蒸汽锅炉PID温度控制系统设计
- 格式:ppt
- 大小:1.05 MB
- 文档页数:19
基于西门子S7-300的40t蒸汽锅炉控制系统摘要随着社会经济的飞速发展,城市建设规模的不断扩大,以及人们生活水平的不断提高,对城市生活供暖的用户数量和供暖质量提出了越来越高的要求。
目前,我国大部分地区冬季生活供暖仍然以锅炉供暖为主,锅炉房自动控制系统配置相对落后,风机和水泵等电机的控制主要依赖值班人员的手工操作,控制过程繁琐,耗电耗煤,而且手动控制无法对锅炉供水温度和管网压力变化及时做出适当的反应。
本文设计了一套基于PLC和变频调速技术的供暖锅炉控制系统。
该控制系统由可编程控制器、变频器、风机和水泵电机、传感器、以及控制柜等构成。
系统主要包括四个控制回路:锅炉汽包水位控制回路、水温控制回路、炉排控制回路和炉膛负压控制回路。
系统通过变频器控制电动机的启动、运行和调速。
系统以西门子S7-300可编程控制器为下位机。
下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,水位、温度和压力信号的PID控制等功能,并接收上位机的控制指令以完成风机启/停控制、参数设定、循环泵控制和补水泵控制。
本文设计的变频控制系统实现了锅炉燃烧过程的自动控制,有效地降低了能耗,提高了生产管理水平。
系统安装维护方便,运行稳定、可靠。
系统整体设计合理,功能齐全,实现了预期的目标。
关键词:锅炉控制,变频调速技术,PLC,PIDFor Siemens S7-300 40 Tons Steam Boiler Control SystemAbstractWith the rapid development of social economy and the increasingly improved living standard of people, the scale of city construction is unprecedentedly expanded, arousing urgent requirement for high-quality living heating system to meet the sustainingly increased need. In the majority of our country, however, most current living heating systems for winter use arerelatively still out-of-date boiler heating system, in which, the core part, namely, the control of operating fans in stokehold and water pumps is still manual and therefore hard to realize real-time adjustment according to changing pressure in the pipes and temperature of water supplied. Consequently, this fussy manual control inevitably leads to unnecessary huge waste of coal and electrical power.In this paper, a heating boiler control system based on PLC and variable frequency speed-regulating technology is designed. The control system is made up of PLC, transducers, electromotor units of pumps and fans, sensors and control tanks, etc. In the program control system is consisted by four loops that is the water level control loop, the water temperature control loop, the boilers belt control loop and the hearth pressure control loop. It can control electromotor starting, running and timing by means of transducers. The hardware system adopts a Siemens S7-300 PLC as the lower control system (LCS). The control software of LCS designed with STEP7(Siemens PLC software toolbox) is mainly used to deal with functions such as processing analog signals , PID control of water level、temperature and pressure, and accepting control instructions from the upper supervisory system(USS) to realizestarting/stopping of electromotors, setting of analog parameters and control of water pumps. The frequency control system proposed not only can realize automatic control of boiler burning process efficiently, having greatly reduced energy consumption, and in the meantime effectively improved the level of boiler control management, but also has many advantages such as stable and reliable running, flexible operation, etc. The whole design is feasible and reliable and reach the expected objective..Key words:boiler control, variable frequency speed-regulating technology, PLC,PID目录摘要 (I)ABSTRACT .............................................................................................................................. II 1 绪论 ........................................................................................................................................ 1 引设备的基本结构 .............................................................................................. 1 蒸汽锅炉本体 ........................................................................................................... 1 辅助设备 ................................................................................................................... 2 蒸汽锅炉的工作过程 ...................................................................................................... 3 燃料燃烧与通风系统 ............................................................................................... 3 汽-水系统 ................................................................................................................. 3 控制要求 .......................................................................................................................... 3 控制汽包水位 ........................................................................................................... 4 控制蒸汽温度 ........................................................................................................... 4 控制炉膛压力 ........................................................................................................... 4 控制燃烧系统 ........................................................................................................... 5 控制鼓风引风量 ....................................................................................................... 5 2 PLC硬件设计 ......................................................................................................................... 6 PLC的发展历程 .............................................................................................................. 6 PLC特点 .......................................................................................................................... 6 S7-300简介 ...................................................................................................................... 8 系统组成 .......................................................................................................................... 8 3 软件设计 .............................................................................................................................. 10 S7-300编程软件简介 .................................................................................................... 10 控制系统软件设计 ........................................................................................................ 11 控制算法的选择 ..................................................................................................... 11 STEP7中的PID功能块 ......................................................................................... 12 主程序设计 (12)子程序设计 ............................................................................................................. 13 结论 ...................................................................................................................................... 19 致谢 ...................................................................................................................................... 20 参考A (S7-300-PLC MODULE SPECIFICATION) .................................................... 22 附录B (S7-300模板规范手册) ...................................................................................... 30 附录C (蒸汽锅炉控制系统原程序) . (36)1 绪论引言供暖锅炉控制系统属于过程控制系统,其控制的目标是控制锅炉燃烧过程中的水位、炉膛负压等参数,使锅炉燃烧工况良好,保证设备运行安全,满足用户的供热要求。
毕业设计(论文)题目:基于PLC的加热炉温控制系统设计学院:电子信息学院专业班级:06自动化(2)指导教师:康涛职称:讲师学生姓名:雷颖倩学号:40604010225摘要在现代工业生产过程中,一些温度等作为被控参数的过程,往往其容量滞后较大,控制要求又较高,若采用单回路控制系统,其控制质量无法满足生产要求。
本文针对锅炉的结构特点以及船机控制能够有效的改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等,提出了锅炉温度串级控制的解决方案。
本系统以电加热锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为福被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度控制系统;完成了系统的硬件设计和PLC程序设计。
经过调试,PLC程序实现了数据采集、A/D转换、PID运算和D/A转换等,达到了设计要求。
关键词:锅炉,温度,串级控制,PLC,PIDABSTRACTIn modern industrial production,some course's capacity often lags behind relatively largely,control also expect relatively much regarding temperature,etc,if adopt the controlsystem of single circuit,its quality of control is unable to meet the production requirement.Because the bunches of control can improve the dynamic characteristic of the course effectively,improve operating frequency,reducing the time constant of the equivalent course and accelerating the response speed,etc.This text have proposed one bunch of solutions of control of boiler temperature.This system leaves target of accusing of on boiler with electricity,export water temperature.With boiler for accuse of parameter mainly,regard the burner hearth water temperature as one pair of parameters of accusing of,regard voltage of resistance wire of the heating furnace as the control parameter,regard PLC as the controller, form one bunch of control systems of boiler temperature;Finish the designing of systematic hardware and the program with PLC.Through debugging,PLC procedure has realized the data gathering,A/D changing,PID operation and D/A changing,etc,has reached the designing requirement.KEYWORDS:boiler,temperature,bunches of control,plc,pid前言随着我国国民经济的快速发展,锅炉的使用范围越来越广泛。
基于PLC的锅炉燃烧控制系统设计1 绪论1.1锅炉燃烧控制项目的背景改革开放以来,我国经济社会快速发展,生产力水平不断提高,在生产中,锅炉起着十分重要的作用,尤其是在火力发电中发挥重要作用的工业锅炉,是提供能源动力的主要设备之一。
锅炉产生的蒸汽可以作为蒸馏,干燥,反应,加热等各过程的热源,另外也可以作为动力源驱动动力设备。
工业过程中对于锅炉燃烧控制系统的要求是非常高的,要求锅炉燃烧控制系统必须满足控制精度高,响应速度快[1]。
作为一个非常复杂的设备,锅炉同时具有了数十个包括了扰动、测量、控制在内的参数,参数之间有着复杂的关系,并且相互关联[2]。
而锅炉燃烧过程中的效率问题、安全问题一直是大众关注的重要方面。
1.2锅炉燃烧控制的发展历史对于锅炉燃烧的控制,已经经历了四个阶段[3~5](1)手动控制阶段因为20世纪60年代以前,电力电子技术和自动化技术还没有得到完全发展,技术尚不成熟,因此,这个时期工业人员的自动化意识不强,锅炉燃烧的控制方式一般多采用纯手动的方法。
这种控制方法,要求进行控制的操作工人依靠他们的经验决定送风量,引风量,给煤量的多少,然后利用手动的操作工具等操控锅炉,该方法控制的程度完全取决于操作工人的经验。
因此,要求操作工人必须具有非常丰富的经验,这样无疑大大提高了操作工人的劳动强度,由十人的主观意识,所以事故率非常大,同时,也不能保证锅炉高效稳定的运行。
(2)仪器继电器控制阶段随着科技的不断进步,自动化技术以及电力电子技术快速提高,国内外以继电器为基础的自动化仪表工业锅炉控制系统也得到发展,并且广泛应用于实际生产过程。
在上个世纪60年代前期,我国锅炉的控制系统开始得到迅速发展;到了60年代的中后期,我国引进了国外全自动的燃油锅炉的控制系统;到了上个世纪的70年代末,我国逐渐自主研发了一些工业锅炉的自动化仪器,同时,在工业锅炉的控制系统方面也在逐步推广应用自动化技术。
在仪表继电器控制阶段,锅炉的热效率得到了提高,并且大幅度的降低了锅炉的事故率。
基于PLC控制的电锅炉控制系统电锅炉控制系统是现代工业制造中常见的一种设备,它通过PLC(可编程逻辑控制器)来实现对电锅炉的精确控制。
PLC控制技术具有灵活、方便、可靠等优点,能够实现复杂的逻辑控制和自动化控制功能。
本文将从PLC控制系统的原理、功能及特点入手,结合电锅炉的工作原理,详细介绍基于PLC控制的电锅炉控制系统的设计与实现。
1. PLC控制系统原理PLC控制系统是一种专门设计用于工业自动化控制的设备,其核心是一个可编程的CPU,通过不同的输入/输出模块和通信模块,与外部传感器、执行器等设备连接,实现对生产过程的控制。
PLC控制系统通过预先编写好的程序,根据不同的输入信号执行相应的逻辑控制,以达到自动化控制的目的。
2. 电锅炉工作原理电锅炉是一种利用电能进行加热的设备,通常由加热元件、控制系统、水泵等部件组成。
在工作过程中,电能被加热元件转换为热能,将水加热至设定的温度,为生产或生活提供热水或蒸汽。
电锅炉的控制系统通常包括温度传感器、压力传感器、水位传感器等,用于监测和控制锅炉的工作状态。
3. 基于PLC控制的电锅炉控制系统设计基于PLC控制的电锅炉控制系统主要由PLC控制器、传感器、执行器、人机界面等部件组成。
在设计过程中,首先需要根据电锅炉的工作原理和需求确定系统的功能要求和控制策略,然后编写PLC程序实现相应的逻辑控制。
通过合理的硬件布局和接线连接,将各部件连接到PLC控制器上,实现信号的采集和输出。
4. 控制系统功能与特点基于PLC控制的电锅炉控制系统具有如下功能与特点:1)灵活性:PLC控制系统可根据需要进行程序修改,实现不同的控制策略;2)可靠性:PLC控制器具有较高的稳定性和可靠性,可以长时间稳定运行;3)精确性:通过PLC控制系统可以实现对电锅炉的精确控制,提高生产效率和产品质量;4)扩展性:PLC控制系统可根据需要扩展输入/输出模块和功能模块,实现系统的功能扩展。
5. 控制系统优化与应用为了进一步优化电锅炉控制系统的性能,可以采用PID控制算法、模糊控制算法等先进的控制技术,提高系统的响应速度和稳定性。
锅炉蒸汽温度自动控制系统摘要:电厂实现热力过程自动化,能使机组安全、可靠、经济地运行。
锅炉是火力发电厂最重要的生产设备,过热蒸汽温度是锅炉运行质量的重要指标之一,过热蒸汽温度控制是锅炉控制系统中的重要环节。
在实现过程控制中,由于电站锅炉系统的被控对象具有大延迟,大滞后、非线性、时变、多变量耦合的复杂特性,无法建立准确的数学模型,对这类系统采用常规PID控制难以获得令人满意的控制效果。
在这种情况下,先进的现代控制理论和控制方法已经越来越多地应用在锅炉汽温控制系统。
本文以电厂锅炉汽温系统为研究对象,对其进行了计算机控制系统的改造。
考虑到锅炉汽温系统的被控对象特点,本文分别采用了常规PID控制器和模糊-PID控制器,对两种控制系统对比研究,同时进一步分析了一般模糊-PID控制器的控制特点,在此基础之上给出了一种改进算法,通过在线调整参数,实现模糊-自调整比例常数PID控制。
在此算法中,比例常数随着偏差大小而变化,有效地解决了在小偏差范围内,一般的模糊-PID控制器无法实现的静态无偏差的问题,提高了蒸汽温度控制系统的控制精度。
关键词:锅炉蒸汽温度模糊控制随着我国经济的高速发展,对重要能源“电”的要求快速增长,大容量发电机组的投入运行以及超高压远距离和赢流输电的混和电网的建设,以三峡电网为中心的全国性电力系统的形成,电力系统的不断扩大,对其自动控制技术水平的要求也越来越高。
同时,地方性的自备热电厂亦有长足发展,随着新建及改造工程的进行,其生产过程自动控制与时俱进,小容量机组“麻雀虽小,五脏俱全”,自备热电厂其自身特点:自供电、与主电网的关系疏及相互影响小,供热及采暖季节性等,可以提供更多的应用、尝试新技术、新产品的机会和可能性。
这样做的重要目标是提高和保证电力,热力及牛产过程的安全可靠、经济高效。
为了适应发展并实现上述目标,必须采取最新的技术和控制手段对电力系统的各种运铲状态和设备进行有效的自动控制。
火力发电厂在我国电力工业中占有主要地位,是我国重点能源工业之一。
锅炉过热蒸汽温度控制系统设计一、系统结构设计:测量元件:可选择蒸汽温度传感器,将锅炉内蒸汽的温度信号转换为电信号,反映蒸汽温度的变化,常用的传感器有热电偶和热电阻。
执行元件:通常选择调节阀门作为执行元件,根据来自控制器的控制信号,调节阀门的开度,控制蒸汽流量,进而调节蒸汽温度。
控制器:根据测量元件获取到的蒸汽温度信号,通过内部算法进行计算,得到相应的控制信号,将该信号传输给执行元件,使其根据控制信号,控制阀门的开度,从而实现对蒸汽温度的控制。
二、控制原理设计:控制原理决定了系统的稳定性和控制精度。
通常采用PID控制算法,对温度进行控制。
P(比例)控制:根据蒸汽温度与设定值之间的偏差,以比例的方式控制执行元件,提供调节信号,使得蒸汽温度逐渐接近设定值。
I(积分)控制:通过检测蒸汽温度实际值与设定值之间的积分误差,增加控制量的变化率,使其更快地接近和稳定在设定值附近。
D(微分)控制:通过检测蒸汽温度实际值的变化斜率,预测温度变化的趋势,并作出相应的调整,避免温度波动过大。
三、调节器及阀门选型:为了使温度控制更加准确和稳定,调节器和阀门的选型也很重要。
调节器:根据控制要求,选择具有一定控制精度和稳定性的调节器。
常见的调节器有PID调节器、模糊控制器等。
阀门:选用具有快速响应、调节精度高、可靠性强的阀门。
锅炉过热蒸汽温度控制系统中常见的阀门类型有电动调节阀和气动调节阀。
根据系统的操作要求和工艺流程,选择适合的阀门类型,并确保其具有良好的密封性和耐高温性能。
除了以上设计方面的考虑,还应注意系统的安全性和可靠性。
应配备相应的安全阀和过热保护装置,避免锅炉过热引发危险事故。
同时,锅炉过热蒸汽温度控制系统应进行合理的备份和冗余设计,确保系统在故障或异常情况下仍能维持正常运行。
综上所述,锅炉过热蒸汽温度控制系统的设计需要考虑系统结构、控制原理、调节器及阀门的选型等多个因素,从而实现锅炉蒸汽温度的精确控制,确保系统的安全性和稳定性。
锅炉过热蒸汽温度控制系统课程设计过程控制课程设计说明书——锅炉过热蒸汽温度控制系统院系:化工学院化工机械系班级:10自动化(1)姓名:李正智学号:1 0 2 0 3 0 1 0 1 6日期:2013/12/2-2013/12/15指导老师:王淑钦老师引言蒸汽温度是锅炉安全、高效、经济运行的主要参数,因此对蒸汽温度控制要求严格。
过高的蒸汽温度会造成过热器、蒸汽管道及汽轮机因过大的热应力变形而毁坏;蒸汽温度过低,又会引起热效率降低,影响经济运行。
锅炉控制现场环境恶劣,采用传统的基于模拟技术的控制器、仪器仪表或单片机,不仅结构比较复杂,效率比较低,并且可靠性也不高。
本次课程设计的主要目的是锅炉蒸汽温度控制系统的设计。
蒸汽过热系统包括一级过热器、减温器、二级过热器。
锅炉汽温控制系统主要包括过热蒸汽和再热蒸汽温度的调节。
主蒸汽温度与再热蒸汽温度的稳定对机组的安全经济运行是非常重要的。
过热蒸汽温度控制的任务是维持过热器出口蒸汽温度在允许的范围之内,并保护过热器,使其管壁温度不超过允许的工作温度。
过热蒸汽温度是锅炉汽水系统中的温度最高点,过热蒸汽温度过高或过低,对锅炉运行及蒸汽设备是不利的。
蒸汽温度过高会使过热器管壁金属强度下降,以至烧坏过热器的高温段,严重影响安全。
一般规定过热器的温度与规定值的暂时偏差不超过±10℃,长期偏差不超过±5℃【1】。
如果过热蒸汽温度偏低,则会降低电厂的工作效率,同时使汽轮机后几级的蒸汽湿度增加,引起叶片磨损。
据估计,温度每降低5℃,热经济性将下降约1%;且汽温偏低会使汽轮机尾部蒸汽温度升高,甚至使之带水,严重影响汽轮机的安全运行。
一般规定过热汽温下限不低于其额定值10℃。
通常,高参数电厂都要求保持过热汽温在540℃的范围内。
由于汽温对象的复杂性,给汽温控制带来许多的困难,其主要难点表现在以下三个方面:(1)影响汽温变化的因素很多,例如,蒸汽负荷、减温水量、烟气侧的过剩空气系数和火焰中心位置、燃料成分等都可能引起汽温变化。
西南科技大学专业方向设计报告课程名称:自动化专业方向设计设计名称:基于MCGS的锅炉温度控制系统设计姓名:赵XX学号: 2010XX班级:自动10XX班指导教师:王顺利起止日期: 2013.10.20——2013.11.15 西南科技大学信息工程学院制方向设计任务书学生班级:自动10XX班学生姓名:赵XX 学号:2010XXXX 设计名称:基于MCGS的锅炉温度控制系统设计起止日期:2013.10.20——2013.11.15 指导教师:王顺利方向设计学生日志基于MCGS的锅炉温度控制系统设计摘要:锅炉是工业生产中主要的供热设备。
电力、机械、冶金、化工、民用都需要锅炉提供热量,但是根据行业的不同,对锅炉的大小规模不尽相同。
作为重要的工业设备,在保证其安全和稳定运行的情况下则应考虑其自动生产,提高自动运行能力及工作效率。
本设计基于AE2000B实验设备上模拟现场锅炉温度控制系统,通过西门子S7-200 PLC作为控制器,MCGS 作为上位机,通过通信链接对锅炉温度进行实时监控,同时设计系列联锁,保证系统安全运行。
关键词: 锅炉温度 AE2000B PLC MCGSBased on the MCGS boiler temperature control system design Abstract:The boiler is the main heating equipment in the industrial manufacture.The electric power, the machinery, the metallurgical industry ,the chemical industry and the civil all need the heat the boiler offers. However, according to different industries, The size of the boiler varies from one to another. As an important industrial equipment, if we could ensure its safe and stable operation ,we should consider its automatic production and improve the automatic ability and its working efficiency. This design is based on AE2000B experimental device to simulate the spot boiler temperature control system by using the Siemens S7-200 PLC as the controller and the MCGS as upper machine. Meanwhile, the communication link will supervise the boiler temperature timely and the interlocking series will guarantee the safe operation of the system.Keywords: boiler temperature AE2000B PLC MCGS1 设计目的和意义锅炉生产在国民是工业中占据着重要的地位,早期的锅炉自动化程度很低,监控系统不完善,导致系统故障不断,但是锅炉因为适合各种行业仍然被广泛使用,锅炉的广泛使用使锅炉现代化成为必然。
锅炉DCS系统一、锅炉控制系统工艺概述1 、锅炉控制工艺流程图2 、锅炉控制方案锅炉是一个多输入、多输出、多回路、非线性的相互关联的复杂的控制系统,调节参数与被调节参数之间,存在着许多交叉的影响,调节难度非常大。
我们采用将系统控制分散成一个一个的闭环控制:给煤控制,送风控制,汽包液位控制,炉膛负压控制等。
a 给煤控制锅炉燃烧系统自动调节的基本任务,是使燃料燃烧所产生的热量,适应蒸汽负荷的需要,同时还要保持经济燃烧和锅炉的安全运行。
目前,中小型煤粉炉控制系统效果不佳主要体现在送风和给煤控制上。
送风控制系统应与给煤控制相协调,控制在一定的风煤比,维持燃烧处在最佳经济状态。
其控制原理框图如下:b 送风控制送风调节是通过负荷规则调节器实现“加负荷时,先加风后加煤;减负荷时,先减煤后减风的控制规则。
其控制原理框图如下:c 炉膛负压控制炉膛负压反映了送风量与引风量之间的平衡关系,目标就是要保证锅炉在运行过程中,始终保持在微负压的稳定状态,以保证其安全有效运行。
其控制原理框图如下:d 汽包液位控制锅炉给水自动调节的任务是使给水量跟踪锅炉的蒸发量,并使汽包液位保持在工艺允许的范围内。
液位控制是有以下三种:①单冲量控制,即以水位为唯一调节信号的单参数、单回路控制系统;②双冲量控制,即以蒸汽流量作为补充信号的双参数控制系统;③三冲量控制,即以给水流量、主蒸汽流量作为补充信号的三参数控制系统。
其中三冲量调节系统还可分为三冲量单级调节和三冲量串级调节。
三冲量串级控制系统控制原理框图如下:三冲量串级控制系统控制原理框图e 过热蒸汽出口温度控制保证过热蒸汽出口蒸汽温度在允许的范围内,保护过热器,使过热器管壁温度不超过允许的温度范围。
其控制原理框图如下:过热蒸汽出口温度控制原理框图3、锅炉的自动保护系统?锅炉的保护系统是锅炉控制系统的重要组成部分。
其保护内容取决于锅炉设备本身的结构、容量、技术特性和运行方式。
一般设有汽压保护、汽包水位保护、锅炉灭火保护、连锁保护和紧急停炉保护等。