第14章 精炼贝叶斯Nash均衡的精炼
- 格式:ppt
- 大小:681.00 KB
- 文档页数:85
装订处论纳什均衡及其启示摘要:纳什对博弈论的贡献有两个方面,一是合作博弈理论中的讨价还价模型,称为纳什讨价还价解;二是非合作博弈理论方面,这是他的主要贡献所在。
纳什对非合作博弈的主要贡献是他在1950年和1951年的两篇论文中在非常一般的意义上定义了非合作博弈及其均衡解,并证明了均衡解的存在。
这样,他便奠定了非合作博弈论的基础。
纳什所定义的均衡称为“纳什均衡”,它己成为经济学中的专用术语。
关键词:纳什均衡;启示博弈论可以划分为合作博弈和非合作博弈。
合作博弈与非合作博弈是根据博弈者之间是否能够通过某种契约的约束采取合作的策略而区分的。
合作的博弈是指在这种博弈中,博弈者能够通过谈判达成一个有约束的契约以限制博弈者行为,使之相互采取以一种合作的策略。
如果博弈者无法通过谈判达成一个有约束的契约以限制博弈者的行为,则该种博弈为非合作博弈。
合作博弈强调的是团体理性,强调的是效率、公正、公平。
非合作博弈强调的是个人理性、个人最优决策,其结果可能是有效率的,也可能是无效率的。
目前,非合作博弈的理论相对成熟。
在以下的分析中,由于分析对象大都是强调个体理性,并且,博弈的参与人之间没有一个具有约束力的契约来限制博弈者的行为,只是强调个人的理性。
在非合作博弈论中,又可以从两个角度对博弈进行分类:一是参与人行动的顺序。
从这个角度,可以将博弈划分为静态博弈(static game)和动态博弈(dynamic game)。
静态博弈指的是博弈中,参与人同时选择行动,或者是参与人虽然不是同时行动,但是后行动者不能知道先行动者所采取的行动;动态博弈指的是参与人的行动有先有后,且后行动者能够通过一定的手段知道先行动者的具体行动是什么;二是对其他参与人的特征、战略空间和支付函数的知识。
从这。
子博弈精炼纳什均衡+贝叶斯法则+信号博弈一:子博弈精炼纳什均衡在给出子博弈精炼Nash均衡的正式定义之前,我们需要先介绍“子博弈”这个概念。
子博弈(sub game):由一个单结信息集X开始的与所有该决策结的后续结(包括终点结)组成的,能够自成一个博弈的原博弈的一部分。
即给定“历史”,每一个行动选择开始至博弈结束构成了的一个博弈,称为原动态博弈的一个“子博弈”。
子博弈可以作为一个独立的博弈进行分析,并且与原博弈具有相同的信息结构。
为了叙述方便,一般用表示博弈树中开始于决策结的子博弈。
譬如图3.5,该博弈存在3个子博弈:除了原博弈自己以外,还存在两个子博弈图3.6a子博弈和图3.6b子博弈。
在静态博弈分析时,我们所说的战略是指参与人声明他将做出何种选择,而他们往往也是按照声明做出实际选择的;在动态博弈中,战略尽管仍然具有这种含义,但博弈在行动选择上参与人具有选择行动的先后顺序情况下,参与人有了一种额外的选择——事后机会主义,后动的局中人完全可以根据博弈进行到此时对局中人最为有利的方式选择行动,而放弃事前所声明的战略所规定的行动选择选择其行动。
这意味着,在动态博弈中,即使参与人人按事前所声明的战略组合构成一个纳什均衡,而这些均衡战略又规定了各个参与人在其所有信息集上的行动选择,这些行动选择也可能并非参与人在对应信息集上的最优行动选择。
而当博弈实际进行到那些由纳什均衡战略规定的行动并非最优行动选择的信息集时,按照理性人假设,可以想象参与人届时并不会按纳什均衡战略所规定的方式去选择行动,而是机会主义地选择最优的行动。
这样,具有这种特点的纳什均衡就是不可信的,即不能作为模型的预测结果,按照“精炼”纳什均衡的思想,应当将其消掉。
定义3.1:子博弈精炼纳什均衡(SPNE):扩展式博弈的策略组合 S*=(S1*,…, Si*,…, Sn* )是一个子博弈精炼纳什均衡当且仅当:如果它是原博弈的纳什均衡;它在每一个子博弈上也都构成纳什均衡。
贝叶斯精炼纳什均衡解经典例题和解答贝叶斯精炼纳什均衡(Bayesian refinement of Nash equilibrium)是博弈论中的一个概念,它结合了贝叶斯理论和纳什均衡的概念,用于描述在不完全信息博弈中玩家对其他玩家类型的不确定性。
这里我将为你提供一个经典的例题,并给出相应的解答。
考虑一个简化的拍卖场景,有两个潜在的买家:买家A和买家B。
拍卖的物品是一幅画,卖家想以尽可能高的价格卖出这幅画。
买家A和买家B对这幅画的估值分别服从正态分布,其均值和标准差如下:买家A的估值:均值为100,标准差为20买家B的估值:均值为120,标准差为15拍卖的规则如下:卖家首先设定一个底价p(reserve price),然后买家A和买家B分别出价。
如果买家A的出价高于底价p,并且买家B的出价也高于底价p,那么拍卖的赢家是出价最高的买家,并且他们需要支付自己的出价。
如果只有一个买家的出价高于底价p,那么这个买家获胜,并以底价p购买这幅画。
如果两个买家都没有出价高于底价p,那么拍卖失败,画作不会被卖出。
现在我们来解答这个问题:1. 假设卖家设定底价p为90,请计算在这个底价下,买家A和买家B的最优出价以及对应的期望收益。
为了计算买家A和买家B的最优出价,我们可以使用贝叶斯精炼纳什均衡的概念。
在这个场景中,买家A和买家B都面临不完全信息,即对方的估值是未知的。
我们需要通过贝叶斯理论来计算每个买家对对方估值的后验概率分布,然后根据这些概率分布来确定最优出价。
买家A的后验概率分布可以通过贝叶斯定理计算得到:P(v_A|p) = P(p|v_A) * P(v_A) / P(p)其中,v_A表示买家A对画作的估值,P(v_A)表示买家A对估值的先验概率分布(正态分布),P(p|v_A)表示在买家A估值为v_A的情况下,底价p被设定的概率,P(p)表示底价被设定为p的概率。
根据题目中给出的信息,买家A的估值服从均值为100,标准差为20的正态分布,我们可以计算P(v_A)。