向量在高中数学中的应用
- 格式:doc
- 大小:205.00 KB
- 文档页数:4
向量在高中数学中的作用向量是高中数学中一个重要的概念,它不仅能够帮助我们理解几何图形的性质,还能应用于物理、力学、几何等各个领域。
本文将探讨向量在高中数学中的作用,并介绍一些相关的应用。
首先,向量在几何图形的研究中起着关键的作用。
通过向量,我们能够描述一个点的位置、两个点之间的距离、两个线段的夹角等几何性质。
例如,在平面几何中,我们可以用向量表示一个点的坐标,通过两个点的坐标向量相减可以得到它们之间的线段向量,从而计算出它们的长度、方向等信息。
同时,向量还能够帮助我们确定几何图形的对称中心、镜像轴等特征,以及解决一些与几何图形相关的问题。
其次,向量在物理学中的应用也非常广泛。
在力学领域,向量可以表示物体的位移、速度、加速度等物理量。
通过求解向量方程,我们可以得出物体在不同时刻的位置、速度和加速度之间的关系,从而揭示出物体的运动规律。
在力学问题中,可以通过向量的几何性质解决一些力和力的合成、分解问题,求解物体受力的大小、方向等。
此外,在静力学的分析中,向量也是一个重要的工具,可以用来分析物体的平衡条件、滑动条件等。
此外,向量还可以用于解决数量关系的问题。
例如,在线性代数中,我们可以用向量的线性组合、线性相关性等概念解决一些向量空间的性质和线性方程组的求解问题。
向量的内积和叉积可以用来求解两个向量之间的夹角、平行关系以及面积、体积等量的计算。
此外,向量还可以用于表示一些数量关系的模型,例如经济学中的边际效应模型、物理学中的力场模型等。
在数学建模中,向量也起着重要的作用。
通过将问题抽象为向量的形式,我们可以使用向量运算、向量的变化规律等方法进行问题的建模和求解。
例如,在最优化问题中,我们可以将目标函数表示为向量,利用向量的方向、长度等性质寻找最优解。
在图论和网络分析中,向量可以用于表示节点之间的连通关系、距离关系等,从而帮助我们分析网络结构和解决一些与网络相关的问题。
除此之外,向量还在计算机科学中发挥着重要的作用。
高中数学公式大全向量的运算与应用高中数学公式大全:向量的运算与应用一、定义与基本概念在数学中,向量是具有大小和方向的物理量。
向量通常用有向线段来表示,有长度和方向。
二、向量的表示方法1. 坐标表示法:向量可以用坐标表示,通常用尖括号表示。
例如:向量a = <a1, a2, a3>2. 基本单位向量表示法:使用基本单位向量i、j、k以及系数表示。
例如:向量a = a1i + a2j + a3k三、向量的运算1. 向量的加法:向量的加法满足交换律和结合律。
a +b = b + a(a + b) + c = a + (b + c)2. 向量的减法:向量的减法可以转化为加法。
a -b = a + (-b)3. 向量的数量积(点积):向量a和b的数量积表示为a·b = |a| |b| cosθ,其中θ为a和b之间的夹角。
a·b = a1b1 + a2b2 + a3b34. 向量的向量积(叉积):向量a和b的向量积表示为a×b,满足交换律和分配律。
a×b = |a| |b| sinθ n,其中θ为a和b之间的夹角,n为一个垂直于a 和b的单位向量。
四、向量的应用1. 向量的单位化:将向量转化为单位向量,即长度为1。
单位化的向量往往用于表示方向。
单位向量u = a / |a|,其中a为非零向量。
2. 向量的投影:向量a在向量b上的投影表示为a在b方向上的投影长度,可以计算为:a在b方向上的投影= |a|cosθ,其中θ为a与b之间的夹角。
3. 向量的共线与垂直判定:a与b共线的条件是a×b = 0。
a与b垂直的条件是a·b = 0。
4. 平面向量的共线与垂直判定:a与b共线的条件是a×b = 0。
a与b垂直的条件是a·b = 0。
5. 平面向量的夹角计算:两个向量a和b之间的夹角θ可以计算为:cosθ = (a·b) / (|a| |b|)6. 向量的线性相关与线性无关:如果存在一组不全为零的系数k1、k2、...、kn,使得k1a1 + k2a2 + ... + knan = 0,则向量组a1、a2、...、an线性相关;如果这样的系数不存在,向量组a1、a2、...、an线性无关。
2.7 向量应用举例典题精讲例1用向量法证明平行四边形两对角线的平方和等于四条边的平方和。
思路分析:把平行四边形的边和对角线的长看成向量的长度,转化为证明向量长度之间的关系.基向量法和坐标法均可解决.答案:已知:四边形ABCD是平行四边形,求证:|AC|2+|BD|2=2|AB|2+2|AD|2。
证法一:如图2—7—1所示,设AB=a, AD=b,∴AC=AB+AD=a+b,BD=AD-AB=b-a。
图2-7—1∴|AC|2=(a+b)2=a2+2a·b+b2,|BD|2=(b—a)2=a2-2a·b+b2。
∴|AC|2+|BD|2=2a2+2b2.又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和.证法二:如图2—7-2所示,以A为原点,以AB所在直线为x轴,建立直角坐标系.设A(0,0)、D(a,b)、B(c,0),∴AC=AB+AD图2—7-2=OB+OD=(c,0)+(a,b)=(a+c,b),BD=AD—AB=OD—OB=(a,b)-(c,0)=(a-c,b)。
∴|AC|2=(c+a)2+b2,|BD|2=(a-c)2+b2.∴|AC|2+|BD|2=2a2+2c2+2b2。
又∵2|AB|2+2|AD|2=2|OB|2+2|OD|2=2a2+2c2+2b2,∴|AC|2+|BD|2=2|AB|2+2|AD|2,即平行四边形两对角线的平方和等于四条边的平方和。
绿色通道:1。
向量法解决几何问题的步骤:①建立平面几何与向量的联系,用向量表示问题中涉及的几何元素,将平面几何问题转化为向量问题;②通过向量运算(有基向量法和坐标法两种),研究几何元素之间的关系;③把运算结果“翻译”成几何关系。
这是用向量法解决平面几何问题的“三步曲”.又简称为:一建二算三译;也可说成为:捡便宜(建算译)。
高中数学中的向量运算在高中数学中,向量运算是一个重要的概念。
通过向量运算,我们可以解决许多与空间相关的问题,比如平面几何、力学等。
本文将介绍一些常见的向量运算,包括向量的加法、减法、数量乘法、点积和叉积。
向量的加法是最基本的运算之一。
当两个向量相加时,我们将它们的对应分量相加,得到一个新的向量。
例如,对于向量a=(a1,a2,a3)和向量b=(b1,b2,b3),它们的和可以表示为a+b=(a1+b1,a2+b2,a3+b3)。
这个运算可以用来求解平面几何问题,比如两点之间的距离、线段的中点等。
向量的减法与加法类似,只是将对应分量相减。
例如,向量a和向量b的差可以表示为a-b=(a1-b1,a2-b2,a3-b3)。
我们可以将向量的减法理解为向量的加法的逆运算。
在几何上,向量的减法可以用来求解两点之间的向量差,或者一个向量在另一个向量上的投影。
数量乘法是指将一个向量的每个分量都乘以一个实数。
例如,对于向量a=(a1,a2,a3)和实数k,我们有ka=(ka1,ka2,ka3)。
这个运算可以用来改变向量的长度和方向。
当k为正数时,向量的长度会增加;当k为负数时,向量的方向会反转。
点积是向量运算中的一种特殊形式。
当我们计算两个向量的点积时,我们将它们的对应分量相乘,然后将结果相加。
例如,对于向量a=(a1,a2,a3)和向量b=(b1,b2,b3),它们的点积可以表示为a·b=a1b1+a2b2+a3b3。
点积可以用来计算两个向量之间的夹角,以及判断两个向量是否垂直。
叉积是向量运算中的另一种特殊形式。
当我们计算两个向量的叉积时,我们首先计算它们在平面上的投影,然后计算投影的面积。
叉积的结果是一个新的向量,它垂直于原来的两个向量。
例如,对于向量a=(a1,a2,a3)和向量b=(b1,b2,b3),它们的叉积可以表示为a×b=(a2b3-a3b2,a3b1-a1b3,a1b2-a2b1)。
高中向量知识点总结向量是数学中的重要概念,它在几何、物理等领域都有着广泛的应用。
在高中数学学习中,向量是一个重要的知识点,掌握好向量的相关知识对于学生的数学学习和未来的发展都具有重要意义。
本文将对高中向量知识点进行总结,希望能够帮助学生更好地理解和掌握这一部分内容。
1. 向量的概念。
向量是具有大小和方向的量,通常用有向线段来表示。
在直角坐标系中,向量可以表示为一个有序数对,也可以表示为一个坐标点到另一个坐标点的位移。
向量的大小通常用模长来表示,方向则可以用夹角或者方向角来描述。
2. 向量的运算。
向量的运算包括加法、减法和数量乘法。
向量的加法和减法都是按照平行四边形法则进行的,而数量乘法则是将向量的模长与一个标量相乘,同时改变向量的方向。
向量的运算在几何和物理问题中有着重要的应用,能够帮助我们更好地描述和计算问题。
3. 向量的数量积和向量积。
向量的数量积又称为点积,是两个向量的数量乘积再与它们的夹角的余弦值相乘所得的结果。
向量的数量积具有对称性和分配律,可以用来计算向量的模长、夹角以及投影等问题。
而向量的向量积又称为叉积,是两个向量的数量乘积再与它们的夹角的正弦值相乘所得的结果。
向量的向量积可以用来求得平行四边形的面积和向量的方向。
4. 向量的应用。
在几何中,向量可以用来描述平面图形的性质,比如平行四边形的性质、三角形的性质等。
在物理中,向量则可以用来描述物体的位移、速度、加速度等物理量,是物理学中不可或缺的工具。
另外,在工程和计算机图形学中,向量也有着广泛的应用,比如在计算机游戏中的物体运动、碰撞检测等方面。
总结:通过本文的总结,我们对高中向量知识点有了更深入的了解。
向量作为数学中的重要概念,在几何、物理等领域有着广泛的应用。
掌握好向量的相关知识,不仅有助于学生的数学学习,还能够为他们未来的发展打下坚实的基础。
希望本文能够帮助学生更好地理解和掌握高中向量知识,为他们的学习和未来的发展提供帮助。
高中数学中的向量向量是高中数学中的重要概念,它不但在数学上有广泛的应用,在物理、工程等领域也有着重要的地位。
本文将从向量的定义、性质、运算和应用等方面来介绍高中数学中的向量。
一、向量的定义向量是有大小和方向的量,通常用一条带箭头的线段来表示。
在数学中,向量通常用坐标表示,一个n维向量可以表示为(a1,a2,...,an),其中a1,a2,...,an为实数。
二、向量的性质1. 向量的大小向量的大小(或长度)是一个标量,通常用|v|来表示,根据勾股定理可以得到一个向量的大小:|v| = √(v1² + v2² + ... + vn²)2. 向量的方向向量的方向通常用另一个向量来表示,这个向量被称为一个单位向量,它的大小为1。
假设向量v的大小为|v|,则单位向量u = v/|v|,表示v的方向。
3. 向量的零向量大小为0的向量被称为零向量,通常用0或O来表示。
4. 向量的相等如果两个向量的大小和方向都相同,则这两个向量相等。
三、向量的运算1. 向量的加法两个向量的加法等于将它们的对应分量相加,例如(u1,u2) + (v1,v2) = (u1+v1,u2+v2)。
当向量的维数增多时,其加法规律也同样适用。
2. 向量的数乘向量的数乘指将一个向量的所有分量乘以一个实数,例如k(u1,u2) = (ku1,ku2)。
3. 向量的点积向量的点积也叫数量积,它是两个向量相乘后再相加得到的标量。
设两个n维向量u和v,则它们的点积为u·v = u1v1 + u2v2 + ... + unvn。
如果u·v=0,则称u和v垂直(或正交)。
4. 向量的叉积向量的叉积也叫向量积,它是两个三维向量相乘后得到的新向量。
设两个三维向量u=(u1,u2,u3)和v=(v1,v2,v3),则它们的叉积为u×v = (u2v3-u3v2,u3v1-u1v3,u1v2-u2v1)。
高中数学中的空间向量应用重点知识点归纳在高中数学的学习中,空间向量是一个重要的概念,它在几何问题的解决中具有广泛的应用。
本文将对高中数学中的空间向量应用的重点知识点进行归纳,帮助同学们更好地理解和掌握相关内容。
一、基本概念1. 空间向量的定义:空间向量是指具有大小和方向的量,用箭头表示,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
2. 空间向量的表示:空间向量可以用坐标表示,也可以用位置矢量表示,其中位置矢量由起点和终点确定。
3. 零向量:零向量是长度为0,方向任意的特殊向量,用0表示。
4. 相等向量:具有相同大小和方向的向量称为相等向量,记作→AB = →CD。
二、向量的运算1. 向量的加法:向量的加法是指将两个向量相加得到一个新的向量,具有平行四边形法则和三角形法则两种运算法则。
2. 向量的减法:向量的减法是指将两个向量相减得到一个新的向量,可利用向量加法实现。
3. 向量的数乘:向量的数乘是指将向量的每个分量与一个实数相乘得到一个新的向量。
4. 点乘:点乘又称为数量积或内积,表示为A·B,结果是一个实数。
点乘有几何意义和代数意义,具有交换律和分配律等运算规则。
5. 叉乘:叉乘又称为向量积或外积,表示为A×B,结果是一个向量。
叉乘有几何意义和代数意义,具有反交换律和满足叉乘的运算规则。
三、空间向量的应用1. 直线的方程:通过两个不共线的点可以确定一条直线,可以利用向量求解直线的方程。
2. 平面的方程:通过三个不共线的点可以确定一个平面,可以利用向量求解平面的方程。
3. 点到直线的距离:点到直线的距离可以通过向量的投影求得,利用这一点可以解决点到直线的最短距离问题。
4. 点到平面的距离:点到平面的距离可以通过向量的投影求得,利用这一点可以解决点到平面的最短距离问题。
5. 直线的位置关系:通过向量的共线性可以判断直线的位置关系,包括相交、平行和重合等情况。
6. 平面的位置关系:通过向量的共面性可以判断平面的位置关系,包括相交、平行和重合等情况。
第4讲空间向量的应用知识梳理1.空间中任意一条直线l的位置可以由l上一个定点以及一个向量确定,这个向量叫做直线的方向向量.2.若直线l垂直于平面α,取直线l的方向向量a,则a⊥α,则a叫做平面α的法向量.3.(1)线线垂直:设直线l,m的方向向量分别为a,b,则l⊥m⇔a⊥b⇔a·b=0.(2)线面垂直:设直线l的方向向量为a,平面α的法向量为u,则l⊥α⇔a∥u⇔a=k u,k∈R.(3)面面垂直:若平面α的法向量为u,平面β的法向量为ν,则α⊥β⇔u⊥ν⇔u·ν=0.4.设两异面直线所成的角为θ,它们的方向向量分别为a,b,则cos θ=|a·b||a||b|.5.设直线l与平面α所成的角为θ,直线l的方向向量为a,平面α的法向量为n,则sin θ=|cos〈a,n〉|=|a·n||a||n|.6.设二面角α-l-β的平面角为θ,平面α,β的法向量分别为n1,n2,则|cos θ|=|n1·n2| |n1||n2|.考点题型知识点1 直线的方向向量与平面的法向量【例1-1】(焦作期末)若点,在直线l上,则直线l的一个方向向量为A. B. C. D.【例1-2】(广州期末)设是直线l的方向向量,是平面的法向量,则A. B. C. 或 D. 或【变式训练1-1】(沙坪坝区校级模拟)若直线l的方向向量为,平面的法向量为,则能使的是A. B.C. D.【变式训练1-2】(东阳市模拟)已知,,分别是平面,,的法向量,则,,三个平面中互相垂直的有A. 3对B. 2对C. 1对D. 0对知识点2 用空间向量研究直线、平面的平行关系【例2-1】(浙江模拟)已知在正四棱柱中,,,点E为的中点,点F为的中点.求证:.【例2-2】(柯城区校级模拟)如图,在底面为平行四边形的四棱锥中,,平面ABCD,且,点E是PD的中点.求证:平面AEC.【例2-3】(金华期末)如图,已知棱长为4的正方体中,M,N,E,F分别是棱,,,的中点,求证:平面平面EFBD.【变式训练2-1】(宿迁期末)如图,在长方体中,,,,点P在棱上,且,点S在棱上,且,点Q、R分别是棱、AE的中点.求证:.【变式训练2-2】(朝阳区期末)已知正方体的棱长为2,E,F分别是,的中点,求证:平面ADE;平面平面F.知识点3 用空间向量研究直线、平面的垂直关系【例3-1】(扬州期末)如图,在四棱锥中,底面ABCD为直角梯形,,,底面ABCD,且,M为PC的中点.求证:【例3-2】(上城区校级模拟)如图所示,在正方体中,E,F分别是,DC的中点,求证:平面F.【例3-3】(点军区校级月考)如图,在五面体ABCDEF中,平面ABCD,,,M为EC的中点,求证:平面平面CDE.【变式训练3-1】(三明模拟)已知空间四边形ABCD中,,,求证:.【变式训练3-2】(镇海区校级模拟)如图,在四棱锥中,底面ABCD是矩形且,,底面ABCD,E是AD的中点,F在PC上.F在何处时,平面PBC?【变式训练3-3】(未央区校级月考)在四面体ABCD中,平面BCD,,,,E,F分别是AC,AD的中点,求证:平面平面ABC.知识点4 用空间向量研究空间中的距离问题【例4-1】(海淀区校级期末)如图,已知正方形ABCD的边长为1,平面ABCD,且,E,F分别为AB,BC的中点.求点D到平面PEF的距离;求直线AC到平面PEF的距离.(房山区期末)如图,在四棱锥中,平面ABCD,,【变式训练4-1】,,.求点D到平面PBC的距离;求点A到平面PBC的距离.知识点5 用空间向量研究空间中的夹角问题【例5-1】(宝山区校级期末)如图,ABCD为矩形,AB=2,AD=4,P A⊥面ABCD,P A=3,求异面直线PB与AC所成角的余弦值.【例5-2】(常州期末)已知在正三棱柱ABC-A1B1C1中,侧棱长与底面边长相等,求AB1与侧面ACC1A1所成角的正弦值.【例5-3】(漳州三模)已知,P A⊥平面ABC,AC⊥BC,P A=AC=1,BC= 2.求二面角A-PB-C的余弦值.【变式训练5-1】(沭阳县期中)如图,在正四棱柱中,,,点M是BC 的中点.求异面直线与DM所成角的余弦值求直线与平面所成角的正弦值求平面与平面ABCD所成角的正弦值.A组-[应知应会]1.(杨浦区校级期中)若直线l的方向向量为0,,平面的法向量为0,,则A. B. C. D. l与斜交2. (安徽模拟)已知,,,则向量与向量的夹角为A. B. C. D.3. (闵行区校级模拟)已知四边形ABCD是直角梯形,,平面ABCD,,则SC与平面ABCD所成的角的余弦值为A. B. C. D.4. (贵阳模拟)在正方体中,棱长为a,M,N分别为和AC上的点,,则MN与平面的位置关系是A. 垂直B. 相交C. 平行D. 不能确定5.(温州期末)如图,在长方体中,,E为CD的中点,点P在棱上,且平面,则AP的长为A.B.C. 1D. 与AB的长有关6.(鼓楼区校级模拟)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知,,,,则该二面角的大小为A. B. C. D.7.(和平区校级二模)如图所示,在正方体中,点P是棱AB上的动点点可以运动到端点A和B,设在运动过程中,平面与平面所成的最小角为,则A.B.C.D.8. (多选)(东阳市模拟)已知点P是平行四边形ABCD所在的平面外一点,如果,2,,2,,下列结论正确的有A. B.C. 是平面ABCD的一个法向量D.9.(江苏模拟)已知,,若,,且平面ABC,则y,等于________.10.(南通模拟)已知正三棱柱的各条棱长都相等,M是侧棱的中点,则向量与所成角的大小是.11.(清江浦区校级模拟)在四棱锥中,底面ABCD,底面ABCD是正方形,且,G为的重心,则PG与底面ABCD所成角的正弦值为.12.(沭阳县期中)在四棱锥中,底面ABCD为矩形,侧棱底面ABCD,,E为PD的中点,点N在面PAC内,且平面PAC,则点N到AB的距离为__________13.(滨海新区模拟)如图,在四棱锥中,底面ABCD为平行四边形,,,底面ABCD,,则二面角的余弦值为________.14.(浦东新区校级月考)如图,在正方体中,E为的中点,求异面直线CE 与BD所成的角.15.(江宁区校级月考)如图,四边形ABCD是正方形,平面ABCD,,,,F为PD的中点.求证:;求证:平面PEC.16.(临泉县校级月考)正方体中,E,F分别是,CD的中点.求证:平面平面;在AE上求一点M,使得平面DAE.17. (兴宁区校级期末)如图,在四棱锥中,底面ABCD为直角梯形,,且,平面ABCD.求直线PB与平面PCD所成角的正弦值;在棱PD上是否存在一点E使得?若存在,求AE的长;若不存在,请说明理由.18. (沙坪坝区校级期末)如图,正三棱柱的底面边长是2,侧棱长是,D是AC的中点.求二面角的大小.在线段上是否存在一点E,使得平面平面若存在,求出AE的长若不存在,说明理由.1.(齐齐哈尔期末)如图,在圆锥SO中,A,B是上的动点,是的直径,M,N是SB的两个三等分点,,记二面角,的平面角分别为,,若,则的最大值是A. B. C. D.2.(如皋市期末)如图,在长方体中,E是的中点,点F是AD上一点,,,,动点P在上底面上,且满足三棱锥的体积等于1,则直线CP与所成角的正切值的最小值为________.。
高中数学向量的运算技巧及应用举例向量是高中数学中的重要概念,它不仅在几何中有广泛的应用,还在物理学、工程学等领域中发挥着重要作用。
掌握向量的运算技巧和应用,对于高中学生来说至关重要。
本文将以具体的题目为例,详细介绍向量的运算技巧及其应用。
一、向量的加法和减法向量的加法和减法是向量运算中最基础的部分。
在进行向量的加减运算时,需要注意向量的方向和大小。
例题1:已知向量a = (2, 3)和向量b = (-1, 4),求向量c = a + b。
解析:根据向量的加法定义,向量c的横坐标等于向量a和向量b的横坐标之和,纵坐标等于向量a和向量b的纵坐标之和。
因此,向量c = (2 + (-1), 3 + 4) = (1, 7)。
例题2:已知向量a = (3, 5)和向量b = (2, -4),求向量c = a - b。
解析:根据向量的减法定义,向量c的横坐标等于向量a和向量b的横坐标之差,纵坐标等于向量a和向量b的纵坐标之差。
因此,向量c = (3 - 2, 5 - (-4)) = (1, 9)。
通过以上两个例题,我们可以看出向量的加法和减法运算实际上就是对应坐标的加减运算。
掌握了这一点,我们就能够轻松地进行向量的加减运算。
二、向量的数量积和向量积向量的数量积和向量积是向量运算中的两个重要概念。
数量积表示两个向量的乘积,向量积表示两个向量的叉乘。
例题3:已知向量a = (3, 4)和向量b = (2, -1),求向量a和向量b的数量积。
解析:向量a和向量b的数量积等于向量a的横坐标乘以向量b的横坐标之和,再加上向量a的纵坐标乘以向量b的纵坐标之和。
因此,向量a和向量b的数量积为3 * 2 + 4 * (-1) = 6 - 4 = 2。
例题4:已知向量a = (3, 4)和向量b = (2, -1),求向量a和向量b的向量积。
解析:向量a和向量b的向量积等于向量a的横坐标乘以向量b的纵坐标减去向量a的纵坐标乘以向量b的横坐标。
向量在高中数学中的应用
在高中数学新课程教材中,平面向量是高中数学的新增内容,也是新高考的一个亮点。
学生学习平面向量在前,学习解析几何在后,而且教材中二者知识整合的不多,很多学生在学习中就“平面向量”解平面向量题,不会应用平面向量去解决解析几何问题。
向量知识、向量观点在数学、物理等学科的很多分支有着广泛的应用,它具有代数形式和几何形式的“双重身份”,能融数形与一体,能与中学数学教学内容的的许多主干知识综合,形成知识交汇点。
距离如下:
1、利用向量证明等式
材料一:已知、是任意角,求证:。
证明:在单位圆上,以轴为始边作角,终边交单位圆于A,以轴为始边作角,终边交单位圆于B,有,所以有:
又
即
点评:对于某些恒等式证明,形式中含有或符合向量的坐标运算形式,可运用
向量的数量积定义和向量坐标运算来证明。
2、利用向量证明不等式
材料二:是正数。
求证:
证明:设
由数量积的坐标运算可得:
又因为,所以成立。
点评:当求解问题(式子)中含有乘积或乘方时,可巧妙地利用向量数量积坐标表达式:
,,构造向量解之。
3、利用向量求值
材料三:已知,求锐角。
解析:由条件得
设,,
则,,,
由,得,即,
则,即,同理(因为、为锐角)
点评:对于求值问题,巧妙地运用向量的数量积定义构造等量关系求值。
4、利用向量求函数值域
材料四:若,求的最小值。
解析:构造向量,
由,得
即,
当且仅当时,有最小值
点评:巧妙构造向量,可以解决条件最值问题,特别是某些含有乘方之和或乘积之和式子的条件最值问题,用向量证明更有独特之处。
5、利用向量解决析几何问题
材料五:过点,作直线交双曲线于A、B不同两点,已知。
(1)、求点P的轨迹方程,并说明轨迹是什么曲线。
(2)、是否存在这样的直线,使若存在,求出的方程;若不存在说明理由。
解析:(1)、设直线的方程为,
代入得,
当时,设,,则,
设,由,则
,解之得
再将代入得 (1)
当时,满足(1)式;
当斜率不存在是,易知满足(1)式,故所求轨迹方程为,其轨迹为双曲线;
当时,与双曲线只有一个交点,不满足题意。
(2),所以平行四边形OAPB为矩形,OAPB为矩形的充要条件是,即。
当不存在时,A、B坐标分别为,,不满足上式。
又
化简得:,此方程无实数解,故不存直线使OAPB为矩形。
点评:平面向量和平面解析几何是新老教材的结合点,也是近几年高考常考查的热点,解此类题应注重从向量积的定义和向量的加减法的运算入手,还应该尽量联系向量与解析几何的共同点,综合运用解析几何知识和技巧,使问题有效解决。
随着复习的继续与深入,我们还可以看到平面向量与概率、导数、复数等知识的交汇与整合,为命题者施展了优化创新试题的陈地,也为我们分析、解决问题的切入点开辟了新的视角。
解析几何与向量综合时可能出现的向量内容:
(1)给出直线的方向向量或,要会求出直线的斜率;
(2)给出与相交,等于已知过的中点;
(3)给出,等于已知是的中点;
(4)给出,等于已知与的中点三点共线;
(5)给出以下情形之一:①;②存在实数;③若存在实数
,等于已知三点共线.
(6)给出,等于已知是的定比分点,为定比,即
(7)给出,等于已知,即是直角,给出
,等于已知是钝角, 给出,等于已知是锐角。
(8)给出,等于已知是的平分线/
(9)在平行四边形中,给出,等于已知是菱形;
(10)在平行四边形中,给出,等于已知是矩形;
(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);
(12)在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);
(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);
(14)在中,给出等于已知通过的内心;
(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);
(16)在中,给出,等于已知是中边的中线著名教育家布鲁纳说过:学习的最好刺激是对所学材料的兴趣,简单的重复将会引起学生大脑疲劳,学习兴趣衰退。
这充分揭示方法求变的重要性,如果我们能重视向量的教学,必然能引导学生拓展思路,减轻负担。