初中数学中考专题复习《整式方程与不等式组》
- 格式:doc
- 大小:2.12 MB
- 文档页数:57
第二章 方程(组)与不等式(组)第一节 一次方程与一次方程组【考点1】一元一次方程定义:只含有 未知数,并且未知数的次数都是 。
(系数不为0)的整式方程。
形式:一般形式ax+b=0 ; 最简形式 ax=b (a ≠0) 解 :abx(a ≠0) 【提示】判断一个方程是否为一元一次方程,一定要先把方程化简以后再用定义进行判别。
解一元一次方程的一般步骤:去分母;去括号;移项(移项要变号);合并同类项;化系数为1【考点2】二元一次方程组 1.二元一次方程定义:含有 个未知数,并且含有未知数的项的次数都是 的整式方程。
一般形式: ax+by=c ,有无数组解。
2. 二元一次方程组的解法⑴代入消元法:多适用于方程组中有一个未知数的系数是 或 的情形。
⑵ :多适用于方程组的两个方程中相同未知数的系数 或互为 的情形。
【考点3】一次方程(组)的应用 1.列方程组解应用题的一般步骤:⑴审:即审清题意,分清题中的已知量、未知量; ⑵设:即设关键未知数;⑶列:即找出适当等量关系,列出方程(组); ⑷解:即解方程(组);⑸验:即检验所解答案是否正确或是否符合题意; ⑹答:即规范作答,注意单位名称。
2.列一元一次方程常见的应用题类型及关系式 ⑴ 利润率问题:利润=售价-进价 ;利润率=进价利润×100﹪ (先确定售价、进价、再计算利润率,其中打折、降价的词义应清楚)⑵ 利息问题:利息=本金×利率×期数 ;本息和=本金+利息 ;利息税=利息×税率 ; 贷款利息=贷款数额×利率×期数⑶ 工程问题:工作量=工作效率× (把全部工作量看作单位1,各部分工作量之和=1)⑷ 浓度问题:浓度=溶液质量溶质质量×100﹪⑸ 行程问题:路程=速度×时间 ① 追击问题(追击过程时间相等)② 相遇问题 (甲走的路程 乙走的路程=A 、B 两地间的路程)③ 航行问题:顺水(风)速度= +静水(风);逆水(风)速度=船速-【中考试题精编】1.练习本比水性笔的单价少2元,小刚买了5本练习本和3支水性笔正好花去14元,如果设水性笔的单价为x 元,那么下列方程正确的是( )A. 5(x-2)+3x=14B. 5(x+2)+3x=14C. 5x+3(x+2)=14D. 5x+3(x-2)=142.某班在学校组织的某场篮球比赛中,小杨和小方一共投进篮球21个,小杨比小方多投进5个。
中考数学专题复习:方程与不等式一、方程有关概念1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元一次方程1、一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0)2、一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0)3、解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
4、一元一次方程有唯一的一个解。
三、一元二次方程1、一元二次方程的一般形式:02=++c bx ax (其中x 是未知数,a 、b 、c 是已知数,a ≠0)2、一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法3、一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:ac b 42-=∆当Δ>0时⇔方程有两个不相等的实数根; 当Δ=0时⇔方程有两个相等的实数根; 当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根 5、一元二次方程根与系数的关系:若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a b x x -=+21,ac x x =⋅21 6、以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0)(21212=++-x x x x x x 三、分式方程1、定义:分母中含有未知数的方程叫做分式方程。
2、分式方程的解法: 一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
3、检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
中考数学第一轮复习方程与不等式知识总结一、方程基础概念方程是数学中用于描述两个数学表达式之间相等关系的一种形式。
它通常由未知数、已知数和运算符号组成。
在中考数学中,方程是解决问题的重要工具之一。
理解方程的定义、解的概念以及方程解的性质是后续学习的基础。
二、一元一次方程解法一元一次方程是只含有一个未知数,且未知数的次数为1的方程。
其一般形式为`ax + b = 0`(其中`a ≠0`)。
解一元一次方程的基本步骤包括:去分母、去括号、移项、合并同类项、系数化为1。
掌握这些步骤,能够高效地求解一元一次方程。
三、二元一次方程组二元一次方程组是由两个或两个以上含有两个未知数的一次方程组成的方程组。
解二元一次方程组的基本思想是通过消元法(代入消元法或加减消元法)将二元一次方程组转化为一元一次方程来求解。
掌握二元一次方程组的解法,对于解决实际问题具有重要意义。
四、一元二次方程公式法一元二次方程是只含有一个未知数,且未知数的最高次数为2的整式方程。
其一般形式为`ax^2 + bx + c = 0`(其中`a ≠0`)。
对于一元二次方程的求解,当判别式`Δ= b^2 - 4ac`大于或等于0时,可以使用公式法求解。
公式法求解一元二次方程的公式为`x = [-b ±√(Δ)] / (2a)`。
掌握公式法,能够准确地求解一元二次方程的根。
五、不等式与解集不等式是表示两个数学表达式之间不等关系的一种形式。
它通常用“<”、“>”、“≤”、“≥”等符号表示。
不等式的解集是指满足不等式的所有未知数的值的集合。
理解不等式的性质,掌握不等式解集的表示方法,是求解不等式的基础。
六、一元一次不等式解法一元一次不等式是只含有一个未知数,且未知数的次数为1的不等式。
解一元一次不等式的基本步骤与解一元一次方程类似,包括去分母、去括号、移项、合并同类项等。
但需要注意的是,在解不等式时,当两边同时乘以或除以一个负数时,不等号的方向会发生变化。
知识点一 一元一次方程及其解法1.一元一次方程:只含有一个未知数,并且未知数的次数为1,这样的整式方程叫做一元一次方程.它的一般形式为0(0)ax b a +=≠.注意:x 前面的系数不为0.2.一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解. 3.一元一次方程0(0)ax b a +=≠的求解步骤知识点二 二元一次方程(组)及解法1.二元一次方程:含有2个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程. 2.二元一次方程的解:使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3.二元一次方程组由两个二元一次方程组成的方程组叫二元一次方程组.方程组中同一个字母代表同一个量,其一般形式为111222a xb yc a x b y c +=⎧⎨+=⎩.4.二元一次方程组的解法(1)代入消元法:将方程中的一个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法:将方程组中两个方程通过适当变形后相加(或相减)消去其中一个未知数,化二元一次方程组为一元一次方程.知识点三分式方程及其解法1.分式方程:分母中含有的方程叫做分式方程;2.分式方程的解法:(1)解分式方程的基本思路是把分式方程转化为整式方程。
(2)解分式方程的一般步骤:第一步:,将分式方程转化为整式方程;第二步:解整式方程;第三步:.(3)增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根,称为方程的增根。
因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。
(4)产生增根的原因:将分式方程化为整式方程时,在方程两边同乘以使最简公分母为的因式。
知识点四一元二次方程及其解法1.一元二次方程:只含有个未知数(一元),并且未知数最高次数是2(二次)的方程,叫做一元二次方程。
考点02 方程与不等式一、等式方程整式方程一元一次方程概念只含有一个未知数,并且未知数的次数是一次的整式方程,叫做一元一次方程。
其一般形式是ax+b=0(a,b为常数,且a≠0).解法解法依据是等式的基本性质.性质①:若a=b,则a±m=b±m;性质①:若a=b,则am=bm;若a=b,则dbda=(d≠0).解法的一般步骤:①去分母;①去括号;①移项;①合并同类项;①未知数的系数化为1.一元二次方程概念(1)只含有一个未知数,未知数的最高次数是二次,且系数不为0的整式方程,叫做一元二次方程.(2)一元二次方程的一般形式:ax2+bx+c=0(a≠0),其中ax2叫做二次项,bx叫做一次项,c叫做常数项,a是二次项的系数,b是一次项的系数,注意a≠0.解法(降次)① 直接开平方法:(x+m)2=n(n≥0)的根是nmx±-=配方法:将ax2+bx+c=0(a≠0)化成222442aacbabx-=⎪⎭⎫⎝⎛+的形式,当b2-4ac≥0时,用直接开平方法求解公式法:ax2+bx+c=0(a≠0)的求根公式为知识归纳1. 解二元一次方程组的步骤 (1)代入消元法① 变:将其一个方程化为y =ax +b 或者为x =ay+b 的形式 ② 代:将y =ax +b 或者为x =ay+b 代入另一个方程 ③ 解:解消元后的一元一次方程④ 求:将求得的未知数值代入y =ax +b 或x =ay+b ,求另一个未知数的值 ⑤ 答:写出答案 (2)加减消元法① 化:将原方程组化成有一个未知数的系数相等(互为相反数)的形式, ② 加减:将变形后的方程组通过加减消去一个未知数 ③ 解:解消元后的一元一次方程④ 求:将求得的知数的值代入方程组中任意一个方程求另一个未知数的值 2. 解二元一次方程组的方法选择(1)当方程组中某一个未知数的系数是1或者-1时,选用代入消元法; (2)当方程组中某一个方程的常数项为0时,选用代入消元法; (3)方程组中同一个知数的数相同或互为相反数时,选用加减消无法 (4)当两个方程中同一个未知数的系数成整数倍关系时,选用加减消元法 3. 分式方程验根的两种方法(1)把求得的未知数的值代入原程进行检验,这种方法可以检验解方程时计算有无错误;(2)把求得的未知数的值代入分式的最公分母,看最简公分式的值是否等于零,这种方法不能检查解力程过程中出现的计算错误,式组的解集⎩⎨⎧≤≤b x ax x ≤a小小取小⎩⎨⎧≤≥b x ax a ≤x ≤b大小小大中间找⎩⎨⎧≥≤bx ax 无解大大小小解不了答题指导4. 分式方程无解两种情形(1)分式方程化为整式方程后所得整式方程无解,则原程无解;(2)整式方程有解,但所求得的解经检验是增根,此时分式无解。
第二单元《方程(组)与不等式(组)》中考知识点梳理第5讲一次方程(组)第6讲一元二次方程第7讲分式方程三、知识清单梳理第8讲一元一次不等式(组)知识点一:不等式及其基本性质关键点拨及对应举例1.不等式的相关概念(1)不等式:用不等号(>,≥,<,≤或≠)表示不等关系的式子.(2)不等式的解:使不等式成立的未知数的值.(3)不等式的解集:使不等式成立的未知数的取值范围.例:“a与b的差不大于1”用不等式表示为a-b≤1.2.不等式的基本性质性质1:若a>b,则a±c>b±c;性质2:若a>b,c>0,则ac>bc,ac>bc;性质3:若a>b,c<0,则ac<bc,ac<bc.牢记不等式性质3,注意变号.如:在不等式-2x>4中,若将不等式两边同时除以-2,可得x<2.知识点二:一元一次不等式3.定义用不等号连接,含有一个未知数,并且含有未知数项的次数都是1的,左右两边为整式的式子叫做一元一次不等式. 例:若230mmx++>是关于x的一元一次不等式,则m的值为-1.4.解法(1)步骤:去分母;去括号;移项;合并同类项;系数化为1.失分点警示系数化为1时,注意系数的正负性,若系数是负数,则不等式改变方向.(2)解集在数轴上表示:x≥a x>a x≤a x<a知识点三:一元一次不等式组的定义及其解法5.定义由几个含有同一个未知数的一元一次不等式合在一起,就组成一个一元一次不等式组.(1)在表示解集时“≥”,“≤”表示含有,要用实心圆点表示;“<”,“>”表示不包含要用空心圆点表示.(2)已知不等式(组)的解集情况,求字母系数时,一般先视字母系数为常数,再逆用不等式(组)解集的定义,反推出含字母的方程,最后求出字母的值.如:已知不等式(a-1)x<1-a 的解集是x>-1,则a的取值范围是a<1.6.解法先分别求出各个不等式的解集,再求出各个解集的公共部分7.不等式组解集的类型假设a<b解集数轴表示口诀x ax b≥⎧⎨≥⎩x≥b大大取大x ax b≤⎧⎨≤⎩x≤a小小取小x ax b≥⎧⎨≤⎩a≤x≤b大小,小大中间找x ax b≤⎧⎨≥⎩无解大大,小小取不了知识点四:列不等式解决简单的实际问题8.列不等式解应用题(1)一般步骤:审题;设未知数;找出不等式关系;列不等式;解不等式;验检是否有意义.(2)应用不等式解决问题的情况:a.关键词:含有“至少(≥)”、“最多(≤)”、“不低于(≥)”、“不高于(≤)”、“不大(小)于”、“超过(>)”、“不足(<)”等;注意:列不等式解决实际问题中,设未知数时,不应带“至少”、“最多”等字眼,与方程中设未知数一致.。
中考数学方程(组)与不等式(组)复习知识点总结一、方程 【知识梳理】1、知识结构方程⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎩⎨⎧分式方程的应用分式方程的解法分式方程的概念分式方程的关系根的判别式,根与系数一元二次方程的解法念一元二次方程的有关概一元二次方程二元一次方程组的应用二元一次方程组的解法二元一次方程组一元一次方程的应用一元一次方程的解法一元一次方程整式方程2、知识扫描(1)只含有一个未知数,并且未知数的次数是1的整式方程,叫做一元一次方程。
(2)含有 2 个未知数,并且所含未知数的项的次数都是 1 次,这样的方程叫二元一次方程.(3)含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组. (4)二元一次方程组的解法有 法和 法.(5)只含有 1 个未知数,并且未知数的最高次数是2且系数不为0的整式方程,叫做一元二次方程,其一般形式为 )0(02≠=++a c bx ax 。
(6)解一元二次方程的方法有:① 直接开平方法;②配方法;③ 公式法;④ 因式分解法例:(1)042=-x (2)0342=--x x (3)4722=+x x (4)0232=+-x x (7)一元二次方程的根的判别式:ac b 42-=∆叫做一元二次方程的根的判别式。
对于一元二次方程)0(02≠=++a c bx ax当△>0时,有两个不相等的实数根; 当△=0时,有两个相等的实数根;当△<0时,没有实数根; 反之也成立。
(8)一元二次方程的根与系数的关系:如果)0(02≠=++a c bx ax 的两个根是21,x x 那么a b x x -=+21, ac x x =⋅21(9)一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b aac b b x(10) 分母 中含有未知数的方程叫分式方程.(11)解分式方程的基本思想是 将分式方程通过去分母转化为整式方程 . ◆ 解分式方程的步骤◆ 1、去分母, 化 分式方程 为 整式方程 ; ◆ 2、解这个 整式方程 ; ◆ 3、验 根。
中考数学专题复习:方程与不等式(组)考点汇总大全明确目标〮定位考点整式方程(一元一次方程和一元二次方程)是初中的基础知识,应用极为广泛,对于方程、方程的解等概念的考查以选择题、填空题为主,一元二次方程的应用一直是中考命题的热点,常与二次函数结合起来考查。
二元一次方程组是初中数学的重要组成部分,且与现实生活有着密切联系,多与一次函数、整式进行综合考查。
理解不等式的意义、不等式(组)的解及解集的含义,掌握不等式的基本性质,解一元一次不等式(组)、在数轴上表示或判定其解集;根据具体问题中的数量关系,灵活运用一元一次不等式(组)解决简单问题。
归纳总结﹒思维升华一、方程的基本概念 1、方程(1)等式和方程:用“=”表示相等关系的式子叫做等式;含有未知数的等式叫做方程。
(2)方程的解; (3)解方程2、等式的基本性质等式的基本性质1:等式两边都加上(或减去)同一个数,等式仍然成立。
等式的基本性质2:等式两边都乘(或除以)同一个数(除数不能是0),等式仍然成立。
3、方程的解法 (1)方程的解法'(1)一元一次方程:只含有一个未知数,并且未知数的最高次数是1,这样的整式方程叫做一元一次方程。
任何一个一元一次方程,总可以通过变形化为:bax =(b ≠0)的形式,一元一次方程有唯一解。
(2)一元二次方程:只含有一个未知数的整式方程,并且都可以化成02=++c bx ax (a ≠0)的形式,这样的方程叫做一元二次方程。
一元二次方程的解法有以下四种:直接开平方法:对于形如)0(2≥=m m x 或)0,0()2≥≠=+c a c b ax (的方程,直接开平方得m x ±=或c b ax ±=+。
配方法:将方程02=++c bx ax (a ≠0)配方为())0(2≥=+n n m x 的形式来求解。
公式法:一元二次方程02=++c bx ax (a ≠0)的求根公式为aacb b x 242-±-=。
初中数学中考专题复习《整式方程与不等式组》【知识要点】一、整式方程(组)包括:一元一次方程一元二次方程二元一次方程组三元一次方程组二、解法1.解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1.2.(1)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法.(2)一元二次方程的根的判别式:ac b 42-=∆当Δ>0时⇔方程有两个不相等的实数根;当Δ=0时⇔方程有两个相等的实数根;当Δ< 0时⇔方程没有实数根,无解;当Δ≥0时⇔方程有两个实数根(3)一元二次方程根与系数的关系:1)若21,x x 是一元二次方程02=++c bx ax 的两个根,那么:a b x x -=+21,ac x x =⋅21 2)以两个数21,x x 为根的一元二次方程(二次项系数为1)是:0x x x )x x (x 21212=++-3.二(三)元一次方程组解法:代入消元法和加减消元法4.解一元一次不等式(组)解一元一次不等式的步骤与解一元一次方程的步骤大致相同,应注意的是,不等式两边所乘以(或除以)的数的正负,并根据不同情况灵活运用其性质,不等式组解集的确定方法:若a<b,则有:(1)00a b <⎧⎨<⎩的解集是x<a,即“小小取小”.(2)ab>⎧⎨>⎩的解集是x>b,即“大大取大”.(3)ab>⎧⎨<⎩的解集是a<x<b,即“大小小大取中间”.(4)ab<⎧⎨>⎩的解集是空集,即“大大小小取不了”.三、列方程(组)解应用题常见类型题及其等量关系1.工程问题(1)基本工作量的关系:工作量=工作效率×工作时间(2)常见的等量关系:甲的工作量+乙的工作量=甲、乙合作的工作总量(3)注意:工程问题常把总工程看作“1”,水池注水问题属于工程问题2.行程问题(1)基本量之间的关系:路程=速度×时间(2)常见等量关系:相遇问题:甲走的路程+乙走的路程=全路程追及问题(设甲速度快):同时不同地:甲的时间=乙的时间;甲走的路程–乙走的路程=原来甲、乙相距路程同地不同时:甲的时间=乙的时间–时间差;甲的路程=乙的路程3.水中航行问题:顺流速度=船在静水中的速度+水流速度;逆流速度=船在静水中的速度–水流速度4.增长率问题:常见等量关系:增长后的量=原来的量+增长的量;增长的量 =原来的量×(1+增长率);5.数字问题:基本量之间的关系:三位数=个位上的数+十位上的数×10+百位上的数×100【典型考题分析】一元一次方程及其应用1.(2019•湖北省荆门市•3分)欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关【分析】设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,得出x(1+20%)=y(1﹣20%),整理得:3x=2y,则两件衣服总的盈亏就可求出.【解答】解:设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,∴x(1+20%)=y(1﹣20%),整理得:3x=2y,该服装店卖出这两件服装的盈利情况为:0.2x﹣0.2y=0.2x﹣0.3x=﹣0.1x,即赔了0.1x元,故选:B.【点评】本题考查了一元一次方程的应用,解决本题的关键是根据题意,列方程求出两件衣服的进价故选,进而求出总盈亏.2. (2019湖北荆门)(3分)欣欣服装店某天用相同的价格a(a>0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.盈利B.亏损C.不盈不亏D.与售价a有关【分析】设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,得出x(1+20%)=y(1﹣20%),整理得:3x=2y,则两件衣服总的盈亏就可求出.【解答】解:设第一件衣服的进价为x元,依题意得:x(1+20%)=a,设第二件衣服的进价为y元,依题意得:y(1﹣20%)=a,∴x(1+20%)=y(1﹣20%),整理得:3x=2y,该服装店卖出这两件服装的盈利情况为:0.2x﹣0.2y=0.2x﹣0.3x=﹣0.1x,即赔了0.1x元,故选:B.【点评】本题考查了一元一次方程的应用,解决本题的关键是根据题意,列方程求出两件衣服的进价故选,进而求出总盈亏.二元一次方程(组)及其应用一.选择题1.(2019•湖北省荆门市•3分)已知实数x,y满足方程组则x2﹣2y2的值为()A.﹣1 B.1 C.3 D.﹣3【分析】首先解方程组,求出x、y的值,然后代入所求代数式即可.【解答】解:,①+②×2,得5x=5,解得x=1,把x=1代入②得,1+y=2,解得y=1,∴x2﹣2y2=12﹣2×12=1﹣2=﹣1.故选:A.【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于x、y的方程组是关键.2.(2019•湖北省仙桃市•3分)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种【分析】可列二元一次方程解决这个问题.【解答】解:设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B .【点评】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.3.(2019•四川省广安市•3分)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是()A 1,11 ()B 7,53 ()C 7,61 ()D 6,50【答案】B【解析】解设人数x 人,物价y 钱.⎩⎨⎧=+=-y x y x 4738 解得:⎩⎨⎧==537y x ,故选B. 4. (2019·广西贺州·3分)已知方程组,则2x +6y 的值是( ) A .﹣2 B .2 C .﹣4 D .4【分析】两式相减,得x +3y =﹣2,所以2(x +3y )=﹣4,即2x +6y =﹣4.【解答】解:两式相减,得x +3y =﹣2,∴2(x +3y )=﹣4,即2x +6y =﹣4,故选:C .【点评】本题考查了二元一次方程组,对原方程组进行变形是解题的关键.5 (2019•黑龙江省绥化市•3分)小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( )A .5种B .4种C .3种D .2种答案:C考点:二元一次方程,不等式。
解析:设A 种玩具的数量为x ,B 种玩具的数量为y ,则210x y +=, 即52x y =-, 满足条件:x ≥1,y ≥1,x >y ,当x =2时,y =4,不符合;当x =6时,y =2,符合;当x =8时,y =1,符合;共3种购买方案。
6. (2019•黑龙江省齐齐哈尔市•3分)学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A .3种B .4种C .5种D .6种【分析】设购买A 品牌足球x 个,购买B 品牌足球y 个,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可求出结论.【解答】解:设购买A 品牌足球x 个,购买B 品牌足球y 个,依题意,得:60x +75y =1500,∴y =20﹣x .∵x ,y 均为正整数, ∴,,,,∴该学校共有4种购买方案.故选:B .7.(2019黑龙江省绥化3分)小明去商店购买A 、B 两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( )A .5种B .4种C .3种D .2种答案:C考点:二元一次方程,不等式。
解析:设A 种玩具的数量为x ,B 种玩具的数量为y ,则210x y +=, 即52x y =-, 满足条件:x ≥1,y ≥1,x >y ,当x =2时,y =4,不符合;当x =4时,y =3,符合;当x =6时,y =2,符合;共3种购买方案。
8. (2019湖北荆门)(3分)已知实数x,y满足方程组则x2﹣2y2的值为()A.﹣1 B.1 C.3 D.﹣3【分析】首先解方程组,求出x、y的值,然后代入所求代数式即可.【解答】解:,①+②×2,得5x=5,解得x=1,把x=1代入②得,1+y=2,解得y=1,∴x2﹣2y2=12﹣2×12=1﹣2=﹣1.故选:A.【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.正确解关于x、y的方程组是关键.9.(2019湖北仙桃)(3分)把一根9m长的钢管截成1m长和2m长两种规格均有的短钢管,且没有余料,设某种截法中1m长的钢管有a根,则a的值可能有()A.3种B.4种C.5种D.9种【分析】可列二元一次方程解决这个问题.【解答】解:设2m的钢管b根,根据题意得:a+2b=9,∵a、b均为整数,∴,,,.故选:B.【点评】本题运用了二元一次方程的整数解的知识点,运算准确是解此题的关键.二.填空题1.(2019•湖北省鄂州市•3分)若关于x、y的二元一次方程组的解满足x+y≤0,则m的取值范围是m≤﹣2 .【分析】首先解关于x和y的方程组,利用m表示出x+y,代入x+y≤0即可得到关于m的不等式,求得m的范围.【解答】解:,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤﹣2.故答案是:m≤﹣2.【点评】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.2(2019•湖北省咸宁市•3分)《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.【分析】设木条长x尺,绳子长y尺,根据绳子和木条长度间的关系,可得出关于x,y的二元一次方程组,此题得解.【解答】解:设木条长x尺,绳子长y尺,依题意,得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.3.(2019•四川省凉山州•4分)方程组的解是.【分析】利用加减消元法解之即可.【解答】解:,②﹣①得:x=6,把x=6代入①得:6+y=10,解得:y=4,方程组的解为:,故答案为:.【点评】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.4.(2019湖南常德3分)二元一次方程组的解为.【分析】由加减消元法或代入消元法都可求解.【解答】解:②﹣①得x=1 ③将③代入①得y=5∴故答案为:【点评】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.5.(2019•山东临沂•3分)用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共11 块.【分析】设需用A型钢板x块,B型钢板y块,根据“用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x,y 的二元一次方程组,用(①+②)÷5可求出x+y的值,此题得解.【解答】解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.6.(2019•山东泰安•4分)《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意可列方程组为 .【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)﹣(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【解答】解:设每枚黄金重x 两,每枚白银重y 两,由题意得:,故答案为:.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.7.(2019•湖南常德•3分)二元一次方程组⎩⎨⎧=+=+726y x y x 的解为 .【考点】二元一次方程组的解法.【分析】由加减消元法或代入消元法都可求解.【解答】解:②-①得x =1 ③将③代入①得y =5∴故答案为【点评】本题考查的是二元一次方程组的基本解法,本题属于基础题,比较简单.8.(2019湖北省鄂州市)(3分)若关于x 、y 的二元一次方程组的解满足x +y ≤0,则m 的取值范围是 m ≤﹣2 .【分析】首先解关于x 和y 的方程组,利用m 表示出x +y ,代入x +y ≤0即可得到关于m 的不等式,求得m的范围.【解答】解:,①+②得2x+2y=4m+8,则x+y=2m+4,根据题意得2m+4≤0,解得m≤﹣2.故答案是:m≤﹣2.【点评】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.9. 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.【分析】设木条长x尺,绳子长y尺,根据绳子和木条长度间的关系,可得出关于x,y的二元一次方程组,此题得解.【解答】解:设木条长x尺,绳子长y尺,依题意,得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.三.解答题1.(2019•四川省广安市•8分)为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A型节能灯和5只B型节能灯共需50元,2只A型节能灯和3只B型节能灯共需31元.(1)求1只A型节能灯和1只B型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A型节能灯的数量不超过B型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【解答】解:(1)设1只A型节能灯的售价是x元,1只B型节能灯的售价是y元,,解得,,答:1只A型节能灯的售价是5元,1只B型节能灯的售价是7元;(2)设购买A型号的节能灯a只,则购买B型号的节能灯(200﹣a)只,费用为w元,w=5a+7(200﹣a)=﹣2a+1400,∵a≤3(200﹣a),∴a≤150,∴当a=150时,w取得最小值,此时w=1100,200﹣a=50,答:当购买A型号节能灯150只,B型号节能灯50只时最省钱.【点评】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.2.(2019•海南省•10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元.请问这两种百香果每千克各是多少元?【分析】设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意列出方程组,解方程组即可.【解答】解:设“红土”百香果每千克x元,“黄金”百香果每千克y元,由题意得:,解得:;答:“红土”百香果每千克25元,“黄金”百香果每千克30元.【点评】本题考查了二元一次方程组的应用以及二元一次方程组的解法;根据题意列出方程组是解题的关键.3.(2019浙江丽水6分)解方程组【分析】根据二元一次方程组的解法,先将式子①化简,再用加减消元法(或代入消元法)求解;【解答】解:,将①化简得:﹣x+8y=5 ③,②+③,得y=1,将y=1代入②,得x=3,∴;【点评】本题考查二元一次方程组的解法;熟练掌握加减消元法或代入消元法解方程组是解题的关键.4.(2019湖南益阳10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价﹣成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【分析】(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意列出方程组,解方程组即可;(2)设今年稻谷的亩产量为z千克,由题意列出不等式,就不等式即可.【解答】解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;(2)设今年稻谷的亩产量为z千克,由题意得:20×100×30+20×2.5z﹣20×600≥80000,解得:z≥640;答:稻谷的亩产量至少会达到640千克.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用;根据题意列出方程组或不等式是解题的关键.6.(2019•山东潍坊•5分)己知关于x ,y 的二元一次方程组的解满足x >y ,求k的取值范围.【分析】先用加减法求得x ﹣y 的值(用含k 的式子表示),然后再列不等式求解即可. 【解答】解:①﹣②得:x ﹣y =5﹣k , ∵x >y , ∴x ﹣y >0. ∴5﹣k >0. 解得:k <5.【点评】本题主要考查的是二元一次方程组的解,求得x ﹣y 的值(用含k 的式子表示)是解题的关键.7.(2019•浙江丽水•6分)解方程组:⎩⎨⎧=-=--.12,5)2(43y x y x x【考点】解二元一次方程组.【分析】运用整体思想,直接将方程②代入方程①,即可消去y ,求出x 的值,再将x 的值代入方程②即可求出y 的值. 【解答】解:,把②代入①,得3x -4×1=5,解得: x =3, 把x =3代入②,得:y =1. ∴此方程组的解为.【点评】本题考查二元一次方程组的解法;熟练掌握加减消元法或代入消元法解方程组是解题的关键.8.(2019•湖南益阳•10分)为了提高农田利用效益,某地由每年种植双季稻改为先养殖小龙虾再种植一季水稻的“虾•稻”轮作模式.某农户有农田20亩,去年开始实施“虾•稻”轮作,去年出售小龙虾每千克获得的利润为32元(利润=售价-成本).由于开发成本下降和市场供求关系变化,今年每千克小龙虾的养殖成本下降25%,售价下降10%,出售小龙虾每千克获得利润为30元.(1)求去年每千克小龙虾的养殖成本与售价;(2)该农户今年每亩农田收获小龙虾100千克,若今年的水稻种植成本为600元/亩,稻谷售价为25元/千克,该农户估计今年可获得“虾•稻”轮作收入不少于8万元,则稻谷的亩产量至少会达到多少千克?【考点】方程组与不等式的应用题.【分析】(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意列出方程组,解方程组即可;(2)设今年稻谷的亩产量为z千克,由题意列出不等式,就不等式即可.【解答】解:(1)设去年每千克小龙虾的养殖成本与售价分别为x元、y元,由题意得:,解得:;答:去年每千克小龙虾的养殖成本与售价分别为8元、40元;(2)设今年稻谷的亩产量为z千克,由题意得:20×100×30+20×2.5z-20×600≥80000,解得:z≥640;答:稻谷的亩产量至少会达到640千克.【点评】本题考查了二元一次方程组的应用、一元一次不等式的应用;根据题意列出方程组或不等式是解题的关键.一元二次方程及其应用一.选择题1.(2019•湖北省鄂州市•3分)关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x,且x1+3x2=5,则m的值为()2A.B.C.D.0【分析】根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.【解答】解:∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.【点评】本题考查的是一元二次方程根与系数的关系,掌握一元二次方程ax2+bx+c=0(a ≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=是解题的关键.2.(2019•湖北省仙桃市•3分)若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为()A.12 B.10 C.4 D.﹣4【分析】根据根与系数的关系可得α+β=2,αβ=﹣4,再利用完全平方公式变形α2+β2=(α+β)2﹣2αβ,代入即可求解;【解答】解:∵方程x2﹣2x﹣4=0的两个实数根为α,β,∴α+β=2,αβ=﹣4,∴α2+β2=(α+β)2﹣2αβ=4+8=12;故选:A.【点评】本题考查一元二次方程根与系数的关系;熟练掌握韦达定理,灵活运用完全平方公式是解题的关键.3.(2019•湖北省咸宁市•3分)若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m<1 B.m≤1 C.m>1 D.m≥1【分析】根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有实数根,∴△=(﹣2)2﹣4m≥0,解得:m≤1.故选:B.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.4.(2019•四川省达州市•3分)某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程,则下列方程正确的是()A.2500(1+x)2=9100B.2500(1+x%)2=9100C.2500(1+x)+2500(1+x)2=9100D.2500+2500(1+x)+2500(1+x)2=9100【分析】分别表示出5月,6月的营业额进而得出等式即可.【解答】解:设该公司5、6两月的营业额的月平均增长率为x.根据题意列方程得:2500+2500(1+x)+2500(1+x)2=9100.故选:D.【点评】此题主要考查了由实际问题抽象出一元二次方程,正确理解题意是解题关键.5. (2019•广东广州•3分)关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值()1A.0或2 B.﹣2或2 C.﹣2 D.2【分析】由根与系数的关系可得出x1+x2=k﹣1,x1x2=﹣k+2,结合(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3可求出k的值,根据方程的系数结合根的判别式△≥0可得出关于k的一元二次不等式,解之即可得出k的取值范围,进而可确定k的值,此题得解.【解答】解:∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0的两个实数根为x1,x2,∴x1+x2=k﹣1,x1x2=﹣k+2.∵(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,即(x1+x2)2﹣2x1x2﹣4=﹣3,∴(k﹣1)2+2k﹣4﹣4=﹣3,解得:k=±2.∵关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有实数根,∴△=[﹣(k﹣1)]2﹣4×1×(﹣k+2)≥0,解得:k≥2﹣1或k≤﹣2﹣1,∴k=2.故选:D.【点评】本题考查了根的判别式以及根与系数的关系,利用根与系数的关系结合(x 1﹣x 2+2)(x 1﹣x 2﹣2)+2x 1x 2=﹣3,求出k 的值是解题的关键.6. (2019•广西北部湾•3分)扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为 ( )A .(30﹣x ) (20﹣x ) =43×20× 30 B . (30﹣2x ) (20﹣x ) =41×20× 30 C . 30 x +2×20x ) =41×20× 30 D . (30﹣2x ) (20﹣x ) =43×20× 30【答案】D 【解析】解:设花带的宽度为xm ,则可列方程为(30-2x )(20-x )=×20×30, 故选:D .根据空白区域的面积=矩形空地的面积可得.本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系. 7. (2019•贵州省铜仁市•4分)一元二次方程4x 2﹣2x ﹣1=0的根的情况为( ) A .有两个相等的实数根 B .有两个不相等的实数根C .只有一个实数根D .没有实数根B .【解答】解:∵△=(﹣2)2﹣4×4×(﹣1)=20>0, ∴一元二次方程4x 2﹣2x ﹣1=0有两个不相等的实数根.8 (2019•河北省•2分)小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中一个根是x =﹣1.他核对时发现所抄的c 比原方程的c 值小2.则原方程的根的情况是( ) A .不存在实数根 B .有两个不相等的实数根C .有一个根是x =﹣1D .有两个相等的实数根A 【解答】解:∵小刚在解关于x 的方程ax 2+bx +c =0(a ≠0)时,只抄对了a =1,b =4,解出其中一个根是x =﹣1, ∴(﹣1)2﹣4+c =0, 解得:c =3, 故原方程中c =5,则b 2﹣4ac =16﹣4×1×5=﹣4<0,则原方程的根的情况是不存在实数根.9. (2019•贵州省铜仁市•4分)某市为了扎实落实脱贫攻坚中“两不愁、三保障”的住房保障工作,去年已投入5亿元资金,并计划投入资金逐年增长,明年将投入7.2亿元资金用于保障性住房建设,则这两年投入资金的年平均增长率为.20%.【解答】解:设这两年中投入资金的平均年增长率是x,由题意得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=﹣2.2(不合题意舍去).答:这两年中投入资金的平均年增长率约是20%.10.(2019浙江丽水3分)用配方法解方程x2﹣6x﹣8=0时,配方结果正确的是()A.(x﹣3)2=17 B.(x﹣3)2=14 C.(x﹣6)2=44 D.(x﹣3)2=1【分析】方程利用完全平方公式变形即可得到结果.【解答】解:用配方法解方程x2﹣6x﹣8=0时,配方结果为(x﹣3)2=17,故选:A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.11.(2019•山东威海•3分)已知a,b是方程x2+x﹣3=0的两个实数根,则a2﹣b+2019的值是()A.2023 B.2021 C.2020 D.2019【分析】根据题意可知b=3﹣b2,a+b=﹣1,ab﹣3,所求式子化为a2﹣b+2019=a2﹣3+b2+2019=(a+b)2﹣2ab+2016即可求解;【解答】解:a,b是方程x2+x﹣3=0的两个实数根,∴b=3﹣b2,a+b=﹣1,ab﹣3,∴a2﹣b+2019=a2﹣3+b2+2019=(a+b)2﹣2ab+2016=1+6+2016=2023;故选:A.【点评】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键.12.(2019•山东潍坊•3分)关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为()A.m=﹣2 B.m=3 C.m=3或m=﹣2 D.m=﹣3或m=2【分析】设x1,x2是x2+2mx+m2+m=0的两个实数根,由根与系数的关系得x1+x2=﹣2m,x1•x2=m2+m,再由x12+x22=(x1+x2)2﹣2x1•x2代入即可;【解答】解:设x1,x2是x2+2mx+m2+m=0的两个实数根,∴△=﹣4m≥0,∴m≤0,∴x1+x2=﹣2m,x1•x2=m2+m,∴x12+x22=(x1+x2)2﹣2x1•x2=4m2﹣2m2﹣2m=2m2﹣2m=12,∴m=3或m=﹣2;∴m=﹣2;故选:A.【点评】本题考查一元二次方程根与系数的关系;牢记韦达定理,灵活运用完全平方公式是解题的关键.13.(2019•浙江丽水•3分)用配方法解方程x2-6x-8=0时,配方结果正确的是( ) A.(x-3)2=17 B.(x-3)2=14 C.(x-6)2=44 D.(x-3)2=1【考点】用配方法解一元二次方程.【分析】方程利用完全平方公式变形即可得到结果.【解答】解:用配方法解方程x2-6x-8=0时,配方结果为(x-3)2=17,故选A.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.14. (2019湖北咸宁市3分)若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是()A.m<1 B.m≤1 C.m>1 D.m≥1【分析】根据方程的系数结合根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有实数根,∴△=(﹣2)2﹣4m≥0,解得:m≤1.故选:B.【点评】本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.15(2019湖北省鄂州市)(3分)关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x,且x1+3x2=5,则m的值为()2。