运筹学基础-对偶线性规划(1)
- 格式:ppt
- 大小:1.23 MB
- 文档页数:36
第二章线性规划的对偶理论2.1对偶线性规划问题的提出任一线性规划问题都存在另一与之伴随的线性规划问题,他们从不同角度对一个实际问题提出并描述,组成一对互为对偶的线性规划问题。
一、对偶线性规划问题某工厂计划安排生产Ⅰ、Ⅱ两种产品,已知每种单位产品的利润、生产单位产品所需的设备台时及A、B两种原材料的消耗、现有原材料和设备台时的定额如下表所示:【例1】ⅠⅡ设备128台时原材料A4016Kg原材料B0412Kg每单位产品利润(万元)23⏹原问题的策略:⏹问应如何安排生产才能使工厂获利最大?⏹现在的策略:⏹假设不生产Ⅰ、Ⅱ产品,而是计划将现有资源出租或出售,从而获得利润,这时需要考虑如何定价才合理?2132x x f +=max ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+0x ,x 12x 4 16 x 48x 2x .t .s 212121设x 1、x 2分别表示计划生产产品Ⅰ、Ⅱ的单位数量,由题意原问题的模型为:工厂获得最大利润符合资源限制原材料A 原材料B0412Kg每单位产品利润(万元)23原问题的模型改变策略后,需要考虑如何给资源定价的问题!设y 1、y 2 、y 3分别表示出租单位设备台时的租金和出售单位原材料A 、B 的利润.y 1+4y 2≥2,2y 1+4y 3≥3则:❑工厂出租设备、原材料的租金要大于生产的利润才合算。
321y 12y 16y 8g min ++=工厂把所有设备台时和资源都出租和出让,用户支付为:❑要寻找使租用者支付的租金最少的策略。
原材料A 原材料B0412Kg每单位产品利润(万元)23⏹新问题的模型工厂改变策略以后的数学模型为:321y 12y 16y 8g min ++=⎪⎩⎪⎨⎧=≥≥+≥+3,2,1,034y 2y 24y y ..3121i y t s i工厂获得相应利润用户所付租金最少32112168min y y y g ++=⎪⎩⎪⎨⎧=≥≥+≥+3,2,1,034y 2y 24y y ..3121i y t s i2132x x f +=max ⎪⎪⎩⎪⎪⎨⎧≥≤≤≤+0,12416482..212121x x x x x x t s 联系在于,它们都是关于工厂生产经营的模型,并且使用相同的数据;原模型和对偶模型既有联系又有区别区别在于,它们所反映的实质内容是完全不同的:前者是站在工厂经营者的立场上追求工厂的销售收入最大,而后者则是站在谈判对手的立场上寻求应付工厂租金最少的策略。
运筹学对偶问题的直观描述
运筹学中的对偶问题是指原始线性规划问题和对应的对偶线性规划问题之间的关系。
直观描述对偶问题可以从几个方面来理解。
首先,可以从成本和效益的角度来理解。
原始线性规划问题通常涉及最小化成本或者最大化利润,而对偶线性规划问题则涉及最大化成本或者最小化利润。
这种对偶关系可以被解释为在资源有限的情况下,通过最小化成本来实现最大化效益,或者通过最大化效益来实现最小化成本。
其次,可以从约束条件的角度来理解。
原始线性规划问题的约束条件对应着对偶线性规划问题的变量,而对偶线性规划问题的约束条件对应着原始线性规划问题的变量。
这种对偶关系可以被理解为在资源分配和利用的过程中,对约束条件和变量之间的转换和对应关系。
另外,可以从几何图形的角度来理解。
原始线性规划问题的最优解和对偶线性规划问题的最优解之间存在着一种对偶关系,即原始问题的最优解和对偶问题的最优解分别对应着凸集的两个相对的极值点,它们之间的距离可以被理解为对偶问题的最优值和原始问
题的最优值之间的关系。
总的来说,对偶问题在运筹学中具有重要的意义,它不仅可以帮助我们理解原始问题和对偶问题之间的关系,还可以为我们寻找最优解提供了一种新的视角和方法。
通过对偶问题的研究和理解,我们可以更好地解决实际生产和管理中的复杂问题。
第二章线性规划的对偶理论1.对偶问题的提出2.原问题与对偶问题3.对偶问题的基本性质4.影子价格5对偶单纯形法5.对偶单纯形法6.灵敏度分析7.参数线性规划1§1.对偶问题的提出原问题设某企业有m种资源用于生产n种不同产品,各种(i=1m)又生产单位第j种资源的拥有量分别为b i (i=1,…,m),又生产单位第j种产品(j=1,…,n)消费第i种资源a ij 单位,产值为c j 元。
用x 代表第j种产品的生产数量,为使该企业产值最大,可将上述问题建立线性规划模型j 将上述问题建立线性规划模型:max z =c 1x 1+c 2x 2+…+c n x n a 11x 1+a 12x 2+…+a 1n x n ≤b 1a 21x 1+a 22x 2+…+a 2n x n ≤b 2………………2a m 1x 1+a m 2x 2+…+a m n x n ≤b m x 1,x 2,…,x n ≥0§1.对偶问题的提出现在从另一角度提出问题:假定有另一企业欲将上述企业拥有的资源收买过来,至少应付出多少代价,才能使前一拥有的资源收买过来,至少应付出多少代价,才能使前企业愿意放弃生产活动,出让资源。
设用y i 代表收买该企业一单位i种资源时付给的代价,则总收买价为:ωb ω = b1y 1+…+b m y m 前一企业生产一单位第j种产品时,消耗各种资源的数量分别为a 1j ,a 2j ,…,a mj ,如果出让这些资源,价值应不低于单位j种产品的价值c j 元,因此:a 1 j y 1+ a 2 j y 2 + …+ a m j y m ≥ c j 3j j j j (j =1,…,n)§1.对偶问题的提出对后一企业来说,希望用最小代价把前一企业所有资源收过来此有有资源收买过来,因此有:min ω=b1y 1+b 2y 2+…+b m y m a11y 1+a 21y 2+…+a m 1y m ≥c 1a 12y 1+a 22y 2+…+a m 2y m ≥c 2………………a 1n y 1+a 2n y 2+…+a mn y m ≥c ny 1,y 2,…,y m ≥04§1对偶问题的提出§1.对偶问题的提出max z = c 1x 1+ c 2x 2+ … + c n x na x +a x ++a xb a 1 1x 1+ a 1 2x 2 + … + a 1 n x n ≤b 1a 2 1x 1+ a 2 2x 2 + … + a 2 n x n ≤b 2………………a m 1x 1+ a m 2x 2 + … + a m n x n ≤b mmin ω = b 1y 1+b 2y 2+…+b m y mx 1 ,x 2 ,… ,x n ≥0a 1 1y 1+ a 21 y 2 + … + a m 1y m ≥c 1a 1 2y 1+ a 22y 2 + … + a m 2y m ≥c 2………………a 1n y + a 2n y 2+ … + a y ≥c 51 n 12 n 2 mn m ny 1,y 2,… ,y m ≥0§2.原问题与对偶问题后一个线性规划问题是前一个问题从不同角度作的阐述如前者称为线性规划问的话的阐述。