρsin θ+ 3 = 0 ,曲线C 2 直角坐标方程为4x -16 y + 3 = 0 ,联立C , C 方程⎪ y = x - 2 +1 , ,整理得12 x - 32 + 13 = 0 ,解得 x = 1 或 = 13(舍去),1 2⎨ ⎩4x -16 y + 3 = 02 6 ∴ x = 1 , y = 1 ,∴C ,C 1 1 公共点的直角坐标为( , ) .4 4 1 24 4⎧ 1- t 2 ⎪x =1+ t 215.(2023 全国 1 文理 22)在直角坐标系 xOy 中,曲线 C 的参数方程为⎨ ⎪ y = ⎩ 4t 1+ t 2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线 l 的极坐标方程为 2ρcos θ+ 3ρsin θ+11 = 0 .(1) 求 C 和 l 的直角坐标方程;(2) 求 C 上的点到 l 距离的最小值.1- t 2⎛ y ⎫2⎛ 1- t 2 ⎫24t 2 (解析)(1)因为-1 < ≤ 1 ,且 x 2 + ⎪ = ⎪ + = 1,所以C 的直角坐标方程为2y 2 1+ t 2⎝ 2 ⎭ ⎝1 + t 2 ⎭ (1+ t 2 )2x += 1(x ≠ -1) .4l 的直角坐标方程为 2x + 3y +11 = 0 .⎧x = cos α, (2)由(1)可设C 的参数方程为 (α为参数, -π <α< π ).⎨y = 2sin α4 cos ⎛α- π ⎫ +113 ⎪ C 上的点到l 的距离为 = ⎝ ⎭.当α= - 2π 时, 4 c os ⎛α- π ⎫+11 取得最小值7,故C 上的点到l 距离的最小值为 . 3 3 ⎪ ⎝ ⎭16.(2023 全国Ⅰ文理) 在直角坐标系 xOy 中,曲线C 1 的方程为 y = k |x | + 2 .以坐标原点为极点, x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2+ 2ρcos θ- 3 = 0 . (1) 求C 2 的直角坐标方程;x x x | 2 c os α+ 2 3 sin α+11|7⎨y = 4 s in θ,⎩(2) 假设C 1 与C 2 有且仅有三个公共点,求C 1 的方程.(解析)(1)由 x = ρcos θ, y = ρsin θ得C 2 的直角坐标方程为(x +1)2 + y 2 = 4 .(2)由(1)知C 2 是圆心为 A (-1, 0) ,半径为 2 的圆.由题设知,C 1 是过点 B (0, 2) 且关于 y 轴对称的两条射线.记 y 轴右边的射线为l 1 ,y 轴左边的射线为l 2 .由于 B 在圆C 2 的外面,故C 1 与C 2 有且仅有三个公共点等价于l 1 与C 2 只有一个公共点且l 2 与C 2 有两个公共点,或l 2 与C 2 只有一个公共点且l 1 与C 2 有两个公共点.当l 与C 只有一个公共点时, A 到l 所在直线的距离为 2 ,所以| -k + 2 |= 2 ,故 k = - 4 或 k = 0 .1213经检验,当k = 0 时, l 与C 没有公共点;当 k = - 4时, l 与C 只有一个公共点, l 与C 有两个公共点.1231 2 2 2| k + 2 | 当l 与C 只有一个公共点时, A 到l 所在直线的距离为2 ,所以= 2 ,故 k = 0 或 k = 4 .2 2 23经检验,当k = 0 时, l 与C 没有公共点;当 k = 4时, l 与C 没有公共点.1 2 32 2综上,所求C 的方程为 y = - 4| x | +2 .1317.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎧x = 2 cos θ,( θ 为参数),直线l 的参数⎩⎧x = 1+ t cos α 方程为⎨ y = 2 + t sin α ( t 为参数).(1) 求C 和l 的直角坐标方程;(2) 假设曲线C 截直线l 所得线段的中点坐标为(1, 2) ,求l 的斜率.x 2 + y 2 =(解析)(1)曲线C 的直角坐标方程为 1. 4 16当cos α≠ 0 时, l 的直角坐标方程为 y = tan α⋅ x + 2 - tan α; 当cos α= 0 时, l 的直角坐标方程为 x = 1 .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+ 3cos 2 α)t 2 + 4(2 cos α+ sin α)t - 8 = 0 .①3317⎩⎨ y = 1- ty 因为曲线C 截直线l 所得线段的中点(1, 2) 在C 内,所以①有两个解,设为t 1 , t 2 ,则t 1 + t 2 = 0 .4(2 cos α+ sin α)又由①得t 1 + t 2 = -1+ 3cos 2α,故 2 cos α+ sin α= 0 ,于是直线l 的斜率 k = tan α= -2 .18.(2023 江苏)在极坐标系中,直线l 的方程为ρsin( π-θ) = 2 ,曲线C 的方程为ρ= 4 cos θ,求直线l 被曲6 线C 截得的弦长.(解析)因为曲线C 的极坐标方程为ρ=4 cos θ,所以曲线C 的圆心为(2, 0) ,直径为 4 的圆.因为直线l 的极坐标方程为ρsin( π -θ) = 2 ,则直线l 过 A (4, 0) ,倾斜角为 π,所以 A 为直线l 与圆C 的一6 6 个交点.设另一个交点为 B ,则∠OAB= π ,连结 OB ,因为 OA 为直径,从而∠OBA= π ,所以 AB = 4 c os π= 2 .6 因此,直线l 被曲线C 截得的弦长为 2 .2 6⎧x = 3cos θ19.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,曲线C 的参数方程为⎨ y = sin θ ,(θ为参数),直线l 的参数方程为⎧x = a + 4t( t 为参数).⎩ (1) 假设 a = -1,求C 与l 的交点坐标;(2) 假设C 上的点到l 距离的最大值为 ,求 a .(解析)(1)曲线C 的一般方程为 x 2 + 29= 1.当a = -1时,直线l 的一般方程为 x + 4 y - 3 = 0 .⎧x + 4 y - 3 = 0⎧x = - 21 ⎪ ⎧x = 3 ⎪25 21 24由⎨ x 2 2解得⎨ y = 0 或⎨ ,从而C 与l 的交点坐标为(3, 0) , (- 24 , ) . ⎩ 9+ y = 1 ⎩⎪ y = ⎩ 25 25 25171717171733342⎩(2)直线l 的一般方程为 x + 4 y - a - 4 = 0 ,故C 上的点(3cos θ, sin θ) 到l 的距离为| 3cos θ+ 4 sin θ- a - 4 |d =.当a ≥-4 时, d 的最大值为a + 9.由题设得a + 9= ,所以a = 8 ;当a < -4 时, d 的最大值为 -a + 1 .由题设得 -a + 1= ,所以 a = -16 . 综上, a = 8 或 a = -16 .20.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系,曲线C 1 的极坐标方程为ρcos θ= 4 .(1) M 为曲线C 1 上的动点,点 P 在线段OM 上,且满足| OM | ⋅ | OP |= 16 ,求点 P 的轨迹C 2 的直角坐标方程;π(2) 设点 A 的极坐标为(2, 3) ,点 B 在曲线C 2 上,求∆OAB 面积的最大值. (解析)(1)设 P 的极坐标为(ρ,θ) (ρ> 0) , M 的极坐标为(ρ1 ,θ) (ρ1 > 0) .由椭圆知| OP |= ρ, | OM |= ρ1 =cos θ.由| OM | ⋅ | OP |= 16 得C 2 的极坐标方程ρ= 4 cos θ(ρ> 0) , 因此C 的直角坐标方程为(x - 2)2 + y 2= 4(x ≠ 0) .(2)设点 B 的极坐标为(ρB ,α) (ρB > 0) .由题设知| OA |= 2 , ρB = 4cos α,于是∆OAB 面积1 π π 3S = 2 | OA | ⋅ρB ⋅sin ∠AOB = 4cos α| sin(α- 3 ) | = 2 | sin(2α- 3 ) - | ≤ 2 + . 2 当α= - π时, S 取得最大值 2 + ,所以∆OAB 面积的最大值为 2 + .1221.(2023 全国Ⅲ文理)在直角坐标系 xOy 中,直线l 的参数方程为⎧x = 2 + t( t 为参数),直线l 的参数方⎧x = -2 + m⎪1 ⎨ y = kt 2程为⎨ ⎩ y = m k( m 为参数).设l 1 与l 2 的交点为 P ,当 k 变化时, P 的轨迹为曲线C .(1) 写出C 的一般方程;17175224 5⎨t⎩(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l3 :ρ(cosθ+ sinθ) -交点,求M 的极径.= 0 ,M 为l3与C 的(解析)(1)消去参数t 得l 的一般方程l : y =k (x -2),消去参数m 得l 的一般方程l : y =1 (x+2).11⎧y =k (x-2)22k⎪设P(x, y) ,由题设得⎨⎩y=1 (x+2)k,消去k 得x2-y2=4 (y ≠0),所以C 的一般方程为x2-y2=4 (y ≠0).⎪ρ2(cos2θ-sin2θ)=4(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),联立⎨得⎩ρ(cosθ+sinθ)-2=0cosθ- sinθ=2 (cosθ+sinθ),故tanθ=-1,从而cos2θ=9,sin2θ=1,代入ρ2(cos2θ-sin2θ)=4得3ρ2=5,所以交点M的极径为.10 10⎧x =-8 +t22.(2023 江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为⎪y = ( t 为参数),曲线C 的参数方⎧x=2s2⎪2程为⎨⎩y=22s( s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.(解析)直线l 的一般方程为x - 2 y + 8 = 0 .因为点P 在曲线C 上,设P(2s2 , 2 2s) ,从而点P 到直线l 的的距离4 5d == ,当s =时,dmin=5.因此当点P 的坐标为(4, 4) 时,曲线C 上点P 到直线l 的距离取到最小值.5⎧x =a cos t23.(2023 全国I 文理)在直角坐标系xOy 中,曲线C1 的参数方程为⎨y = 1+a sin t(t 为参数,a>0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C2 :ρ= 4 cosθ.(I)说明C1 是哪种曲线,并将C1 的方程化为极坐标方程;(II)直线C3 的极坐标方程为θ=a0 ,其中a0 满足tan a0 =2 ,假设曲线C1 与C2 的公共点都在C3上,求a.22(s -2)2 +4510 10 ⎫2152⎩1123⎩⎨⎩=⎧x = a cos t (解析)(1) ⎨ y = 1 + a sin t( t 均为参数),∴x 2 + ( y - 1)2= a 2 ①∴ C 为以(0 ,1) 为圆心, a 为半径的圆.方程为 x 2 + y 2 - 2 y +1 - a 2 = 0 .∵ x 2 + y 2 = ρ2 ,y = ρsin θ,∴ ρ2- 2ρsin θ+ 1 - a 2 = 0 ,即为C 的极坐标方程.(2) C :ρ= 4cos θ,两边同乘ρ得ρ2 = 4ρcos θ ρ2= x 2 + y 2 ,ρcos θ= x ,∴ x 2 + y 2 = 4x ,即( x - 2)2+ y 2 = 4 ②C 3 :化为一般方程为 y = 2x ,由题意: C 1 和C 2 的公共方程所在直线即为C 3 ,①—②得: 4x - 2 y + 1 - a 2 = 0 ,即为C ,∴1 - a 2 = 0 ,∴ a = 1 .24.(2023 全国 II 文理)在直角坐标系 xOy 中,圆 C 的方程为( x + 6)2+ y 2 = 25 .(I) 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求 C 的极坐标方程;⎧x = t cos α(II)直线 l 的参数方程是⎨ y = t sin α(t 为参数),l 与 C 交于 A 、B 两点, AB = ,求 l 的斜率.⎧ρ2 = x 2 + y 2 (解析)(Ⅰ)整理圆的方程得 x 2 + y 2 + 12 + 11 = 0 ,由⎪ρcos θ= x ⎪ρsin θ= y 可知圆C 的极坐标方程为ρ2 + 12ρcos θ+ 11 = 0 .(Ⅱ)记直线的斜率为 k ,则直线的方程为 kx - y = 0 ,由垂径定理及点到直线距离公式知:= 36k 2 290 ,整理得 k 2 = 5 ,则 k = ± . 1 + k 4 3 3⎪x =3 cos α25.(2023 全国 III 文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ ⎩ y = sin α(α为参数),以坐标原点为极点,以 x 轴的正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为ρsin(θ+ π) = 2.24(Ⅰ)写出C 1 的一般方程和C 2 的直角坐标方程;(Ⅱ)设点 P 在C 1 上,点 Q 在C 2 上,求| PQ |的最小值及此时 P 的直角坐标.x 2 2(解析)(Ⅰ) C 1 的一般方程为 3+ y = 1, C 2 的直角坐标方程为 x + y - 4 = 0 .(Ⅱ)由题意,可设点 P 的直角坐标为( 3 cos α, sin α) ,因为C 2 是直线,所以| PQ | 的最小值,即为 P 到C 2| 3 cos α+sin α- 4 |2222⎨⎩⎪=1⎩的距离d (α) 的最小值, d (α) ==π2 | sin(α+ π ) - 2 | .3 3 1当且仅当α= 2k π+(k ∈ Z ) 时, d (α) 取得最小值,最小值为 6,此时 P 的直角坐标为( , ) . 2 2 ⎧x = 1 + 1t , 26.(2023 江苏)在平面直角坐标系 xOy 中,已知直线l 的参数方程为⎪ ⎪ y = ⎩ 2 3 t , 2(t 为参数) ,椭圆C 的参数⎧x = cos θ,方程为⎨ y = 2sin θ, (θ为参数) ,设直线l 与椭圆C 相交于 A , B 两点,求线段 AB 的长.⎧x = 1+ 1t(解析)椭圆C 的一般方程为 x 2 + y 4 = 1,将直线l 的参数方程⎨ ⎪ y = ⎩2 3 t2 ,代入 x 2 + y 4 = 1,得(1+ 1 t )2 + 3 t )22 = 1,即7t 2 +16t = 0 ,解得t = 0 , t = - 16 ,所以 AB =| t - t | 16 .2 4 1 2 71 2727.(2023 全国Ⅰ文理)在直角坐标系 xOy 中,直线C : x = -2 ,圆C :(x -1)2 + ( y - 2)2= 1 ,以坐标原12点为极点, x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求C 1 , C 2 的极坐标方程;(Ⅱ)假设直线C 3 的极坐标方程为θ=(ρ∈ R ) ,设C 2 与C 3 的交点为 M , N ,求∆C 2MN 的面积.4(解析)(Ⅰ)因为 x = ρcos θ, y = ρsin θ,∴ C 的极坐标方程为ρcos θ= -2 , C 的极坐标方程为ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 .12(Ⅱ)将θ= π代入ρ2- 2ρcos θ- 4ρsin θ+ 4 = 0 ,得ρ2- 3 2ρ+ 4 = 0 ,解得ρ = 2, ρ = , 4|MN|= ρ - ρ = ,因为C 的半径为 1,则A C MN 的面积 ⨯ 122 ⨯1⨯sin 45o = 1 . 1 2 22 2 2 ⎧x = t cos α,28.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,曲线C 1 : ⎨ y = t sin α, ( t 为参数,t ≠0)其中0 ≤α<π,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2 : ρ= 2 sin θ, C 3 : ρ= 2 3 cos θ. (Ⅰ)求C 2 与C 3 交点的直角坐标;(Ⅱ)假设C 1 与C 2 相交于点 A , C 1 与C 3 相交于点 B ,求| AB | 的最大值.222(π3623)( x -1+ y +1= )()⎨(解析)(Ⅰ)曲线C 的直角坐标方程为 x 2 + y 2 - 2 y = 0 ,曲线C 的直角坐标方程为 x 2 + y 2- 2 3x = 0 .联⎪x 2+ y 2- 2 y = 0,⎧x = 0, ⎧ 3 ⎪x = 2 , 立⎨x 2 + y 2 - 2 3x = 0,解得⎨ y = 0, 或⎨ 3 ⎪ ⎩ ⎪ y = ,⎩ 23所以C 2 与C 1 交点的直角坐标为(0, 0) 和( , ) .2 2(Ⅱ)曲线C 1 的极坐标方程为θ= α(ρ∈ R , ρ≠ 0) ,其中0 ≤α<π. 因此 A 得到极坐标为(2 sin α,α) , B 的极坐标为(2 3 cos α,α) . π5π所以 AB = 2 sin α- 2 3 cos α = 4 s in(α-) ,当α= 时, AB 取得最大值,最大值为 4 . 3 629.(2023 江苏) 已知圆 C 的极坐标方程为ρ2+ 2 2ρsin(θ- π- 4 = 0 ,求圆 C 的半径.4(解析) 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为 x 轴的正半轴,建立直角坐标系 xoy .圆C 的极坐标方程为ρ2 + 2⎛ 2 sin θ- 2cos ⎫4 = 0 ,化简,得ρ2 + 2ρsin θ- 2ρcos θ- 4 = 0 . ρ 22 θ⎪⎪ - ⎝ ⎭则圆C 的直角坐标方程为 x 2 + y 2 - 2x + 2 y - 4 = 0 ,即2 2,所以圆C 的半径为 . ⎧x = 3 + 1 t 30.(2023 陕西文理)在直角坐标系 xOy 中,直线l 的参数方程为⎪2⎪ y = 3 t ⎩ 2 轴正半轴为极轴建立极坐标系,⊙ C 的极坐标方程为ρ= 2 3 sin θ. (Ⅰ)写出⊙ C 的直角坐标方程;( t 为参数).以原点为极点, x(Ⅱ) P 为直线l 上一动点,当 P 到圆心C 的距离最小时,求 P 的直角坐标.(解析)(Ⅰ) 由ρ= 2 3 sin θ, 得ρ2= 2 3ρsin θ,从而有 x 2+y 2= 2 3y , 所以x 2+ (y -3 )2= 3 .(Ⅱ)设P (3 += ,故当t =0 时,| PC |取最小值,此时 P 点的直角坐标为(3, 0) .21t,3t), 又C(0, 3) ,则| PC |=3222 3 ⎪55⎨y = 2 - 2t⎩⎩31.(2023 全国Ⅰ文理)已知曲线C : x 4 + y 29 = 1,直线l : ⎧x = 2 + t ( t 为参数). ⎩(Ⅰ)写出曲线C 的参数方程,直线l 的一般方程;(Ⅱ)过曲线C 上任一点 P 作与l 夹角为30o的直线,交l 于点 A ,求| PA |的最大值与最小值.⎧x = 2 cos θ.(解析)〔I 〕曲线C 的参数方程为⎨ y = 3sin θ. (θ为参数).直线l 的一般方程为2x + y - 6 = 0. ……5 分(Ⅱ)曲线C 上任意一点P(2cos θ.3sin θ)到l 的距离为d =4 cos θ+ 3sin θ- 6 .则 PA =d = sin 30︒ 5sin(θ+α) - 6 , 其中α为锐角,且tan α= 4 . 3当sin (θ+α)=-1时,PA 取得最大值,最大值为22 5 .5当sin(θ+α) = 1时,PA 取得最小值,最小值为2 5 .532.(2023 全国Ⅱ文理)在直角坐标系 xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆 C 的极坐标方程为ρ= 2 cos θ,θ∈ ⎡0,π⎤ .(Ⅰ)求 C 的参数方程;⎣⎢ 2 ⎥⎦(Ⅱ)设点 D 在 C 上,C 在 D 处的切线与直线l : y = 3x + 2 垂直,依据(Ⅰ)中你得到的参数方程,确定 D 的坐标.(解析)(I)C 的一般方程为(x -1)0 ≤ t ≤ x ).2 + y 2⎧x = 1+ cos t , = 1(0 ≤ y ≤ 1) ,可得 C 的参数方程为⎨ y = sin t ,(t 为参数,(Ⅱ)设 D (1+ cos t , sin t ) .由(I)知 C 是以 G(1,0)为圆心,1 为半径的上半圆. π因为 C 在点D 处的切线与 t 垂直,所以直线 GD 与 t 的斜率相同, tan t = 3, t =.32 5523⎩⎩⎩1⎩⎩ππ 3故D 的直角坐标为(1+ cos , s in ) ,即( , ) .3 3 2 233.(2023 全国Ⅰ文理)已知曲线C 的参数方程为⎧x = 4 + 5 cos t( t 为参数),以坐标原点为极点,x 轴的正1 ⎨y = 5 + 5sin t半轴为极轴建立极坐标系,曲线C2 的极坐标方程为ρ= 2 s inθ.(Ⅰ)把C1 的参数方程化为极坐标方程;(Ⅱ)求C1 与C2 交点的极坐标( ρ≥0 ,0 ≤θ≤2π).⎧x = 4 + 5 c os t2 2(解析)将⎨y = 5 + 5sin t消去参数t ,化为一般方程(x - 4) + ( y -5) = 25 ,即C1 :x 2 +y2⎧x =ρcosθ-8x -10 y+16 = 0 ,将⎨y =ρsinθ代入x 2 +y2- 8x -10 y + 16 = 0 得,ρ2 - 8ρcosθ-10ρsinθ+16 = 0 ,∴C 的极坐标方程为ρ2 - 8ρcosθ-10ρsinθ+16 = 0 .⎪x2+y2-8x-10y+16=0(Ⅱ) C 的一般方程为x2 +y2 - 2 y = 0 ,由⎨⎧x =1解得⎨⎧x = 0或⎨,2∴C1 与C2 的交点的极坐标分别为(⎩x2+y2-2y=0π),(2, ) .4 2⎩y =1 ⎩y = 2 34.(2023 全国Ⅱ文理)已知动点P ,Q 都在曲线C与β= 2α( 0 <α< 2π) M 为PQ 的中点.⎧x = 2 c os β:⎨y = 2 s in β(β为参数)上,对应参数分别为β=α(Ⅰ)求M的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并推断M 的轨迹是否过坐标原点.(解析)(Ⅰ)由题意有P(2c osα,2sinα),Q(2c os2α,2sin2α),因此M(cosα+cos2α,sinα+sin2α),⎧x = cosα+ cos 2α,M 的轨迹的参数方程为⎨y = sinα+ sin 2α, (0 <α< 2π).(Ⅱ)M 点到坐标原点的距离d ==0 <α< 2π),当α=π时,d = 0 ,故M 的轨迹过坐标原点.2,π3⎩100⎩135.(2023 全国文理)已知曲线C 的参数方程是⎧x = 2 cos ϕϕ为参数),以坐标原点为极点, x 轴的正半轴1⎨y = 3sin ϕ(为极轴建立极坐标系,曲线C 2 的极坐标方程是ρ= 2 .正方形 ABCD 的顶点都在C 2 上,且 A 、 B 、C 、πD 依逆时针次序排列,点 A 的极坐标为(2, ) . 3(Ⅰ)求点 A 、 B 、C 、 D 的直角坐标;(Ⅱ)设 P 为C 上任意一点,求| PA |2 + | PB |2 + | PC |2 + | PD |2 的取值范围.π5π 4π 11π(解析)(1)点 A , B , C , D 的极坐标为(2, ), (2, ), (2, ), (2, ) ,3 6 3 6点 A , B , C , D 的直角坐标为(1, 3),(-⎧x 0 = 2cos ϕ3,1), (-1, - 3),( 3, -1) .(2)设 P (x 0 , y 0 ) ;则⎨ y = 3sin (ϕ为参数) , ⎩ 0ϕt = PA 2+ PB 2+ PC 2+ PD 2= 4x 2 + 4 y 2 +16 = 32 + 20 sin 2ϕ∈32, 52.⎧x = 2 c os α 36.(2011 全国文理)在直角坐标系 xOy 中,曲线C 1 的参数方程为⎨ y = 2 + 2 s in(α为参数),M 是C 上 α的动点, P 点满足OP = 2OM , P 点的轨迹为曲线C 2(Ⅰ)求C 2 的方程(Ⅱ)在以 O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ= π与C 的异于极点的交点为 A ,与C 的异于极点的交点为 B ,求 AB .31 2(解析)(I)设 P (x , y ) ,则由条件知 M( x , y).由于 M 点在C 上,⎧ x = 2 cos α ⎪ 2 2 2⎧ x = 4 cos α 1⎧ x = 4 cos α 所以⎨ y ,即⎨y = 4 + 4 s in ,从而C 2 的参数方程为⎨y = 4 + 4 s in (α为参数), ⎪ = 2 + 2 s in α ⎩ α ⎩ α⎩ 2(Ⅱ)曲线C 1 的极坐标方程为ρ= 4sin θ,曲线C 2 的极坐标方程为ρ= 8sin θ.射线θ= π与C 的交点 A 的极径为ρ = 4sin π,射线θ= π与C 的交点 B 的极径为ρ = 8sin π.3 1 1 3 32 23所以| AB |=| ρ2 - ρ1 |= 2 .。
第十五篇坐标系与参数方程(选修44)第1节坐标系【选题明细表】知识点、方法题号极坐标与直角坐标的互化 1直线和圆的极坐标方程及应用 2简单曲线的极坐标方程及应用3,41.在极坐标系下,已知圆O:ρ=cos θ+sin θ和直线l:ρsin=.(1)求圆O和直线l的直角坐标方程;(2)当θ∈(0,π)时,求直线l与圆O公共点的极坐标.解:(1)圆O:ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ,圆O的直角坐标方程为x2+y2=x+y,即x2+y2-x-y=0.直线l:ρsin=,即ρsin θ-ρcos θ=1,则直线l的直角坐标方程为y-x=1,即x-y+1=0.(2)由得故直线l与圆O公共点的极坐标为.2.在极坐标系中,曲线L:ρsin2θ=2cos θ,过点A(5,α) (α为锐角且tan α=)作平行于θ=(ρ∈R)的直线l,且l与曲线L分别交于B,C两点.(1)以极点为原点,极轴为x轴的正半轴,取与极坐标系相同的单位长度,建立平面直角坐标系,写出曲线L和直线l的直角坐标方程.(2)求|BC|的长.解:(1)由题意得,点A的直角坐标为(4,3),由曲线L的极坐标方程ρsin2θ=2cos θ,得ρ2sin2θ=2ρcos θ,所以L的直角坐标方程为y2=2x.由于直线l的斜率为1,且过点A(4,3),故直线l的直角坐标方程为y-3=x-4,即y=x-1.(2)设B(x1,y1), C(x2,y2),由消去y,得x2-4x+1=0,由一元二次方程的根与系数的关系得x1+x2=4,x1x2=1,由弦长公式得|BC|==2.3.在极坐标系中,圆C是以点C(2,-)为圆心,2为半径的圆.(1)求圆C的极坐标方程.(2)求圆C被直线l:θ=-(ρ∈R)所截得的弦长.解:法一(1)设所求圆上任意一点M(ρ,θ),如图,在Rt△OAM中,∠OMA=90°,∠AOM=2π-θ-,|OA|=4.因为cos ∠AOM=,所以|OM|=|OA|·cos ∠AOM,即ρ=4cos(2π-θ-)=4cos(θ+),验证可知,极点O与A(4,- )的极坐标也满足方程,故ρ=4cos (θ+)为所求.(2)设l:θ=-(ρ∈R)交圆C于点P,在Rt△OAP中,∠OPA=90°,易得∠AOP=,所以|OP|=|OA|cos ∠AOP=2.法二(1)圆C是将圆ρ=4cos θ绕极点按顺时针方向旋转而得到的圆,所以圆C的极坐标方程是ρ=4cos(θ+).(2)将θ=-代入圆C的极坐标方程ρ=4cos(θ+),得ρ=2,所以圆C被直线l:θ=-(ρ∈R)所截得的弦长为2.4.已知曲线C1的极坐标方程为ρcos(θ-)=-1,曲线C2的极坐标方程为ρ=2cos(θ-).以极点为坐标原点,极轴为x轴正半轴建立平面直角坐标系.(1)求曲线C2的直角坐标方程.(2)求曲线C2上的动点M到曲线C1的距离的最大值.解:(1)依题意得ρ=2cos(θ-)=2(cos θ+sin θ),即ρ2=2(ρcos θ+ρsin θ),可得x2+y2-2x-2y=0,故C2的直角坐标方程为(x-1)2+(y-1)2=2.(2)曲线C1的极坐标方程为ρcos(θ-)=-1,即ρ(cos θ+sin θ)=-1,化为直角坐标方程为x+y+2=0,由(1)知曲线C2是以(1,1)为圆心,为半径的圆,且圆心到直线C1的距离d==>r=,于是直线与圆相离,所以动点M到曲线C1的距离的最大值为.。
高考数学《坐标系与参数方程》课后练习一、131.已知点()30A -,,()0,3B ,若点P 在曲线1cos sin x y θθ=+⎧⎨=⎩(参数[]0,2θπ∈)上运动,则PAB △面积的最小值为( ) A .92B.C.62+ D.62-【答案】D 【解析】 【分析】化简曲线1cos sin x y θθ=+⎧⎨=⎩成直角坐标,再将面积最小值转换到圆上的点到直线AB 的距离最小值求解即可. 【详解】由曲线1cos sin x y θθ=+⎧⎨=⎩(参数[]0,2θπ∈)知曲线是以()1,0为圆心,1为半径的圆.故直角坐标方程为:()2211x y -+=.又点()30A -,,()0,3B 故直线AB 的方程为30x y -+=. 故当P 到直线AB 的距离最小时有PAB △面积取最小值. 又圆心()1,0到直线AB 的距离为d ==故P 到直线AB 的距离最小值为1h =.故PAB △面积的最小值为()1116222S AB d =⋅=⨯=-. 故选:D 【点睛】 本题主要考查了参数方程化直角坐标的方法与根据直线与圆的位置关系求最值的问题.属于中等题型.2.极坐标cos ρθ=和参数方程12x ty t =--⎧⎨=+⎩(t 为参数)所表示的图形分别是A .直线、直线B .直线、圆C .圆、圆D .圆、直线【答案】D 【解析】由ρ=cos θ得ρ2=ρcos θ,∴x 2+y 2=x ,即12x ⎛⎫- ⎪⎝⎭ 2+y 2=14. 它表示以1,02骣琪琪桫为圆心,以12为半径的圆. 由x =-1-t 得t =-1-x ,代入y =2+t 中,得y =1-x 表示直线.3.已知点是曲线:(为参数,)上一点,点,则的取值范围是 A . B .C .D .【答案】D 【解析】 【分析】将曲线的参数方程化为普通方程,可知曲线是圆的上半圆,再利用数形结合思想求出的最大值和最小值。
【详解】 曲线表示半圆:,所以.取,结合图象可得.故选:D 。
同步测试卷理科数学(十九) 【p 321】 (坐标系与参数方程,不等式选讲) 时间:60分钟 总分:100分一、填空题(本大题共8小题,每小题5分,共40分,将各小题的结果填在题中横线上.)1.圆⎩⎪⎨⎪⎧x =3cos θ+1,y =3sin θ-2(θ为参数)的圆心到直线⎩⎪⎨⎪⎧x =4t -6,y =-3t +2(t 为参数)的距离是________.【解析】圆⎩⎪⎨⎪⎧x =3cos θ+1,y =3sin θ-2的普通方程为(x -1)2+(y +2)2=9,圆心为(1,-2).直线⎩⎪⎨⎪⎧x =4t -6,y =-3t +2的普通方程为3x +4y +10=0,所以点(1,-2)到直线3x +4y +10=0的距离为|3-8+10|5=1.【答案】12.若不等式⎪⎪⎪⎪⎪⎪x +1x >|a -2|+1对于一切非零实数x 均成立,则实数a 的取值范围是________.【解析】当x>0时,⎪⎪⎪⎪⎪⎪x +1x =x +1x ≥2; 当x<0时,⎪⎪⎪⎪⎪⎪x +1x =(-x)+1-x ≥2. 综上得⎪⎪⎪⎪⎪⎪x +1x min=2,∴只需|a -2|+1<2,解之得1<a<3.【答案】(1,3)3.已知关于x 的不等式2x +2x -a≥7在x∈(a,+∞)上恒成立,则实数a 的最小值为________.【解析】2x +2x -a =2(x -a)+2x -a+2a≥22(x -a )·2x -a+2a =2a +4≥7,∴a≥32. 【答案】324.在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为 ________. 【解析】由ρ=2cos θ可得其直角坐标方程为x 2+y 2=2x ⇒(x -1)2+y 2=1,所以圆的圆心为(1,0),半径为1,与x 轴垂直的圆的切线方程分别是x =0,x =2,在以原点为极点的极坐标系中,与之对应的方程是θ=π2(ρ∈R )和ρcos θ=2.【答案】θ=π2(ρ∈R )和ρcos θ=25.已知曲线C 的极坐标方程为ρ=2cos θ,以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为________.【解析】曲线C :ρ=2cos θ是以(1,0)为圆心,半径为1的圆,其方程为(x -1)2+y2=1,故参数方程为⎩⎪⎨⎪⎧x =1+cos φ,y =sin φ(φ为参数).【答案】⎩⎪⎨⎪⎧x =1+cos φ,y =sin φ(φ为参数)6.已知函数f (x )=|2x -1|-|x +2|,若∃x 0∈R ,使得f (x 0)+2m 2<4m ,则实数m 的取值范围是________.【解析】∵f (x )=⎩⎪⎨⎪⎧-x +3,x <-2-3x -1,-2≤x ≤12x -3,x >12, ∴f (x )min =f ⎝ ⎛⎭⎪⎫12=-52. 若∃x 0∈R ,使得f (x 0)+2m 2<4m ,只需-2m 2+4m >-52,解之得-12<m <52.【答案】⎝ ⎛⎭⎪⎫-12,527.若x ,y 都是正实数,且x +y >2,则1+x y <2和1+yx<2中________成立.(填“两个都”“两个都不”“只有一个”“至少有一个”“至多有一个”).【解析】假设1+x y <2和1+y x<2都不成立,则有1+x y ≥2和1+y x≥2同时成立.因为x >0且y >0,所以1+x ≥2y ,且1+y ≥2x . 两式相加,得2+x +y ≥2x +2y , 所以x +y ≤2.这与已知条件x +y >2矛盾,因此1+x y <2和1+y x<2中至少有一个成立.【答案】至少有一个8.已知△ABC 的三边长分别是a ,b ,c 且m 为正数,则aa +m +bb +m________cc +m(填“>”“<”“≥”“≤”“=”).【解析】由a ,b ,c ,m 都大于0可知,要比较aa +m +bb +m 与cc +m的大小,只需比较a (b+m )(c +m )+b (a +m )(c +m )与c (a +m )(b +m )的大小,因为a (b +m )(c +m )+b (a +m )(c +m )-c (a +m )(b +m )=abc +abm +acm +am 2+abc +abm +bcm +bm 2-abc -acm -bcm -cm 2=abc +2abm +(a +b -c )m 2,由于a ,b ,c 分别是△ABC 的三边长,故有a +b >c . ∵m >0,∴(a +b -c )m 2>0, ∴abc +2abm +(a +b -c )m 2>0, 因此aa +m +bb +m >cc +m成立.【答案】>二、解答题(本大题共4小题,每小题15分,共60分.解答应写出文字说明、证明过程或演算步骤.)9.已知a>0,b>0,a +b =1. (1)求证:1a +1b +1ab≥8;(2)求证:⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. 【解析】(1)∵a>0,b>0,a +b =1, ∴1a +1b +1ab =1a +1b +a +b ab =2⎝ ⎛⎭⎪⎫1a +1b =2⎝⎛⎭⎪⎫a +b a +a +b b =2⎝ ⎛⎭⎪⎫2+b a +a b ≥2⎝ ⎛⎭⎪⎫2+2b a ·a b =8. 当且仅当a =b =12时,取“=”号,即原不等式成立.(2)∵⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b =1+1a +1b +1ab , 由(1)知1a +1b +1ab≥8,∴1+1a +1b +1ab ≥9,即⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. 10.已知函数f(x)=|x -2|+2,g(x)=m|x|(m∈R ). (1)解关于x 的不等式f (x )>5;(2)若不等式f (x )≥g (x )对任意x ∈R 恒成立,求m 的取值范围. 【解析】(1)由f (x )>5,得|x -2|>3, ∴x -2<-3或x -2>3, 解得x <-1或x >5.故原不等式的解集为{x |x <-1或x >5}.(2)由f (x )≥g (x ),得|x -2|+2≥m |x |对任意x ∈R 恒成立, 当x =0时,不等式|x -2|+2≥0恒成立,当x ≠0时,问题等价于m ≤|x -2|+2|x |对任意非零实数恒成立, ∵|x -2|+2|x |≥|x -2+2||x |=1, ∴m ≤1,即m 的取值范围是(-∞,1].11.在极坐标系中,圆C 的极坐标方程为ρ2=4ρ(cos θ+sin θ)-3.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.(1)求圆C 的参数方程;(2)在直角坐标系中,点P (x ,y )是圆C 上的动点,试求x +2y 的最大值,并求出此时点P 的直角坐标.【解析】(1)因为ρ2=4ρ(cos θ+sin θ)-3, 所以x 2+y 2-4x -4y +3=0,即(x -2)2+(y -2)2=5为圆C 的直角坐标方程,所以圆C 的参数方程为⎩⎨⎧x =2+5cos θ,y =2+5sin θ(θ为参数).(2)法一:设x +2y =t ,得x =t -2y ,代入x 2+y 2-4x -4y +3=0,整理得5y 2+4(1-t )y +t 2-4t +3=0(*),则关于y 的方程必有实数根.所以Δ=16(1-t )2-20(t 2-4t +3)≥0,化简得t 2-12t +11≤0,解得1≤t ≤11,即x +2y 的最大值为11.将t =11代入方程(*)得y 2-8y +16=0,解得y =4,代入x +2y =11,得x =3, 故x +2y 的最大值为11,此时点P 的直角坐标为(3,4). 法二:由(1)可设点P (2+5cos θ,2+5sin θ), 则x +2y =6+5cos θ+25sin θ =6+5⎝⎛⎭⎪⎫55cos θ+255sin θ, 设sin α=55,则cos α=255,所以x +2y =6+5sin(θ+α), 当sin(θ+α)=1时,(x +2y )max =11,此时,θ+α=π2+2k π,k ∈Z ,即θ=π2-α+2k π(k ∈Z ),所以sin θ=cos α=255,cos θ=sin α=55,故点P 的直角坐标为(3,4).12.在平面直角坐标系中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φ,y =sin φ(φ为参数),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心在极轴上且经过极点的圆,射线θ=π3与曲线C 2交于点D ⎝⎛⎭⎪⎫2,π3. (1)求曲线C 1的普通方程,C 2的极坐标方程;(2)A (ρ1,θ),B ⎝⎛⎭⎪⎫ρ2,θ+π2是曲线C 1上的两点,求1ρ21+1ρ22的值.【解析】(1)由⎩⎪⎨⎪⎧x =2cos φ,y =sin φ,得⎩⎪⎨⎪⎧x2=cos φ,y =sin φ,两式平方相加得x 24+y 2=1,即曲线C 1的普通方程为x 24+y 2=1.设圆C 2的半径为R ,则圆C 2的方程为ρ=2R cos θ, 将点D ⎝ ⎛⎭⎪⎫2,π3代入得2=2R cos π3,解得R =2.∴圆C 2的极坐标方程为ρ=4cos θ.(2)曲线C 1的极坐标方程为ρ2cos 2θ4+ρ2sin 2θ=1,∴ρ2=44sin 2θ+cos 2θ. ∴ρ21=44sin 2θ+cos 2θ, ρ22=44sin 2⎝ ⎛⎭⎪⎫θ+π2+cos 2⎝ ⎛⎭⎪⎫θ+π2=4sin 2θ+4cos 2θ,∴1ρ21+1ρ22=4sin 2θ+cos 2θ4+4cos 2θ+sin 2θ4=54.。