第一章 运筹学线性规划
- 格式:ppt
- 大小:1.22 MB
- 文档页数:143
运筹学:应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
第一章、线性规划的图解法1.基本概念线性规划:是一种解决在线性约束条件下追求最大或最小的线性目标函数的方法。
线性规划的三要素:变量或决策变量、目标函数、约束条件。
目标函数:是变量的线性函数。
约束条件:变量的线性等式或不等式。
可行解:满足所有约束条件的解称为该线性规划的可行解。
可行域:可行解的集合称为可行域。
最优解:使得目标函数值最大的可行解称为该线性规划的最优解。
唯一最优解、无穷最优解、无界解(可行域无界)或无可行解(可行域为空域)。
凸集:要求集合中任意两点的连线段落在这个集合中。
等值线:目标函数z,对于z的某一取值所得的直线上的每一点都具有相同的目标函数值,故称之为等值线。
松弛变量:对于“≤”约束条件,可增加一些代表没使用的资源或能力的变量,称之为松弛变量。
剩余变量:对于“≥”约束条件,可增加一些代表最低限约束的超过量的变量,称之为剩余变量。
2.线性规划的标准形式约束条件为等式(=)约束条件的常数项非负(b j≥0)决策变量非负(x j≥0)3.灵敏度分析:是在建立数学模型和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响。
4.目标函数中的系数c i的灵敏度分析目标函数的斜率在形成最优解顶点的两条直线的斜率之间变化时,最优解不变。
5.约束条件中常数项b i的灵敏度分析对偶价格:约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量。
当某约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格为零。
第二章、线性规划问题在工商管理中的应用1.人力资源分配问题(P41)设x i为第i班次开始上班的人数。
2.生产计划问题(P44)3.套材下料问题(P48)下料方案表(P48)设x i为按各下料方式下料的原材料数量。
4.配料问题(P49)设x ij为第i种产品需要第j种原料的量。
第1章 线性规划第一节 线性规划问题及数学模型一、引例例1:生产计划问题工厂可生产A 、B 两种产品。
每生产一吨A 产品需用煤9吨,耗电4千瓦,用工时3个;每生产一吨B 产品需用煤4吨,耗电5千瓦,用工时10个。
每生产一吨A 产品工厂可获得利润700元,一吨B 产品可获利润1200元。
工厂的煤、电力和工人均为有限,分别为煤:360吨,电:200千瓦时,工时:300个。
在这种情况下,问:为获得最大利润,工厂应分别生产A 、B 两种产品各多少吨?该问题中的数据可归纳为下表:产品 A B 资源限制 煤 9 4 360 电 4 5 200 工时 3 10 300 利润 700 1200 下面列出该问题的数学模型。
首先设变量,x 1为产品A 的生产量,x 2为产品B 的生产量。
可列出问题中煤、电、工时三种资源的消耗和限制情况: 煤: 3604921≤+x x电:2005421≤+x x工时: 30010321≤+x x再列出获得最大利润这一目标:211200700max x x z +=最后列出变量的有效取值范围:0,21≥x x上面这些表达式用数学形式反映出了问题中的各种因素,即称为该问题的数学模型,整理如下:, 300103 20054 36049 1200700max 2121212121≥≤+≤+≤++=x x x x x x x x x x z该数学模型即是一个线性规划模型。
二、问题的特征引例中的问题可表示为一个线性规划模型,该问题也就相应地称为是一个线性规划问题。
下面结合该例题明确线性规划问题所具有的几个特征:(1) 目标性。
问题中存在一个趋向性的目标,要求某个指标尽可能大或者尽可能小。
如要求利润尽可能大。
(2) 约束性。
问题中存在一定的限制条件,如煤、电、工时的消耗量不能超过一定的限量。
(3) 矛盾性。
是指不论如何调整解决问题的方案,都会对问题的目标同时产生有利和不利两方面的影响。
或者说,对模型中所设定的每一个变量,不管是增大还是减小变量的取值,都会从不同的方面导致目标值的增大和减小。
第一章、 线性规划和单纯形法1.1 线性规划的概念一、线性规划问题的导出1.(引例) 配比问题——用浓度为45%和92%的硫酸配置100t 浓度为80%的硫酸。
取45%和92%的硫酸分别为x1和x2t,则有: 求解二元一次方程组得解。
目的相同,但有5种不同浓度的硫酸可选(30%,45%,73%,85%,92%)会出现什么情况?设取这5种硫酸分别为 x1、x2、x3、x4、x5 t, 则有: ⎩⎨⎧⨯=++++=++++1008.092.085.073.045.03.01005432154321x x x x x x x x x x 请问有多少种配比方案?为什么?哪一种方案最好?假设5种硫酸价格分别为:400,700,1400,1900,2500元/t ,则有:2.生产计划问题如何制定生产计划,使三种产品总利润最大?考虑问题:⎩⎨⎧⨯=+=+1008.092.045.01002121x x x x ⎪⎩⎪⎨⎧=≥⨯=++++=++++++++=5,,2,1,01008.092.085.073.045.03.0100..250019001400700400543215432154321 j x x x x x x x x x x x t s x x x x x MinZ j(1)何为生产计划?(2)总利润如何描述?(3)还要考虑什么因素?(4)有什么需要注意的地方(技巧)?(5)最终得到的数学模型是什么?二、线性规划的定义和数学描述(模型)1.定义:对于求取一组变量xj (j =1,2,......,n),使之既满足线性约束条件,又使具有线性表达式的目标函数取得极大值或极小值的一类最优化问题称为线性规划问题,简称线性规划。
2.配比问题和生产计划问题的线性规划模型的特点:用一组未知变量表示要求的方案,这组未知变量称为决策变量;存在一定的限制条件,且为线性表达式;有一个目标要求(最大化,当然也可以是最小化),目标表示为未知变量的线性表达式,称之为目标函数; 对决策变量有非负要求。