兰州大学10高数物理类(上)清考试题及答案
- 格式:doc
- 大小:136.00 KB
- 文档页数:2
2025届甘肃省兰州大学附中数学高三第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知椭圆2222:1(0)x y a b a bΓ+=>>的左、右焦点分别为1F ,2F ,上顶点为点A ,延长2AF 交椭圆Г于点B ,若1ABF 为等腰三角形,则椭圆Г的离心率e =A .13B .3C .12D .22.已知n S 是等差数列{}n a 的前n 项和,若312S a S +=,46a =,则5S =( )A .5B .10C .15D .203.已知集合{}1A x x =<,{}1xB x e =<,则( ) A .{}1A B x x ⋂=< B .{}A B x x e ⋃=< C .{}1A B x x ⋃=<D .{}01A B x x ⋂=<<4.已知O 为坐标原点,角α的终边经过点(3,)(0)P m m <且sin α=,则sin 2α=( ) A .45B .35C .35D .45-5.若两个非零向量a 、b 满足()()0a b a b +⋅-=,且2a b a b +=-,则a 与b 夹角的余弦值为( ) A .35B .35±C .12D .12±6.复数()(1)2z i i =++的共轭复数为( ) A .33i -B .33i +C .13i +D .13i -7.已知实数集R ,集合{|13}A x x =<<,集合|B x y ⎧==⎨⎩,则()R A C B ⋂=( ) A .{|12}x x <≤ B .{|13}x x << C .{|23}x x ≤<D .{|12}x x <<8.已知点P 是双曲线222222:1(0,0,)x y C a b c a b a b-=>>=+上一点,若点P 到双曲线C 的两条渐近线的距离之积为214c ,则双曲线C 的离心率为( ) A .2 B .52C .3D .29.三棱锥S ABC -中,侧棱SA ⊥底面ABC ,5AB =,8BC =,60B ∠=︒,25SA =,则该三棱锥的外接球的表面积为( ) A .643π B .2563π C .4363π D .2048327π 10.已知复数21aibi i-=-,其中a ,b R ∈,i 是虚数单位,则a bi +=( ) A .12i -+B .1C .5D .511.已知复数552iz i i=+-,则||z =( ) A .5B .52C .32D .2512.中国铁路总公司相关负责人表示,到2018年底,全国铁路营业里程达到13.1万公里,其中高铁营业里程2.9万公里,超过世界高铁总里程的三分之二,下图是2014年到2018年铁路和高铁运营里程(单位:万公里)的折线图,以下结论不正确的是( )A .每相邻两年相比较,2014年到2015年铁路运营里程增加最显著B .从2014年到2018年这5年,高铁运营里程与年价正相关C .2018年高铁运营里程比2014年高铁运营里程增长80%以上D .从2014年到2018年这5年,高铁运营里程数依次成等差数列 二、填空题:本题共4小题,每小题5分,共20分。
2024年甘肃省兰州市兰大附中高三物理第一学期期末综合测试试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、一质量为m 的物体在光滑水平面上以速度v 0运动,t =0时刻起对它施加一与速度v 0垂直、大小为F 的水平恒力,则t 时刻力F 的功率为( )A .0B .2F t mC .0F F v t m ⎛⎫+ ⎪⎝⎭D .2222F t F v m + 2、取一根长2m 左右的细线,5个铁垫圈和一个金属盘,在线端系上第一个垫圈,隔12 cm 再系一个,以后垫圈之间的距离分别是36 cm 、60 cm 、84 cm ,如图所示.站在椅子上,向上提起线的上端,让线自由垂下,且第一个垫圈紧靠放在地上的金属盘,松手后开始计时,若不计空气阻力,则第2、3、4、5个垫圈( )A .落到盘上的声音时间间隔越来越大B .落到盘上的声音时间间隔相等C .依次落到盘上的速率关系为1:2:3:2D .依次落到盘上的时间关系为()()()1:21:32:23--- 3、如图所示,四根相互平行的固定长直导线1L 、2L 、3L 、4L ,其横截面构成一角度为60︒的菱形,均通有相等的电流I ,菱形中心为O 。
1L 中电流方向与2L 中的相同,与3L 、4L 中的相反,下列说法中正确的是( )A.菱形中心O处的磁感应强度不为零OLB.菱形中心O处的磁感应强度方向沿1C.1L所受安培力与3L所受安培力大小不相等D.1L所受安培力的方向与3L所受安培力的方向相同4、如图所示,平行板a、b组成的电容器与电池E连接,平行板电容器P处固定放置一带负电的点电荷,平行板b接地。
大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。
兰州大学2009~2010学年第 一 学期期末考试试卷(A 卷)课程名称: 任课教师:学院: 专业: 年级: 姓名: 校园卡号:一、单项选择题(在每个小题四个备选答案中选出一个正确答案,填在题末的括号中) (本大题有6小题, 每小题4分, 共24分)1. 当0x →时,下述哪个量是2()(1cos )ln(12)f x x x =-+ 的同阶无穷小量( ). (A )3x ; (B )4x ; (C )5x ; (D )2x2.⎪⎩⎪⎨⎧=≠-+=001sin )(2x a x xe x xf ax在0x =处连续,则a =( ).(A ) 1(B ) 0 (C ) e(D) 1-3. 设)(x f 在点x a =处可导,那么=--+→h h a f h a f h )2()(lim 0( ).(A ) )(3a f ' (B ) )(2a f '(C) )(a f ' (D ) )(31a f '4. 设在[0,1]上)(x f 二阶可导且0)(>''x f ,则( )(A ))0()1()1()0(f f f f -<'<' (B) )1()0()1()0(f f f f '<-<'(C) )0()1()0()1(f f f f -<'<'(D ))0()1()0()1(f f f f '<'<-5. 极限ax a x a x -→⎪⎭⎫ ⎝⎛1sin sin lim 的值是( ). (A ) 1(B ) e(C ) aecot (D ) aetan6.设常数0k >,则级数11(1)ln(1n n ∞+=-+∑ ( )(A )绝对收敛(B ) 条件收敛 (C )发散(D )敛散性与k 有关二、填空题(本大题有6小题,每小题4分,共24分)1. 设 =->)1arctan (12x x d x ( )2s ,sin cos t 4t t y t t π-=+=32. 曲线 x=co cos 对应的点处的切线斜率为________3. 求函数2)4ln(2x x y -=的单调递增区间为213x 04. x e dx __________=⎰()()2dx____________12x x =++⎰5.[]2()a _______f x x ππ==16. 函数在-,上的傅立叶系数三、(10分) 计算 260sin limx t xx te tdt x e →⎰四、(10分) ''1y y xe =+求函数的二阶导数y五、(8分)设a>0,函数()x f 在[],a b 上连续,在(),a b 内可导,证明存在(),a b ξ∈----------------------------------------------------装-------------------------------订---------------------------------线--------------------------------------------------------使得 ()()()()22'2ln ln f b f a f f b aξξξ-=-六、(8分)求定积分1 七、(8分)过抛物线y =P (3,1)作切线,该切线与上述抛物线及x 轴围成一平面图形,求此图形面图形,求此平面图形绕轴旋转一周所成旋转体体积.八、(8分)求级数()2111n n x n +∞=-∑的收敛域及和函数.高等数学解答一、单项选择题B D A BC B二、填空题1. 42x arc dx+ 2. )21 ()()3. 01-∞⋃+∞,, 4. 12 5. 11ln 22x C x x +++++ 6. 4- 三、(10分) 计算 2060sin lim x t x x te tdt x e →⎰22220656005560sin sin 2lim =lim 621 lim 63x t x x x x x x x te tdt x e x x x e x e x e x x x →→→⋅+==+⎰解:四、(10分) ''1y y xe =+求函数的二阶导数y ()()()()'''''''23y y y 1y y 1121y y y y y yy y y e e xe xe e xe xe xe xe =+⋅=-=⋅----2y 2y解: , e 由此可知 y +1+x e =五、(8分)设a>0,函数()x f 在[],a b 上连续,在(),a b 内可导,证明存在(),a b ξ∈, 使得()()()()22'2ln ln f b f a f f b a ξξξ-=- 解: 令 ()()2x f x =F ,()ln x x =G , 则 ()()()''2x f x f x =F ,()'1x x =G ,所以根据Cauchy 中值定理,存在(),a b ξ∈,使得()()()()22'2ln ln fb f a f f b aξξξ-=-六、(8分)求定积分2dx x1解:令sin x t =, 则()()222244cot csc 1cot 14tdt t dt t t πππππππ==-=--=-⎰⎰1七、(8分)过抛物线y =P (3,1)作切线,该切线与上述抛物线及x 轴围成一平面图形,求此图形绕x轴旋转一周所成旋转体体积.解:切线方程为 ()112y x =-,与x轴的交点为A (1,0). 抛物线与x轴的交点为B (2,0)故所求旋转体的体积为()()2331211226V x dx x dx πππ⎡⎤=---=⎢⎥⎣⎦⎰⎰八、(8分)求级数()2111n n x n +∞=-∑的收敛域及和函数. 解:令()21t x =-,()1n n t S t n∞==∑,易知其收敛域为 ≤-1t<1, 因此原级数的收敛域为0<x<2 .()()'1111n n S t t t∞-===<-∑-1t<1()()()()()()()()()()()()()'00222110ln 100ln 1111ln 11(1)ln 2t t S t dt dt t S t S t S S t t x Sx x x x x x =--=--==--=--⎡⎤=---⎣⎦=--⎰⎰又因所以原级数。
兰州大学大学物理期末考试试卷(含答案)一、大学物理期末选择题复习1.对质点组有以下几种说法:(1) 质点组总动量的改变与内力无关;(2) 质点组总动能的改变与内力无关;(3) 质点组机械能的改变与保守内力无关.下列对上述说法判断正确的是( )(A) 只有(1)是正确的 (B) (1) (2)是正确的(C) (1) (3)是正确的 (D) (2) (3)是正确的答案C2.一带电粒子垂直射入均匀磁场中,如果粒子的质量增加为原来的2倍,入射速度也增加为原来的2倍,而磁场的磁感应强度增大为原来的4倍,则通过粒子运动轨道所围面积的磁通量增大为原来的:( )(A) 2倍 (B) 4倍 (C) 0.5倍 (D) 1倍答案B3.下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零答案B4.在图(a)和(b)中各有一半径相同的圆形回路L 1 、L 2 ,圆周内有电流I 1 、I 2 ,其分布相同,且均在真空中,但在(b)图中L 2 回路外有电流I 3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B =(B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠ 答案C5.如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
设该人以匀速率0v 收绳,绳不伸长且湖水静止,小船的速率为v ,则小船作( )(A )匀加速运动,0cos v v θ=(B )匀减速运动,0cos v v θ= (C )变加速运动,0cos v v θ= (D )变减速运动,0cos v v θ= (E )匀速直线运动,0v v =答案 C 。
2024学年甘肃省兰州市兰州大学附属中学物理高三上期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、如图所示,电路中L为电感线圈,C为电容器,先将开关S1闭合,稳定后再将开关S2闭合,则()A.S1闭合时,灯A、B都逐渐变亮B.S1闭合时,灯A中无电流通过C.S2闭合时,灯B立即熄灭D.S2闭合时,灯A中电流由b到a2、2018年12月8日2时23分,我国成功发射“嫦娥四号”探测器。
“嫦娥四号”探测器经历地月转移、近月制动、环月飞行,最终于2019年1月3日10时26分实现人类首次月球背面软着陆。
假设“嫦娥四号"在环月圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则有关“嫦娥四号”的说法中不正确的是()A.由地月转移轨道进人环月轨道,可以通过点火减速的方法实现B.在减速着陆过程中,其引力势能逐渐减小C.嫦娥四号分别在绕地球的椭圆轨道和环月椭圆轨道上运行时,半长轴的三次方与周期的平方比不相同D.若知其环月圆轨道距月球表面的高度、运行周期和引力常量,则可算出月球的密度3、如图所示,AB是斜坡,BC是水平面,从斜坡顶端A以不同初速度v向左水平抛出同一小球,当初速度为v0时,小球恰好落到坡底B。
不计空气阻力,则下列图象能正确表示小球落地(不再弹起)前瞬间重力瞬时功率P随v变化关系的是A .B .C .D .4、如图所示,由Oa Ob Oc 、、三个铝制薄板互成120°角均匀分开的Ⅰ、Ⅱ、Ⅲ三个匀强磁场区域,其磁感应强度分别用123B B B 、、表示.现有带电粒子自a 点垂直Oa 板沿逆时针方向射入磁场中,带电粒子完成一周运动,在三个磁场区域中的运动时间之比为1∶2∶3,轨迹恰好是一个以O 为圆心的圆,则其在b 、c 处穿越铝板所损失的动能之比为A .1∶1B .5∶3C .3∶2D .27∶5细绳沿竖直方向。
兰州高中物理试题及答案一、选择题(本题共10小题,每小题3分,共30分。
每小题只有一个正确答案,请将正确答案的字母填入题后的括号内。
)1. 以下哪项是牛顿第一定律的内容?A. 物体在没有外力作用时,将保持静止或匀速直线运动状态B. 物体在受到外力作用时,将保持静止或匀速直线运动状态C. 物体在受到外力作用时,将改变运动状态D. 物体在没有外力作用时,将改变运动状态2. 光在真空中的传播速度是多少?A. 300,000 km/sB. 299,792,458 m/sC. 3×10^8 m/sD. 3×10^5 m/s3. 根据欧姆定律,电阻R与电压U和电流I之间的关系是?A. R = U/IB. R = I/UC. R = U + ID. R = U - I4. 以下哪种力不是基本力?A. 重力B. 电磁力C. 强相互作用力D. 摩擦力5. 物体的惯性与其质量的关系是?A. 质量越大,惯性越小B. 质量越大,惯性越大C. 质量越小,惯性越大D. 惯性与质量无关6. 以下哪种现象不是应用了电磁感应原理?A. 发电机B. 电动机C. 变压器D. 电磁铁7. 热力学第一定律描述的是?A. 能量守恒B. 熵增原理C. 热力学第二定律D. 热力学第三定律8. 以下哪种波不是横波?A. 光波B. 声波C. 无线电波D. 地震波9. 根据量子力学,电子在原子中的运动状态是由什么决定的?A. 电子的质量B. 电子的电荷C. 电子的轨道D. 电子的自旋10. 以下哪种现象不是相对论效应?A. 时间膨胀B. 长度收缩C. 质量增加D. 重力波二、填空题(本题共5小题,每小题4分,共20分。
请将答案填在题后的横线上。
)1. 根据牛顿第二定律,物体的加速度与作用力成正比,与物体的质量成______。
2. 光的三原色是红、绿、______。
3. 电磁波谱中,波长最长的是______波。
4. 热力学第二定律表明,不可能从单一热源吸收热量并将其全部转化为______而不产生其他效果。
兰州大学2010年物理类高等数学(上)清考试题
课程名称: 任课教师:
学院: 专业: 年级:
姓名: 校园卡号:
一﹑基本计算题(每小题5分,共40分)
1. 求极限 )1ln()1(4
312lim
21
4+-++-∞→x e x x x
x . 2. 求极限 x
x x x 4)1
2(
lim ++∞
→. 3. 已知 a x f =')(0 ,计算 t
t x f t x f t 5)
2()2(lim
000
--+→.
4. 设方程 2sin 1y x y +-= 决定的隐函数为)(x y y = ,求 dx
dy
.
5.
计算定积分0.5
-⎰.
6.求解方程'y y x
=. 7. 求级数1
1
(1)n n n ∞
=+∑
的和. 8. 计算广义积分20x x e dx +∞
-⎰.
二、计算题 (每题10分,共40分) 1.求函数32()21f x x x x =+++的极值点和拐点.
2.设()f x 是[0,1]上的连续函数,1
0()()1f x x f x dx =+⎰, 试求 )(x f . 3. 2
60
sin lim x t x
x te tdt x e
→⎰
4.求方程 x y y y =+'-''23的通解. 三、证明题 (每题10分,共20分)
1. 设a>0,函数()x f 在[],a b 上连续,在(),a b 内可导,证明存在(),a b ξ∈
使得
()()()()22'2ln ln f b f a f f b a
ξξξ-=-
2.
过抛物线y =P (3,1)作切线,该切线与上述抛物线及x 轴围成一平面图形,
求此平面图形绕x 轴旋转一周所成旋转体体积..
--------------------------------------------------------装-------------------------------订---------------------------------线--------------------------------------------------------
试题答案 一. 1. 23 2. 4e 3. 45a 4. 1c o s 2y - 5.. 3
π
6. y cx =
7. 1
8. 2
二.
1. 极小值点:13-
极大值点:1- 拐点:2
3
- 2. ()21f x x =+ 3.
2
2
220
656005560sin sin 2lim
=lim
621
lim 63
x t x x x x x x x te tdt
x e x x x e x e x e x x x →→→⋅+==
+⎰
4.
4
3
21,43,21,,,2,1221*221+++===
+=+==x e C e C y b a b ax Y e C e C Y r x x x x 三.
1.解: 令 ()()2
x f
x =F ,()ln x x =G ,
则 ()()()'
'
2x f x f
x =F ,()'1
x x
=
G , 所以根据Cauchy 中值定理,存在(),a b ξ∈,
使得
()()
()()22'2ln ln f b f a f f b a
ξξξ-=-
2. 解:切线方程为 ()1
12
y x =-,与x 轴的交点为A (1,0).
抛物线与x 轴的交点为B (2,0) 故所求旋转体的体积为()()2
3
31
211226V x dx x dx πππ⎡⎤
=---=⎢⎥⎣⎦
⎰
⎰。