向量法在中学数学中的应用
- 格式:doc
- 大小:1.14 MB
- 文档页数:18
向量在中学数学中的应用作者:王军林来源:《考试周刊》2013年第21期摘要:本文基于向量的基本理论与性质,主要介绍了向量在中学数学中的应用,并简单分析了向量学习的误区.关键词:向量数量积平面几何立体几何高中数学中引进向量,给中学数学带来了广阔的天地,无论是在平面几何﹑立体几何﹑解析几何﹑三角函数等方面都有着大大拓宽解题思路的重要作用.向量融“形”“数”于一体,既有代数的抽象性,又有几何的直观性,用它研究问题时可以实现形象思维与抽象思维的有机结合.毫不夸张地说,向量的数形迁移思想在中学数学中能得到很好的体现.本文整理了几类向量在中学数学中的应用.一、预备知识1.平面向量的数量积a·b=|a||b|cosθ(a≠0,b≠0,0°≤θ≤180°)坐标运算:设a=(x,y),b=(x,y),则a·b=xx+yy.2.平面向量的基本定理如果e和e是同一平面内的两个不共线向量,那么对该平面内的任一向量a,有且只有一对实数λ、λ,使a=λe+λe.3.两个向量平行的充要条件a∥b?圳a=λb坐标运算:设a=(x,y),b=(x,y),则a∥b?圳xy-xy=0.4.两个非零向量垂直的充要条件a⊥b?圳a·b=0坐标运算:设a=(x,y),b=(x,y),则a⊥b?圳xx+yy=0.二、向量应用的探究1.利用向量解三角问题例1:已知α,β∈(0,),且cosα+cosβ-cos(α+β)=,求α,β的值.解:原条件式可化为sinαsinβ+(1-cosα)cosβ+cosα-=0构造向量={sinα,1-cosα},={sinβ,cosβ},|·|=|cosα-|≤?圯(cosα-)≤0?圯cosα=?圯α=由α,β的对称性知β=.2.利用向量解不等式的问题对于不等式问题的解决,有时如果我们利用常规的解法,往往很繁琐.利用两个向量的数量积的一个性质:·=||·||cosθ(其中θ为向量与的夹角),又-1≤cosθ≤1,则易得到以下推论:(1)·≤||·||;(2)|·|≤||·||;(3)当与同向时,·=||·||,当与反向时,·=-||·||;(4)当与共线时,|·|=||·||.下面利用这些性质和推论来看两个例子.例2:已知a和b为正数,求证:(a+b)(a+b)≥(a+b).证明:设=(a,b),=(a,b)则·=a+b,||=,||=由性质|·|≤||·||,得(a+b)(a+b)≥(a+b).说明:对于例1根式不等式我们通常采用两边平方的办法,但这种办法运算量大,容易出错.而应用向量法解决不等式的问题,不仅避免了常规解法的不足,而且为解题带来了新的思路.3.利用向量求最值问题最值问题是高中数学中的一个重要问题,在高考中它的考核主要体现在求实际问题,从文字表述上常常表现为“工程造价最低”,“利润最大”或“面积(体积)最大(最小)”等诸多实际问题上.解决这些问题的办法则是将其代数化,转化为函数,再利用所学的方法如:换元法,不等式法等求解.下面将介绍利用向量方法解最值问题.例3:已知m,n,x,y∈R,且m+n=a,x+y=b,求mx+ny的最大值.解:设=(m,n),=(x,y),则由向量积的坐标运算得·=mx+ny.而||=,||=,从而有mx+ny≤·.当与同向时,mx+ny取最大值·=.三、注意向量学习的几个误区误区一:“实数a﹑b﹑c由ab=ac,a≠0推出b=c”这一性质在向量推理中不正确.例4:取||=1,||=,与的夹角为45°,||=,与的夹角为0°.显然 = =,但≠.误区二:“如果ab=0,那么a,b中至少有一个为零”在向量推理中不正确.例5:已知||=2,||=3,与的夹角为90°,则有·=2×3×cos90°=0,显然≠,≠.由·=0,可以推出以下四种可能:①=,≠;②≠,=;③=,=;④≠且≠,但⊥.误区三:乘法结合律(ab)·c=a·(bc)在向量推理中不成立.例6:试说明(·)·=·(·)不成立.解:因为在式中·是一个数量,由实数与向量的积的运算的定义,可知左边表示的是与共线的向量,同理,右边表示的是与共线的向量,而向量与一般是不共线的,故(·)·≠·(·).误区四:平面几何中的性质在向量中不一定成立.例7:判断下列各命题是否正确,并说明为什么?①若∥,∥,则∥.②若||=||,则=±.③单位向量都相等.解:①不正确,取=,则对两不共线向量与,也有∥,∥,但不平行于.②不正确,因为||=||只是说明这两个向量的模相等,但方向未必相同.③不正确,单位向量是模均是1,但对方向没有要求.综上所述,我们发现向量集数与形于一体,沟通了代数、几何与三角函数的联系.利用向量的运算法则、数量积可解决长度、角度、垂直问题,应用实数与向量的积,则可以证明共线、平行等问题,以及它的巧妙应用.其中运用到的数形迁移思想,是重要的数学思想方法.在高中数学中引进向量,充分体现出新教材新思路﹑新方法的优越性,并且对于培养直觉思维﹑逻辑思维﹑运算求解等理性思维能力,具有重要意义.参考文献:[1]人民教育出版社中学教学室.全日制普通高级中学教科书(试验修订本,必修),数学第一册(下)[M].人民教育出版社,2001,11.[2]沈凯.利用向量解平面几何问题[J].中学数学,2003(1):15-16.[3]张萍.浅谈用向量法解立体几何题[J].中学数学研究,2004(4):37-38.[4]邹明.用向量方法求空间角和距离[J].数学通报,2004(5):36-37.[5]吕林根,许子道.解析几何[M].北京:高等教育出版社,1986.[6]白华玉.巧设法向量求点面距与线面角[J].数学通报,2003.2,25-26.。
向量在中学数学中的简单应用作者:张秦芹来源:《世纪之星·交流版》2015年第06期向量作为工具性知识,既与传统内容有着很大的联系,又体现出自身所具有的一些特性,因而在中学数学中有着极其广泛的应用。
向量由大小和方向两个量确定,大小反映了向量数的特征,方向反映了形的特征,是中学中数形结合思想的典型体现,它所蕴含的丰富的数学思想和方法,有益于发展学生的思维能力,激发其创造性。
在中学阶段学习的向量有平面向量和空间向量两部分,其中空间向量是平面向量的推广与拓展。
由于平面向量与空间向量没有本质的区别,因此,不管是平面图形还是空间图形,运用向量解决、研究图形问题的思路是一致。
一般情况下,有两种途径:一是选择适当的基向量,其它有向线段用基向量线性表示,然后通过向量的运算求解;二是建立适当的坐标系,运用向量或点的坐标运算求解。
究竟用哪一种方法,可视具体问题而定。
)一、求解平面上的夹角与利用空间向量求空间角问题1.向量法求平面上的夹角问题:(求两非零向量a与b的夹角q的依据)①cosq=;②设a==(x1,y1)和b=(x2,y2),则cosq=2.求空间的角用向量则很好的解决了这一问题对异面直线所成的角:若异面直线AB,CD的夹角为θ,则θ与向量,所成的角相等或互补,因此:=;对直线与平面所成的角:设平面与其斜线m所成的角为,平面的法向量为n,直线m的方向向量为m,记=,与互余(当为锐角时)或与的补角互余(当为钝角时),因此: =︱cos|=,(0求平面与平面所成的角:平面与平面相交形成两对平面角互补的二面角,于是:平面与平面相交所成二面角分三种情形:向量a,b分别平行于平面,且都与二面角的棱垂直,记=,则与相等或互补,因此(正负号的选取视具体图形而定)。
向量a平行于平面,且垂直于二面角的棱,平面的法向量为n,记=,则(的选取视具体情况而定)。
平面与平面的法向量分别为m,n,记=,则与相等或互补,因此:(正负号的选取视具体情况而定)。
ABC Dmn1图向量法求空间距离向量融形、数于一体,具有几何形式和代数形式的“双重身份”,向量成为中学数学知识的一个交汇点,空间向量将空间元素的位置关系转化为数量关系,将过去的形式逻辑证明转化为数值计算,化繁难为简易,化复杂为简单,成为解决立体几何问题的重要工具。
1.异面直线n m 、的距离分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的向量,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在上的射影长,即||n d =证明:如图1,设CD 为公垂线段,取b a ==,||||)(⋅=⋅∴⋅++=⋅∴++=||||||n n AB d ⋅==∴2平面外一点P 到平面α的距离如图2,先求出平面α的法向量,在平面内任取一定点A ,则点p 到平面α的距离d 等于在上的射影长,即||n d =因为空间中任何向量均可由不共面的三个基向量来线性表示,所以在解题时往往根据问题条件首先选择适当的基向量,把相关线段根据向量的加法、数乘运算法则与基向量联系起来。
再通过向量的代数运算,达到计算或证明的目的。
一般情况下,选择共点且不共面的三个已知向量作为基向量。
[例 1] 如图3,已知正三棱柱111C B A ABC -的侧棱长为2,底面边长为1,M 是BC 的中点,当1AB MN ⊥时,求点1A 到平面AMN 的距离。
图2A BC M N1A 1B1C 图3几何体中容易找到共点不共面且互相垂直的三个向量,于是有如下解法: 解:当1AB MN ⊥时,如图4 ,、)0,0,0(A)81,1,0()0,43,43()2,21,23(1N M B 、、、)2,0,0(1A ,则)2,0,0(),0,43,43(),81,41,43(1==-=AA AM MN ,设向量),,(z y x n =与平面AMN 垂直,则有)0()1,1,3(8),81,83(81830434********>-=-=∴⎪⎪⎩⎪⎪⎨⎧-==⇒=⎪⎪⎭⎪⎪⎬⎫=+=++-⇒⎪⎭⎪⎬⎫⊥⊥z zz z z n z y z x y x z y x AM n MN n 取)1,1,3(0-=n向量1AA 在0n 上的射影长即为1A 到平面AMN 的距离,设为d ,于是5521)1()3(|)1,1,3()2,0,0(||||,cos |||22201011011=+-+-⋅==><⋅=AA n AA AA d [例2]如图5,在正四棱柱1111D C B A ABCD -中,已知2=AB ,,51=AA E 、F 分别为D D 1、B B 1上的点,且.11==F B DE (Ⅰ)求证:⊥BE 平面ACF ;(Ⅱ)求点E 到平面ACF 的距离.分析:题中几何体易找到共点且相互垂直的三个基向量,故可通过建立空间直角坐标系来达到解题目的。
探索篇•课题荟萃一、二面角的两个半平面的法向量的夹角与二面角的关系1.确定法向量的指向如图1,n 1指向二面角的内部,n 2指向二面角的外部。
在空间直角坐标系下,可将法向量的起点移至坐标原点,然后观察法向量的指向。
图32.确定两个法向量的夹角与二面角的关系如图1,当两个法向量一个指向二面角的内部,一个指向二面角的内部时,法向量的夹角就是二面角;如图2和图3,当两个法向量都指向内或者都指向外时,法向量的夹角就是二面角的补角。
二、法向量在求二面角中的应用求二面角的大小或二面角的余弦值:当二面角为锐二面角时,二面角的余弦值为正值,当二面角为钝二面角时,二面角的余弦值为负值,二面角和它的补角的余弦值不相等。
用向量法解决这类型题时需判断法向量的指向以保证两向量的夹角就是二面角。
例1.【2017全国1卷(理)】如图4所示,在四棱锥P-ABCD 中,AB ∥CD ,且∠BAP=∠CDP =90°(1)证明:平面PAB ⊥平面PAD 。
(2)若PA =PD=AB=DC ,∠APD =90°,求二面角A-PB-C 的余弦值。
【解析】(1)证明:因为∠BAP=∠CDP =90°,所以PA ⊥AB ,PD ⊥CD 。
又因为AB ∥CD ,所以PD ⊥AB ,又因为PD ∩PA =P ,PD 、PA ⊂平面PAD ,所以AB ⊥平面PAD ,又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD 。
(2)取AD 中点O ,BC 中点E ,联结PO ,OE ,因为AB ∥=CD ,所以四边形ABCD 为平行四边形,所以OE ∥AB 。
由(1)知,AB ⊥平面PAD ,所以OE ⊥平面PAD ,又PO 、AD ⊂平面PAD ,所以OE ⊥PO ,OE ⊥AD 。
又因为PA =PD ,所以PO ⊥AD ,所以PO 、OE 、AD两两垂直,所以以O 为坐标原点,建立如图5,所示的空间直角坐标系O-xyz 设PA =2,所以D (-2√,00),B (2√,0,0),P (0,0,2√)C (-2√),所以PD =(-2√,0,-2√),PB 2√,2,-2√),BC-22√,0,0)设n =)为平面PBC 的法向量,由n ·PB =0n ·BC =0{,得2√x +2y -2√z =0-22√x =0{.令y =1,则z =2√,x =0,可得平面PBC 的一个法向量n =(0,1,2√)(将该法向量移动至坐标原点,判断指向二面角的外部)因为∠APD=90°,所以PD ⊥PA ,又知AB ⊥平面PAD ,PD ⊂平面PAD ,以PD ⊥AB ,又PA ∩AB=A ,所以PD ⊥平面PAB ,即PD 是平面PAB 的一个法向量,PD =-2√,0,-2√)(判断该法向量指向二面角)所以cos (PD ,n )PD ·-223√=-3√3。
向量在高中数学解题中的应用丁有生发布时间:2023-05-31T07:57:21.065Z 来源:《中国教师》2023年6期作者:丁有生[导读] 量在数学领域中具有双重特性,既具备一定的代数特性,也具备相应的几何特征。
在高中数学问题处理中,通过向量的运用,可以让学生更加高质量地实现代数、几何问题的转化,提高学生的数学问题处理能力,为学生的综合发展提供保障基于此,本文章对向量在高中数学解题中的应用进行探讨,以供参考。
云南省红河州第一中学摘要:量在数学领域中具有双重特性,既具备一定的代数特性,也具备相应的几何特征。
在高中数学问题处理中,通过向量的运用,可以让学生更加高质量地实现代数、几何问题的转化,提高学生的数学问题处理能力,为学生的综合发展提供保障基于此,本文章对向量在高中数学解题中的应用进行探讨,以供参考。
关键词:向量;高中数学解题;应用引言如何在解题教学中去培养学生的数学核心素养是高中数学教师需要思考的问题。
教师有必要端正解题教学的态度,从核心素养角度出发去设计解题教学内容,确保学生不仅可以学会解题,还能够在解题中获得综合能力的提升。
因此,教师应当以数学核心素养为研究基础,探究高中数学解题教学的策略,提高课堂教学质量,为高中生学好数学、走向社会打下良好的基础。
一、高中数学解题现状分析(一)解题方式不够合理首先,当前高中数学教师依然会单一授讲,教师一般在讲台上讲解解题的思路,学生在下面机械地听讲,这种方式具有一定的呆板性,学生一般能在课堂上听明白,但是一旦自己做题时就会出现这样或那样的错误。
教师在讲解解题步骤时,通常用一种方法解答,忽略了学生的自主探究过程,没有留给学生自主思考的机会,而一道数学题目往往会以多种形式考查,有的学生并不适合用教师讲解的方法做题,因此会限制学生的思维发展,学生的解题能力就会下降。
(二)混淆公式、定理、定律高中数学涉及的公式、定律、定理较多,很多学生在记忆定理、公式时多是死记硬背,缺乏对公式内容的主动探索和分析,这样就导致记忆流于形式,学生很难真正把握定理、公式、定律的实质。
向量在中学数学中的应用向量在解决高中数学问题中的应用主要体现在许多方面,如:空间几何向量、线性向量等。
比较突出的就是空间几何向量,应用比较广泛,主要应用于证明,计算等方面。
由于空间几何类的数学问题比较抽象,要想解决此类问题就需要向量来将其转化,将几何问题转化为比较简单的代数问题,以便于计算和证明。
通过调查分析,学生反映在证明几何问题时,大部分首选向量这一计算方式来解决问题。
在传统的计算方法对比下,无论是学生还是教师更愿意采用向量的方法来解决问题。
立体几何引入空间向量以后确实降低了解题的难度,而在求解过程中,要求学生有很强的运算能力,但由于计算繁琐,直观性较差,学生还是会有很多问题。
最突出的问题就是缺乏空间立体感,还有繁琐的计算容易出现错误。
数学几何的学习空间想象力十分重要,这就给向量使用带来一定的困难,许多学生在确定坐标时不确定,导致解决问题时出现各种错误。
对空间向量的运用不熟练等问题也会直接影响解题速度。
由此可见,向量的使用不能过于盲目,需要具体问题具体分析。
另外,向量在高中数学中使用较多,这就在一定程度上让学习养成依赖的习惯,虽然有些题目可以使用向量,解答稳定。
但是确阻碍了学生思考和探究的热情,只依赖于基础的公式,不能学会活学活用,阻碍了学生创新能力的全面发展,思维过于狭隘,不懂得多方位思考问题。
有些题只是简单的公式代入,甚至有时连图都不用参考,这将不利于培养学生的分析能力、空间想象能力。
此外,学生对于向量知识结构体系了解不够全面。
向量具有形与数的双重身份,它成为高中数学知识的交汇点,成为联系多项数学内容的桥梁,所以学习向量有助于学生理清各种知识间的联系,学生理解了这种联系,可以去构建和改善自己的数学认知结构。
而现实过程中学生们掌握的.向量知识是片面的、独立的,不能建立完整的知识结构体系,这也不利于学生对向量的学习。
最后,高中数学教材中对于向量的了解比较粗略,无法协助学生更加深入细致的介绍,在一定程度上无法满足用户学生的自学,种种问题都就是影响向量化解数学问题的因素。
【导学案】平面向量的应用举例(一) 班级 姓名 组号 编写人:党显武 审核人:王松涛【学习目标】1、 了解直线的方向向量与法向量的概念,会求直线的方向向量与法向量;2、 会运用平面向量的方法解决解析几何中的点到直线的距离问题公式的推导,直线平行与垂直问题,直线的夹角问题;3、 体会运用向量解决解析几何问题的方法思路。
【重点难点】重点:向量法解决解析几何问题难点:解析几何问题向向量的转化【知识链接】 【学习过程】一、预习自学(一)直线的方向向量与法向量得定义: 1、定义:若一个非零向量所在的直线与直线l 平行或共线,则把这个非零向量m 叫直线l 的一个方向向量;与直线l 的方向向量m 垂直的非零向量n 叫直线l 的一个法向量。
2、通常直线22;0(0)l Ax By C A B ++=+≠的一个方向向量记作(,)m B A =-.若斜率k 存在,也可记为m =(1,k )一个法向量(,)n A B =,也可记为1(1,)n k=-(二)认真阅读课本P101—102页内容,归纳总结向量法推导点到直线的距离公式的过程步骤. 第一步、确定两个向量:1、直线22;0(0)l Ax By C A B ++=+≠的一个法向量为(,)n A B =2、在直线上任选一点(,)P x y ,则向量MP =第二步、确定夹角:过点M 作MD ⊥l 于D,则在Rt MPD ∆中, cos PMD ∠=cos ,MP n =第三步、解三角形:在cos Rt MPD d MP PMD ∆=•∠中,=二、合作探究问题一:用向量法求点P (1,2)到直线:210l x y ++=的距离。
问题二: 已知点(1,2),(3,4),(2,5)A B C --,求经过点A 且垂直于直线BC 的直线l 的方程. 问题三:已知两条直线12:(23)10,:(25)(6)70,l mx m y l m x m y ---=+++-=分别求实数m 的值,使得两直线(1) 平行; (2)垂直三、达标检测1、直线:34120l x y -+=的一个方向向量是, ;一个法向量是 .2、12:20,:20tan .l x y l x y θθ+-=-=的夹角为,试求3、向量(5,1):310m l x my m =-+-==是直线的法向量,则实数。
向量在数学中的作用有人说,中学数学中引入向量,用向量来处理几何问题,是因为用向量比用综合几何的方法简单、容易。
这种看法是不全面的。
虽然有许多问题,用向量处理确实比用综合几何方法简单,但也可以找到用综合几何的方法处理更简单的问题。
向量之所以被引入到中学,这是因为向量在数学中占有重要的地位。
向量作为一个既有方向又有大小的量,在数学中是一个最基本的概念。
在现代数学的发展中起着不可替代的作用。
是代数、几何、泛函分析等基础学科研究的基本内容。
向量是代数的对象。
运算及其规律是代数学的基本研究对象。
向量可以进行多种运算,如,向量的加法、减法,数与向量的乘法(数乘),向量与向量的数量积(也称点乘),向量与向量的向量积(也称叉乘)等。
向量的这些运算包含了三种不同类型的代数运算。
向量的运算具有一系列丰富的运算性质。
与数运算相比,向量运算扩充了运算的对象和运算的性质。
向量是几何的对象。
向量可以用来表示空间中的点、线、面。
如果,以坐标系的原点为起点,向量就与空间中的点建立了一一对应关系;一点和一个非零向量可以唯一确定一条直线,它通过这个点且与给定向量平行;同样,一个点和一个非零向量,可以唯一确定一个平面,它过这个点且与给定向量垂直。
在高维空间中,这种表示十分有用,还可以表示曲线,曲面。
因此,向量可以描述、刻画和替代几何中的基本研究对象——点、线、面,它也是几何研究的对象。
向量是几何研究对象,这种认识很重要。
在立体几何中,可用向量来讨论空间中点、线、面之间的位置关系;判断线线、线面、面面的平行与垂直,用向量来度量几何体:计算长度、角度、面积等。
随着数学视野不断拓展,这样的观念会给我们越来越多的用处。
向量是沟通代数与几何的一座天然桥梁。
它不需要什么过渡。
在数学中,我们有两座沟通代数与几何的桥梁,一是向量,一是坐标系。
坐标系依赖于原点的选择。
向量的优越性在于可以不依赖于原点,空间中每一点的地位是平等的,它不依赖坐标,因此,它比坐标系更一般、更重要。
《义务教育数学课程标准(2011年版》)(以下简称《标准》)中指出,自学能力对每个人都是终身有用的,阅读是提高自身能力的重要途径.数学阅读是理解数学语言的过程,是学生用特定的数学符号及符号之间的关系对自身原有认知结构进行改造、调整和建构;数学阅读也是心理活动的过程,包含语言符号(文字、数学符号、术语、公式、图表等)的感知和认读、新概念的同化和顺应、阅读材料的理解和记忆等;数学阅读还是一个不断假设、证明、想象、推理的思维认知过程.可见,数学阅读对提升学生的数学学习能力有着极大的价值,是促进学生数学思维和数学素养发展的重要途径.沪教版《九年义务教育课本·数学》(以下统称“沪教版教材”)中编排了许多阅读材料,按功能大致可以分为以下几类:介绍知识,开阔视野;激发兴趣,发展思维;培养爱国主义思想,增强民族自豪感;加强知识和技能的实际应用,培养学生的应用意识,提高解决问题的能力.值得一提的是,沪教版教材将平面向量的部分基础内容纳入初中数学课程中.一方面,为学生的几何学习提供了“新观点”和“新手段”;另一方面,有助于让学生逐步体会数学与物理等其他学科的联系.我们知道,一些平面几何问题经过转化,可以通过向量运算来解决.这样的学习经验可以促进学生数学思维的灵活性和创新性,有利于学生数学素养的培育.同时,教材对初中平面向量主要采用直观描述,控制了难度(仅限于认识向量、表示向量;用平行四边形法则或三角形法则进行向量的加减法、向量分解的作图操作;至于向量的数量积与坐标运算,仍然是高中的学习内容).为此,作为一个良好的内容载体,本文谨以阅读材料“用向量方法证明几何问题”为例,谈谈对数学阅读课的教学实践与思考.一、教学实践“用向量方法证明几何问题”是沪教版教材八年级第二学期第二十二章“四边形”章末的一篇阅读材料,安排在第四节“平面向量及其加减运算”的学习之后,用举例说明的方式介绍了用向量方法证明一些简单平面几何问题的基本思路,是对向量知识的进一步拓展.希望学生通过阅读、讨论与交流,初步了解平面向量及其加减运算在平面几何中的运用,感受几何证明的新方法,开阔眼界;同时,在数学问题解决初中数学阅读课教学的实践与思考——以“用向量方法证明几何问题”一课为例罗佳骏收稿日期:2020-08-15作者简介:罗佳骏(1984—),男,中学高级教师,主要从事初中数学教学研究.摘要:数学阅读是学生数学素养发展的重要方法之一.沪教版初中数学教材中编排了较多阅读材料,这些材料紧扣教材中的相关知识,丰富了教学内容,是拓展学生数学知识、提升学生数学阅读能力、激发学生数学学习兴趣、培养学生创新意识的有效载体.这些内容的教学成为上海市数学素质教育综合体现的重要组成部分.文章以“用向量方法证明几何问题”一课为例,给出关于初中数学阅读课教学的一些思考.关键词:数学阅读;数学交流;实践与思考··21过程中,增进对平面向量的理解,初步体会平面向量的工具价值,领略用向量方法证明一些几何问题的过程和优越性,激发学生学习向量知识的兴趣和运用向量知识的积极性.对于本节阅读课,笔者设计了“泛读—通读—精读—解读—延读”五个环节.1.泛读——初步感知泛读是本节课的准备阶段.通过观看微视频,梳理“四边形”这一章的主要内容,引起学生思考:将平面向量这一内容安排在“四边形”一章的原因,初步认识平面向量与四边形内容之间的联系;同时,梳理演绎证明的一般过程,为后面的学习做好铺垫. 2.通读——问题展示通读是整体感知阶段.通过通读初步了解阅读材料的主要内容和知识点.为了让学生的阅读有更明确的指向性,从而提高阅读效率,教师可以布置一些阅读任务,通常包含学习目标、导读问题、阅读检测、阅读体会等,带着任务阅读能使学生的阅读更有针对性,更能启发学生去思考、探究.这无疑对提高学生的阅读能力是很有帮助的.以“用向量方法证明几何问题”一课为例,笔者布置的阅读任务如下:①圏划你认为重要的部分;②记录你在阅读过程中的困惑或不理解的地方;③比较用向量方法证明几何问题与演绎证明的区别与联系.学生通过通读阅读材料,初步了解向量知识在平面几何中的运用,感受用向量方法证明几何问题的新方法.通过比较阅读材料中给出的两道例题的不同解法,初步感受两种解法的区别与联系.由于学生的个体差异性,不同层次的学生在阅读后对新知会有不同程度的理解,形成自己尚不完善的认识,也会产生许多疑问.例如,下面是一些学生的疑问.生1:如何用向量方法证明几何问题?生2:如何选取合适的向量?生3:向量关系与几何关系如何转化?生4:已经学习了演绎证明的方法,阅读材料中给出的两道例题都可以通过演绎证明来解决,为什么还要学习向量方法?向量方法似乎并没有简单很多. 3.精读——问题解决精读是本节数学阅读课的核心环节.数学阅读的目的在于理解,每个数学概念、符号、术语都有其精确性和逻辑性.当一名学生试图阅读、理解一段阅读材料或一个概念、定理或其证明时,他必须了解其中出现的每个数学术语和每个数学符号的精确含义.这就要求学生必须在通读材料、提出问题的基础上,运用分析、联想、类比、归纳、猜想、反思等思维方法,对疑难点各个击破.这里,活动的设计尤为关键,以“用向量方法证明几何问题”一课为例,笔者设计了讨论和交流两个活动,放手让学生自己解决问题,大胆地让学生展示自己的阅读与思考成果.以下为节选的部分小组交流片断.第一组:演绎证明是运用相关定义、定理、公理,按照逻辑规则进行推导,也就是从几何问题的已知条件出发得到结论.向量证明的方法是适当选取向量,进行正确的向量运算得到结论.第二组:我们分析比较了例1中的解法.例1是根据已知条件引出向量,给出的条件是“如图1,四边形ABCD,AC与BD交于点O,AO=OC,DO=OB”,求证“四边形ABCD是平行四边形”.首先,这个条件给出的意义是线段相等,还有AC和BD各自是一条直线,向量需要两个条件,一个是大小,一个是方向.已知条件已经给出了向量的大小,我们只要判断它的方向就可以从条件中选取向量,然后通过向量的加法,能得出AO+OB=AB,DO+OC=DC.相等向量所在的有向线段DC=AB,这是数量关系.还有平行关系,得出线段AB∥DC,且AB=DC,然后再回到几何证明.图1第三组:用向量方法证明几何问题是因为向量既具有代数的特征,又具有几何的形态.由于向量有运算系统,并且与几何图形有密切联系,所以它才可以用来证明几何问题.第四组:向量的证明方法比演绎推理的证明方法更加简洁.用几何方法要证明线段平行且相等,用向量方法只需要说明“向量相等”就能说明“两条线段平行且相等”.可以看到,整个活动过程中,学生的思维是无限··22的,在师生、生生合作交流中梳理形成用向量方法证明几何问题的基本步骤、要点和依据,提高了对“用平面向量的运算来作为推理方法”的认识,增进对平面向量“数”与“形”双重特征的理解.期间,笔者仅对学生分析过程中存在的不足做必要的补充和调整,让学生获得了准确、完整和深刻的认识,最终得到如图2所示的知识框架图.演绎推理方法证明几何题图24.解读——巩固练习解读是检验与完善的阶段.在学生对阅读内容有了比较清晰的认识以后,通过适当的练习加以巩固,进一步理解和内化知识.以“用向量方法证明几何问题”为例,笔者设计了如下一道练习题.已知:如图3,四边形ABCD 是平行四边形,CN =AM ,AE =CF.求证:四边形NEMF 是平行四边形.AB CD E FM N图3考虑到沪教版教材定位“在初中的向量教学中,不要求学生会用向量方法证明几何问题”,故而采用让学生独立思考与相互交流相结合的方式研究.以下是学生的交流片断.生1:根据已知条件,作 EA , AM , EM ,CF , NC ,NF .因为四边形ABCD 是平行四边形,所以AB 平行且等于CD.因为CN =AM ,所以 AM =NC .因为AE和CF 在同一直线上,且AE =CF ,所以 EA =CF .所以 EA + AM = CF + NC ,即 EM =NF .所以EM ∥NF ,且EM =NF.所以四边形NEMF 是平行四边形.5.延读——拓展延伸阅读型作业的思路来源是数学阅读教学和分层作业理念的结合.一方面,数学阅读课的目标之一是学生数学阅读能力的发展和自学能力的提升;另一方面,课堂教学的时间是有限的,教师可以根据相关知识点设计一些与阅读材料有关的问题,或者收集、编制一些阅读材料,让学生带着这些问题继续阅读、思考,并做出解答,以此来优化教学效果.以“用向量方法证明几何问题”一课为例,笔者设计了如下阅读作业.阅读下列材料,并完成证明.我们知道,两个相同的实数a 相加,结果为2a ,即a +a =2a .那么两个相同的向量a 相加,是否也有类似的结果呢?即a +a =2a 吗?如图4,已知向量a ,在平面内取一点O ,作向量OA =a , AB =a ,由向量加法运算法则,得OB =a +a .aOA B图4同时,我们不难看到:向量OB 的方向与向量a 的方向相同,向量OB 的长度是向量a 的长度的2倍,即|| OB =2||a .我们把这样的向量OB 记为向量2a ,即OB =2a .由上可知,2a 表示这样的一个向量,其方向与向量a 的方向相同,且长度是向量a 长度的2倍.类似地,3a 表示这样的一个向量,其方向与向量a 的方向相同,且长度是向量a 长度的3倍.那么,32a 表示为;12()a +b 表示为.反过来,如果 MN =2PQ ,则意味着MN 和PQ 平行(或共线),且MN =2PQ .上述结论可用于研究几何中有关两直线平行及线段长度的问题,如三角形中位线定理.请同学们小组合作,用向量方法证明该定理.求证:三角形的中位线平行于第三边,并且等于第三边的一半.已知:如图5,点E ,F 分别是边AB ,AC 的中点.求证:EF ∥BC ,EF =12BC .··23ACE F图5该作业的主要任务是开展“拓展阅读”.学生需要在完成阅读后,理解实数和向量的乘法的基本概念及其表示方法,然后用所学的向量方法尝试证明三角形中位线定理.其目的在于通过对阅读材料的学习,进一步让学生体会材料中用向量方法证明一些简单的平面几何问题的基本思路,了解平面向量及其运算在解决一些平面几何问题中的作用,增进对平面向量“数”与“形”双重特征的理解,体会平面向量的学习价值,发展自主学习和数学阅读的能力.在布置作业时,要求学生先独立阅读材料并尝试完成材料中提出的学习任务,然后撰写简单的学习体会并与其他学生交流.二、几点思考1.阅读课的目标定位读有所得、读有所疑、读有所悟、读有所用是一切阅读活动的共同目标.数学学科还有自己的特点,即高度的抽象、严密的逻辑和广泛的应用.这决定了数学阅读不同于一般的阅读,不仅要理解文本、获取知识,还要了解知识产生的背景和内在的逻辑关系,经历知识的形成过程,并能合理运用到实际生活中.在“用向量方法证明几何问题”一课的教学过程中,笔者布置了阅读任务,目的是让学生有充裕的阅读和思考的时间,使学生不仅仅了解用向量方法证明几何问题这个方法;还能在阅读和思考过程中不断产生疑问.例如,向量关系与几何关系如何转化?两种方法孰优孰劣?学生在交流合作中经历用向量方法证明几何问题的过程,梳理了知识框架图,从中获得数学阅读和思考的一般方法,引发对数学阅读和思考的兴趣.2.阅读课的主体定位数学阅读课的整个教学过程是教师协助学生主动建构知识的过程,这极大地凸显了学生的主体地位.在“用向量方法证明几何问题”这节课阅读课的教学过程中,笔者的任务首先是倾听,其次是捕捉、梳理和完善学生思维中零散、不完全准确的结论.学生在阅读中产生疑问,在交流中解决疑问,再围绕笔者提出的较深层次的问题阅读、思考、交流.这些做法使得学生获得了更多的自主阅读与思考的时间和空间.3.阅读课的方式定位数学阅读课的学习方式通常是开放式的.数学阅读过程是不断假设、证明、想象、推理的积极能动的认知过程,在向知识的广度和深度进军的过程中遇到问题或者困惑是在所难免的.开放的阅读方式能让学生在阅读与思考活动中分享信息结论和疑问,通过交流合作解决疑问,达到阅读和思考的最优效果.另外,在当今的信息时代,学生阅读的渠道不仅仅是教材和教师给予的阅读材料,还可以借助网络资源搜索相关资料进行深入学习.4.阅读素材的选择各地现行的初中数学教材普遍编排了许多阅读材料,主要包括:透过数学历史故事,学生可以感受到数学知识在研究过程中的曲折、艰辛,以及获得成功后的快乐,感悟理性精神;通过知识拓展或运用数学知识解决生活中的问题,可以增进数学与生活的联系,理解数学的学习价值等.随着数学学习的深入,笔者认为阅读不能仅仅局限于教材的阅读,应该给学生提供更多的课内外阅读资料.以平面向量为例,该部分知识虽然没有纳入《标准》,但是从上海市的经验来看,平面向量的初步知识在初中阶段的讲授还是具有较好的可操作性的.即使其他地区的数学教材中没有向量知识,教师也可以通过阅读材料的方式呈现给学生,让其自主学习.通过学习,学生有机会从运算的视角看待几何证明,丰富学生解决平面几何问题的手段,以更好地促进学生思考,挖掘学生的思维潜力,发展数学素养.5.阅读课的评价方式不同于重结果轻过程的传统数学评价,数学阅读课更侧重于学习过程,应采用多样化的评价方式.笔者认为可以从课堂评价和作业评价的转变开始.(1)课堂评价.学生的能力是多方面的,每名学生都有各自的优势.在阅读活动中,学生表现出来的能力不是单一维度的··24数值反映,而是多维度、综合能力的体现,因此对学生的学习评价应该是多方面的.在“用向量方法证明几何问题”一课的教学中,笔者采用了学生自评、小组互评和教师评价相结合的方式,从阅读表现、合作表现、交流表现、理答表现四个方面进行评价.(2)作业评价.传统的作业评价大多数基于知识与技能,更侧重于学生对知识的掌握情况、解题表现等,评价的维度比较单一.如何才能更好地发挥评价的导向、调控和激励功能?以“用向量方法证明几何问题”的阅读型作业为例,对于该作业的批改,笔者采用等第制评价的方法,学生互评和教师评价相结合,从阅读表现、解题表现和交流表现等方面重点开展评价,以下是评价标准.优秀:能圈划阅读材料中的关键词和重要信息,准确理解材料的内容;在解决问题的过程中,表现出对阅读材料介绍的方法的正确运用;解题过程完整,能用规范、简洁的语句进行交流;能清晰地向他人介绍自己的解题思路和阅读体会.良好:能圈划阅读材料,材料分析基本准确;解题过程基本正确;能用较为规范、简洁的语句进行交流;能较清楚地向他人介绍自己的解题思路和阅读体会.合格:基本理解阅读材料,材料分析不够准确;有解题过程,但解答存在一定错误;能与他人进行一定交流,但解题思路和阅读体会介绍较为简单. 6.阅读课的局限性(1)不同学生的差异.不同层次的学生受益效果不同,无法带动所有学生.笔者执教的班级学生水平差异较大,通过多次实践发现:原本学习能力强的学生在这样的课堂上学习方法能有提高,学习能力能有进步,对相关知识点的迁移,学习效率很高,他们学习的自信和主动性都会有飞跃;但是对于学困生却不一定有帮助.虽然笔者教学中一直关注个体差异,一有机会就会对学困生进行个别辅导,但是在自主阅读环节,学困生的学习效率非常低.没有了教师的教,学生不知道阅读和思考的方向,寸步难行.(2)阅读时间的把握.确定阅读时间是数学阅读课的重点和难点.阅读时间长了,留给学生对话交流的时间就少了,有些问题得不到解决,能力的发展受到限制,也就失去了阅读课的价值;阅读时间少了,学生对材料的理解不充分,思考的深度不够,也达不到效果.这就对教师提出了很高的要求,既要研读材料,把握教学的学习内容,又要研究学生,把握学生的学习水平,在此基础上,做出规划和预设.另外,数学阅读教学是学生、教师、文本之间对话的过程.学生作为读者,是富有巨大认知潜力和主观能动性的,尤其是经历交流对话后会生成新的学习需求,需要二次阅读甚至三次阅读,这就需要教师对预设的教学做出及时调整,朝着有利于加深对数学阅读文本的理解和感悟、有利于学生数学素养发展的方向转化.参考文献:[1]倪湘丽.初中数学阅读教学的实践研究:以苏科版教材七上、八上的教学实践为例[D].苏州:苏州大学,2014.[2]朱丽霞.数学阅读为学生的思维进阶插上翅膀:以“三角形内接正方形的作法”阅读课为例[J].上海中学数学,2020(1/2):42-44,64.[3]谷荷莲.高中数学“阅读与思考”栏目的教学实践与思考:以《圆锥曲线的光学性质及其应用》阅读与思考教学为例[J].数学教学通讯,2020(9):3-4,10.[4]朱纪英.初中数学阅读教学有效性研究与实践[D].上海:上海师范大学,2012.··25。
向量法在中学数学中的应用李科四川·宜宾 644000摘要:向量知识在代数,几何,三角等数学分支中有着广泛的应用,利用向量这一工具可巧妙而简捷地处理多种题型。
本文首先回顾了向量的一些基本性质,接着分别从空间几何,平面解析几何、不等式、最值问题,以及其他一些数学问题总结归纳向量在解决一系列数学问题中的应用,并举例说明使用向量更加快捷直观地解决一些较复杂的数学问题。
关键词:向量;中学几何;中学代数;应用1.引言随着新课改逐步深入,向量及其运算成为高中数学新增内容,它融数、形于一体,具有代数形式和几何形式的双重身份,是中学数学知识的一个重要交汇点,常与函数、复数、导数、平面几何、立体几何和平面解析几何等方面内容交叉渗透,使数学问题情境新颖别致,自然流畅,令人赏心悦目。
能够灵活和综合应用向量法思维解决数学中的问题,对于我们拓展解题思路、提高解决效率、掌握解题技巧等方面起到了很好的直观帮助。
向量作为一个既有方向又有大小的量,在数学中是一个最基本的概念。
在现代数学的发展中起着不可替代的作用。
是代数、几何、泛函分析等基础学科研究的基本内容。
向量是代数的对象。
运算及其规律是代数学的基本研究对象。
向量可以进行多种运算,如,向量的加法、减法,数与向量的乘法(数乘),向量与向量的数量积(也称点乘),向量与向量的向量积(也称叉乘)等。
向量的这些运算包含了三种不同类型的代数运算。
向量的运算具有一系列丰富的运算性质。
与数运算相比,向量运算扩充了运算的对象和运算的性质。
向量是几何的对象。
向量可用来表示空间的点、线、面。
如果,以坐标系的原点为起点,向量就与空间中的点建立了一一对应关系;一点和一个非零向量可以唯一确定一条直线,它通过这个点且与给定向量平行;同样,一个点和一个非零向量,可以唯一确定一个平面,它过这个点且与给定向量垂直。
在高维空间中,这种表示十分有用,还可以表示曲线,曲面。
因此,向量可以描述、刻画和替代几何中的基本研究对象——点、线、面,它也是几何研究的对象。
向量是几何研究对象,这种认识很重要。
在立体几何中,可用向量来讨论空间中点、线、面之间的位置关系;判断线线、线面、面面的平行与垂直,用向量来度量几何体:计算长度、角度、面积等。
随着数学视野不断拓展,这样的观念会给我们越来越多的用处。
向量是沟通代数与几何的一座天然桥梁。
它不需要什么过渡。
在数学中,我们有两座沟通代数与几何的桥梁,一是向量,一是坐标系。
坐标系依赖于原点的选择。
向量的优越性在于可以不依赖于原点,空间中每一点的地位是平等的,它不依赖坐标,因此,它比坐标系更一般、更重要。
一方面,通过向量的运算可以解决几何中的问题。
比如,两直线是否垂直的问题,就可以转化为两个向量的点积是否为零的问题,这就实现了利用代数方法来解决几何问题。
另一方面,对于代数问题,通过向量可以给予几何的解释。
比如,两个向量的点积为零,那么就说明这两个向量所表示的直线是相互垂直的等等。
向量是高中数学教材的重要内容。
作为现代数学的重要标志,向量具有代数与几何形式的双重身份。
它融数、形于一体,是数学知识的一个重要交汇点。
它的引入,进一步发展和完善了高中阶段数学知识的结构体系,以向量为背景,一些传统的数学内容和数学问题就有了新的内涵,可深入了解数学教材中新增内容和传统内容的内部联系,构建合理的知识结构;以向量为工具,拓宽了研究和解决数学问题的思维通道,也为激发和培养学生的探索精神和创新意识提供了更广阔的空间。
平面向量将几何知识和代数知识有机地结合在一起,主要渗透于函数、不等式、三角、无理方程、 数列、平面几何、立体几何、解析几何等基础的主干知识中,在研究许多数学问题时获得广泛的应用。
将向量引入高中数学教材,并做为一种基础理论和基本方法要求学生掌握。
2.向量基本性质回顾2.1.向量的概念既有方向又有大小的量叫做向量。
具有方向的线段叫做有向线段,以A 为起点,B 为终点的有向线段记作AB 。
有向线段AB 的长度叫做向量的模,记作AB 。
向量的三要素:起点、方向和长度。
长度相等且方向相同的向量叫做相等向量。
两个方向相同或相反的非零向量叫做平行向量,向量a 、b 平行,记作//a b 。
任意一组平行向量都可移到同一直线上,因此平行向量也叫共线向量。
长度等于0的向量叫做零向量,记作0。
零向量的方向是任意的;且零向量与任何向量都垂直,也与任意向量平行。
长度等于1个单位长度的向量叫做单位向量。
2.2.向量的运算 2.2.1 加法运算已知向量a 、b ,在平面内任取一点A ,作b BC a AB ==,,则向量AC 叫做a 与b 的和,记作+,即AB BC AC +=,这种求和方法叫做向量加法的三角形法则。
已知两个从同一点O 出发的两个向量OA 、OB ,以OA 、OB 为邻边作平行四边形OACB ,则以O 为起点的对角线OC 就是向量OA 、OB 的和,这种求和方法叫做向量加法的平行四边形法则。
注:1.对于零向量和任意向量a ,有:(1)00a a a +=+= (2) a b a b +≤+2.向量的加法满足所有的加法运算定律。
2.2.2 减法运算已知向量a 、b ,在平面内任取一点O ,作b OB a OA ==,,则向量b a BA -=,即-可以表示为向量的终点指向向量的终点的向量。
这种求差方法称为向量减法的三角形法则。
向量减法实质是加法的逆运算。
若=+,则=-或=-.2.2.3 数乘运算实数λ与向量a 的积是一个向量,这种运算叫做向量的数乘,记作a λ,a a λλ=,当0λ>时,a λ的方向和a 的方向相同,当0λ<时,a λ的方向和a 的方向相反,当0λ=时,0a λ=。
设λ、μ是实数,那么: (1)()()a a λμλμ= (2)()a a a λμλμ+=+ (3)()a b a b λλλ±=± (4)()()()a a a λλλ-=-=-向量的加法运算、减法运算、数乘运算统称线性运算。
2.2.4 向量的数量积已知两个非零向量a 、b ,它们的夹角是θ,那么cos a b θ叫做a 与b 的数量积或内积,记作a b ⋅。
即θo s=⋅ 。
()cos cos a b θθ叫做向量a 在b 方向上(b在a 方向上)的投影。
零向量与任意向量的数量积为0。
a b ⋅的几何意义:数量积a b ⋅等于a 的长度a 与b 在a 的方向上的投影cos b θ的乘积。
两个向量的数量积等于它们对应坐标的乘积的和。
若()()2211,,,y x b y x a ==,则2121y y x x b a +=⋅。
向量的数量积的性质 (1)2a a a ⋅= (2)ab b a ⋅=⋅(3)()()()k a b ka b a kb ⋅=⋅=⋅ (4)()a b c a b a c ⋅+=⋅+⋅ (5)0a b a b ⋅=⇔⊥ 2.3.向量的基本定理2.3.1 平面向量的基本定理如果1e 和2e 是同一平面内的两个不共线向量,那么对该平面内的任一向量a ,有且只有一对实数λ、μ,使12a e e λμ=+。
2.3.2 空间向量的基本定理如果三向量、、不共面,那么对空间任一向量,存在一个唯一有序实数组x 、y 、z ,使c z b y a x p ++=。
2.3.3 共线向量定理对空间任意两个向量a 、b ()0b ≠,//a b 的充要条件是存在实数λ,使a b λ= 2.3.4 共面向量定理如果两个向量a ,b 不共线,则向量p 与向量a ,b 共面的充要条件是存在实数对x ,y ,使p xa yb =+3. 向量法在中学几何中的应用3.1.向量在平面几何中的应用向量法与综合法、解析法,被认为是研究初等几何的三种主要方法,向量法在处理有关三角形“三线”(中线、角平分线、高)与“四心”(重心、垂心、内心、外心)等问题时有独到之处,另外 ,用向量知识处理平面几何问题时,可以避免去考虑几何中较复杂的关系。
例 3.1 O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P满足[]∞∈⎪⎫ ⎛++=,0,λλ,则P 的轨迹一定通过ABC ∆的( ).(A)外心 (B)内心 (C)重心 (D)垂心 解:由题意可设,AB AC AB AC ABAC''==,则AB '和AC '分别为AB 和AC 上的单位向量,所以⎫⎛+的方向为BAC ∠的角平分线的方向。
又[]0,λ∈∞,所以⎪⎫⎛+λ的方向与⎪⎫⎛+的方向相同,而 []∞∈⎫⎛++=,0,λλ,所以,点P 在BAC ∠的角平分线的方向上移动,P 的轨迹通过ABC ∆的内心。
故答案选(B). 点评:本题将向量加法的几何意义及轨迹问题有机地结合在一起,通过向量加法的几何意义来求解平面几何的问题。
由于向量具有几何形式,利用向量的运算去解决平面几何问题,可以少引或不引辅助线(如证三角形三条高线交于一点),使解题的思路更加清晰、简捷,解法顺理成章。
3.2.向量在解析几何中的应用由于向量可以通过坐标来表示,因此平面向量与解析几何之间有着天然的联系。
如:平面直角坐标系内的两点间距离公式,对应于平面内相应向量的长度公式;分一条线段成定 比的分点的坐标 ,可根据相应的两个向量的坐标直接求得;“两条直线平行的充要条件是其斜率相等”与“两个向量平行的充要条件是其对应坐标成比例”的说法没有本质的不同。
因此 ,在有关解析几何的题目中,如果涉及到夹角、平行、垂直、共线、轨迹等问题时,常可考虑用平面向量来处理,将几何问题坐标化、符号化、数量化,利用向量运算的几何意义,省去解析几何中一些繁杂的运算,可以收到事半功倍的效果。
例3.2 椭圆14922=+y x 的焦点为1F 、2F ,点P 为椭圆上的动点 ,当12F PF ∠为钝角时,点P 横坐标的取值范围是( ).解 :由题意知()1F , )2F ,设()00,P x y ,则()1,PF x y =-, ()2005,PF x y =-,因为12F PF ∠为钝角,所以120PF PF ⋅<,即()20000x x y +<,即22009945x y +<,又因为1492020=+y x 即22009364y x =-,于是可得20059x x =,所以553553<<-x . 点评:在解析几何中,一方面存在着度量、角度、平行、垂直等问题,这为向量的应用提供了广阔的空间;另一方面解析几何问题是用代数方法来处理的,这又符合了向量的双重身份,给向量的应用创造了良好的环境。
3.3.向量在空间几何中的应用 3.3.1 向量法解角的问题类型1:求异面直线a 与b 所成角θ求异面直线的夹角的传统解法是把空间角转化为平面角并用余弦定理来解,向量法在教材中的引入,使得在以往传统几何法的基础上又多了以向量为工具的向量解法。