发动机神经网络自适应PID转速控制
- 格式:pdf
- 大小:633.05 KB
- 文档页数:4
基于BP 神经网络的自适应PID 控制器设计一.基于BP 神经网络的自适应PID 控制器的原理PID 控制是最早发展起来的、 应用领域至今仍然广泛的控制策略之一,它是基于对象数学模型的方法,尤其适用于可建立精确数学模型的确定性控制系统。
其优点是算法简单、 鲁棒性好和可靠性高。
但是,由于实际工业生产过程往往具有非线性,许多非线性系统难以确定精确的数学模型,常规的PID 控制器就不能达到理想的控制效果,由于受到参数整定方法烦杂的困扰,参数往往整定不良、 性能欠佳。
神经网络所具有的任意非线性表达能力,可以通过对系统性能的学习来实现具有最佳组合的PID 控制。
基于BP 网络的自适应PID 控制器,通过BP 神经网络调整自身权系数,对PID 控制参数进行调节,以达到某种性能指标的最优。
二.基于BP 神经网络的自适应PID 控制器的控制器结构基于BP 神经网络的PID 控制系统结构图如图1所示:此控制器由两部分组成:(1)经典的PID 控制器,直接对被控对象进行闭环控制,并且三个参数p K ,i K ,d K 为在线调整方式;图1 BP 网络结构p ki kd ki(2)神经网路,根据系统的运行状态,调节PID 控制器的参数,以期达到某种性能指标的最优化,是输出层神经元的输出状态对应于PID 控制器的一个可调参数p K ,i K ,d K 。
通过神经网络的自学习、加权系数调整,使神经网络输出对应于某种最优控制率下的PID 控制器参数。
基于BP 神经网络的自适应PID 控制器的控制器如图2所示:该控制器的算法如下:(1)确定BP 神经网络的结构,即确定输入节点数M 和隐含层节点数Q ,并给各层加权系数的初值)0(1ij w 和)0(2ij w ,选定学习速率η和惯性系数α,此时k=1; (2)采样得到rin(k)和yout(k),计算该时刻误差error(k)=rin(k)-yout(k);(3)计算神经网络NN 各层神经元的输入、输出,NN 输出层的输出即为PID 控制器的三个可调参数p K ,i K ,d K ;(4)根据经典增量数字PID 的控制算法(见下式)计算PID 控制器的输出u(k); ))2()1(2)(()())1()(()1()(-+--++--+-=k error k error k error K k error K k error k error K k u k u d i p (5)进行神经网络学习,在线调整加权系数)(1k w ij 和)(2k w ij 实现PID 控制参数的自适应调整;(6)置k=k+1,返回到(1)。
文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
目录一、设计题目······································································································错误!未定义书签。
二、系统的工作原理 ··························································································错误!未定义书签。
自适应调速系统中的PID控制算法研究近年来,随着科技的不断发展,各种电机设备的应用也越来越广泛,电机的控制系统也得到了很大的提升。
在各种电机设备的控制系统中,PID控制算法是一种应用较为广泛的算法。
而在自适应调速系统中,PID控制算法也占据着非常重要的地位。
本文将从自适应调速系统的特点、PID控制算法的原理和应用、以及PID控制算法在自适应调速系统中的研究方面进行论述。
一、自适应调速系统的特点自适应调速系统是一种非常特殊的电机控制系统,它具有以下几个特点:1.系统的动态性能要求高一般来说,自适应调速系统中的电机设备应用较为广泛,因此系统的动态性能要求非常高。
对于电机设备的控制与调速,系统需要快速、准确地响应,并能够带来稳定的运行效果。
2.系统具有较好的鲁棒性在自适应调速系统中,电机设备的应用场景因工作环境,受电源质量等多种因素的影响可能发生不确定的变化,而这些变化可能对系统带来很大的影响。
因此,自适应调速系统需要具备较好的鲁棒性,能够在各种环境条件下运行并稳定工作。
3.系统需要进行参数自适应、智能化控制自适应调速系统中的电机设备在运行的过程中,经常会面临着电流、电压、转速等参数的变化,在不同的工况下需要进行多种参数的自适应控制。
因此,自适应调速系统需要具备智能化控制,能够自动调节各种参数,实现最佳的运行效果。
二、PID控制算法的原理和应用PID控制算法是一种比较经典的控制算法,PID分别代表比例、积分、微分三个单词。
PID控制算法能够将控制系统的误差与控制输出之间的比例、积分和微分相结合,从而实现对系统的稳定控制。
更为具体的讲,PID控制器可以分为比例、积分、微分三部分:1. 比例部分比例部分是最简单、最容易实现的控制部分,它的主要作用是根据误差得出控制器的输出。
比例部分的输出与误差成比例,即输出值等于误差乘以系数Kp,其中Kp为比例系数。
2. 积分部分积分部分可以消除误差的稳定偏差,将慢速的反馈信号加入到控制器的输出中,从而实现控制系统当前误差和历史误差的累计。
自适应pid控制方法
自适应PID控制方法是一种基于PID控制器的改进控制方法。
它通过对系统参数进行实时监测和调整,自动调整PID控制器的参数,以适应系统参数变化和不确定性的影响。
这种控制方法能够有效提升系统的稳定性和响应速度,降低控制误差和能耗。
自适应PID控制方法主要分为两种类型:基于模型参考自适应PID控制和基于模型自适应PID控制。
前者通过建立系统模型,将模型输出与实际输出进行比较,从而调整PID参数;后者则是利用经验模型或数据模型,直接从实际输出中提取参数并进行调整。
这两种方法各有优缺点,选择合适的方法需要根据具体应用场景来决定。
自适应PID控制方法在工业自动化、机器人控制、航空航天等领域得到了广泛应用。
未来,随着智能化和自动化技术的不断发展,自适应PID控制方法将会有更广泛的应用和更深入的研究。
- 1 -。
基于神经网络的自适应PID控制策略研究近年来,神经网络技术逐渐成为控制领域中的热点研究方向之一。
在控制领域中,PID控制器是最常用的一种控制器,但是,在复杂的非线性系统中,PID控制器可能会失效,因此需要一种更为智能化的自适应控制策略。
本文将着重研究基于神经网络的自适应PID控制策略的原理和应用。
一、神经网络控制简介神经网络控制是一种使用神经网络技术实现控制的控制方法。
神经网络具有自学习和自适应能力,能够适应未知的非线性因素,因此能够有效地提高控制精度。
在神经网络控制中,通常使用BP神经网络进行训练,将网络的输入与输出之间的关系建模,进而得到控制器。
二、PID控制器PID控制器是最常用的一种控制器,它由比例项、积分项和微分项组成。
其中,比例项控制系统的静态误差,积分项控制系统的稳态误差,微分项控制系统的动态响应。
经过调整PID参数,可以实现对系统的稳态和动态性能的优化。
三、传统PID控制器的缺点通过传统PID控制器的参数调整,可以得到较好的控制效果。
但是,在非线性系统控制中,PID控制器的参数调整会变得更加困难,可能会导致系统不稳定或控制精度不高。
这是因为传统PID控制器中的参数是固定的,无法根据系统的变化进行自适应调整。
因此,需要一种更为灵活、智能的自适应控制方式。
四、基于神经网络的自适应PID控制策略与传统PID控制器不同,基于神经网络的自适应PID控制器能够在实时控制过程中不断调整控制器参数,以应对不同的情况。
它能够根据系统的输入和输出实时调整控制器的权值,从而实现对非线性系统的自适应控制。
基于神经网络的自适应PID控制策略的实现方法,一般是将系统的输入和输出作为训练数据,通过训练得到神经网络的权值。
在控制器实时控制过程中,根据系统输出实时调整神经网络的权值,从而实现自适应控制。
五、应用实例基于神经网络的自适应PID控制策略在实际应用中,可以针对不同的场景进行多样化应用。
下面以一个灯光控制系统为例来进行说明。
基于神经网络的电机转速控制方案设计电机转速是控制电机工作的重要参数之一,合理的转速控制方案设计不仅可以保证电机的正常工作,还可以提高电机的效率和使用寿命。
基于神经网络的电机转速控制方案设计是目前研究的热点之一,本文将详细介绍基于神经网络的电机转速控制方案设计方法及其优势。
一、引言电机是一种将电能转化为机械能的装置,广泛应用于各个领域。
在许多应用中,电机的转速需要根据实际需求进行控制,如机械设备的调速、航空器和船舶的控制等。
传统的电机转速控制方法存在调节范围窄、响应速度慢、稳定性不高等问题,因此,基于神经网络的电机转速控制方案成为了一种新的解决方法。
二、基于神经网络的电机转速控制方案设计1. 神经网络的基本原理神经网络是一种模拟生物神经网络的人工智能方法,它通过模拟大脑神经元之间的连接和相互作用来实现学习和自适应能力。
神经网络由输入层、隐藏层和输出层组成,通过训练样本的学习,可以得到网络的权重和偏置,从而实现对输入数据的良好拟合。
2. 电机转速控制方案设计步骤(1)数据采集:收集电机转速与输入变量的数据,如电压、电流、负载等。
需要足够多样的数据以保证训练的准确性和泛化能力。
(2)数据预处理:对采集的数据进行标准化处理,如归一化、去除异常值等,以提高神经网络的训练效果。
(3)网络结构设计:确定神经网络的层数和节点数,可以根据实际需求和数据情况进行调整和优化。
(4)样本划分:将采集的数据集划分为训练集、验证集和测试集,用于神经网络的训练、验证和评估。
(5)网络训练:使用训练集对神经网络进行训练,通过反向传播算法不断调整网络的权重和偏置,以提高网络的性能。
(6)网络验证与调优:使用验证集对已训练好的网络进行验证,并根据验证结果对网络进行调优,如调整学习率、增加正则化等。
(7)网络测试与应用:使用测试集对训练好的网络进行测试,并评估转速控制方案的性能和准确性。
(8)方案优化:根据测试结果对转速控制方案进行优化和改进,以进一步提高控制效果和稳定性。
基于BP神经网络的自适应PID控制器设计自适应PID控制器是一种基于BP神经网络的控制器设计方法,它结合了传统的PID控制器与神经网络的优势,可以适应系统参数变化、非线性和模型误差的情况。
本文将详细介绍基于BP神经网络的自适应PID控制器的设计原理和实现步骤。
1.简介PID控制器是一种经典的控制方法,通过计算误差的比例、积分和微分部分,调节输出控制量来实现对系统的控制。
然而,传统的PID控制器无法处理非线性和参数变化的系统,容易产生较大的误差。
而BP神经网络则具有非线性映射和自适应学习的能力,可以对非线性系统进行建模和控制。
2.BP神经网络的建模BP神经网络是一种前馈神经网络,具有输入层、隐含层和输出层。
输入层接收系统的输入量,输出层输出控制量,隐含层则通过一系列的神经元进行信息传递和处理。
BP神经网络通过训练集的样本进行学习,调整网络的权值和偏置,使得网络的输出与期望输出尽可能一致。
3.PID控制器的设计PID控制器由比例、积分和微分三个部分组成。
比例部分通过调节误差的大小来控制输出,积分部分可以控制持续的误差,微分部分则可以控制误差的变化率,提高系统的响应速度。
PID控制器的参数可以根据系统的特性进行调整。
4.自适应PID控制器的设计a.构建BP神经网络模型,通过训练集对模型进行学习,得到网络的权值和偏置。
b.使用PID控制器的比例、积分和微分部分计算出控制量,并将控制量作为输入量输入到BP神经网络中。
c.根据神经网络的输出,计算系统的输出,将其与期望输出进行比较,得到误差。
d.根据误差的大小,调整PID控制器的参数。
e.重复步骤b-d,直到系统达到期望输出。
5.应用实例自适应PID控制器可以应用于各种系统的控制中,如温度控制、位置控制等。
以温度控制为例,系统输入为温度传感器的读数,输出为控制器输出的控制量。
通过采集训练集数据和期望温度值,利用BP神经网络对系统进行建模和学习,然后根据PID控制器的参数计算出控制量,进而控制温度的变化。
基于深度神经网络的自适应PID控制自适应 PID 控制是现代控制理论中的一种重要方法,它通过不断地对实际控制系统的反馈信息进行分析,来实现对系统参数的自适应优化,从而达到更优的控制效果。
在传统的控制方法中,PID 控制器是最常见的一种控制器,它通过改变比例、积分、微分三个参数来控制系统的输出行为。
虽然 PID 控制的思想简单而直观,但它往往需要通过人工调整控制器参数才能达到最佳的控制效果,这使得传统的PID 控制方法在复杂的工业控制系统中应用受到了很大的限制。
近年来,随着深度学习技术的快速发展,越来越多的控制问题开始通过深度神经网络来解决。
深度神经网络通过多层的非线性映射来实现复杂的数据处理和表达,具有非常强的模型适应力和自适应能力,并且能够从大量的数据中学习到系统的隐含规律,从而提高控制性能。
基于深度神经网络的自适应 PID 控制是一个典型的应用场景。
它通过将深度神经网络嵌入到PID 控制器中,实现对系统参数的自适应学习,从而优化控制效果。
具体实现上,基于深度神经网络的自适应PID 控制可以分为以下两个步骤:首先,通过采集真实系统的数据,训练一个深度神经网络,用来对系统的动态特性进行建模和预测。
其次,在 PID 控制器中将这个深度神经网络作为预估器,根据预测误差来自适应调整 PID 控制器的参数,从而达到更优的控制效果。
在实际应用中,基于深度神经网络的自适应 PID 控制已经得到了广泛的应用。
例如在工业自动化领域,它可以通过对温度、压力等参数的自适应调整来实现对化工过程的控制;在机器人控制中,它可以实现对机械臂的精确控制和路径规划;在无人驾驶汽车中,它可以通过对车速、转向等参数的自适应调整来实现对车辆的自动驾驶。
总之,基于深度神经网络的自适应 PID 控制是现代控制理论中的一种重要方法,它能够实现对复杂工业系统的自适应优化。
随着深度学习技术的发展,我们相信基于深度神经网络的自适应 PID 控制将会在更多的领域得到应用,并取得更加突出的成果。
HUNAN UNIVERSITY2016 年6 月 25 日课程 智能控制理论题目 基于神经网络的自适应PID控制器的设计学生姓名 学生学号 专业班级 学院名称基于神经网络的自适应PID控制器的设计摘要神经网络由于其固有的自学习、自适应、自组织和大规模并行处理能力,已经在控制及其优化领域取得了广泛的应用。
利用神经网络来可以处理控制系统的非线性、不确定性和逼近系统的辨识函数等问题并取得了大量研究成果。
PID控制是最经典的控制算法,其简单、稳定、高效的性能使其在工业控制领域具有绝对的统治地位。
但是面对现代控制系统规模大,复杂度高的情况,单纯使用传统的PID控制已经无法满足要求。
本文结合神经网络与PID两者的优势,提出了一种基于神经网络的自适应PID控制器的设计的方法。
实验证明该方法具有一定的实际应用价值。
近年来,智能控制在工业领域的应用受到了广泛的关注,硬件性能的不断提高与硬件成本的不断降低起到了至关重要的作用。
目前在工业中单纯使用传统的控制方法具有一定的局限性,在面对复杂系统与大规模控制的情况下不能保证在任何时刻都提供准确无误的控制信号,将传统的PID控制方法结合智能控制中的神经网络控制可以克服信息的不完备性和不确定性,更加准确地控制被控对象,从而做出正确的判断和决策。
1.神经网络控制神经网络用于控制系统设计主要是针对系统的非线性、不确定性和复杂性进行的。
资料显示,国内外将神经网络用于控制系统设计的方式和结构还未有一种统一的分类方法。
目前,对神经网络控制系统比较公认地研究方向可以分为监督控制、神经自适应控制、预测控制和逆控制,这时根据控制系统的结构划分的。
本文利用到的就是神经自适应控制。
本文结合神经网络自适应控制与PID控制,提出了一种有效的控制器设计方法,并在在MA TLAB中进行控制系统仿真。
2.控制器原理根据当前产生误差的输入和输出数据,以及误差的变化趋势作为神经网络的输入条件,神经网络将根据当前PID控制器的误差情况以及过去所有进行的PID控制历史数据,共同作为样本数据,重新进行神经网络的参数的训练,得到神经网络内部传递函数的新的表达式,之后PID参数调整将依据新的神经网络进行自动的控制和调整,从而以实现PID控制器具备自适应调节的能力。