材料力学第二章答案 景荣春
- 格式:pdf
- 大小:798.77 KB
- 文档页数:23
材料力学第二章的习题答案材料力学第二章的习题答案材料力学是一门研究物质的力学性质和变形行为的学科,其内容涉及广泛且深奥。
在学习材料力学的过程中,习题是不可或缺的一部分,通过解答习题可以加深对理论知识的理解,提高解决实际问题的能力。
本文将为大家提供材料力学第二章的习题答案,希望能对大家的学习有所帮助。
第一题:一个长为L、截面为A的均匀杆件,其杨氏模量为E,受到拉力F。
求杆件的伸长量。
解答:根据胡克定律,应力与应变成正比。
应力σ等于拉力F除以截面积A,应变ε等于伸长量ΔL除以杆件的原始长度L。
根据胡克定律的表达式σ=Eε,我们可以得到伸长量的计算公式:ΔL = FL / (AE)其中,ΔL为伸长量,F为拉力,L为杆件的原始长度,A为截面积,E为杨氏模量。
第二题:一个长为L、截面为A的均匀杆件,其杨氏模量为E,受到弯矩M。
求杆件的弯曲角度。
解答:根据弯曲理论,弯矩M等于杆件截面上的应力σ乘以截面的转动惯量I。
弯曲角度θ等于弯矩M乘以杆件的长度L除以杨氏模量E乘以截面的转动惯量I。
因此,弯曲角度的计算公式为:θ = ML / (EI)其中,θ为弯曲角度,M为弯矩,L为杆件的长度,E为杨氏模量,I为截面的转动惯量。
第三题:一个长为L、截面为A的均匀杆件,其杨氏模量为E,受到剪力V。
求杆件的剪切变形。
解答:根据剪切变形的定义,剪切变形γ等于剪力V乘以杆件的长度L除以杨氏模量E乘以截面的剪切模量G。
因此,剪切变形的计算公式为:γ = VL / (EG)其中,γ为剪切变形,V为剪力,L为杆件的长度,E为杨氏模量,G为截面的剪切模量。
通过解答以上三个习题,我们可以看到材料力学第二章主要涉及杆件的拉伸、弯曲和剪切变形问题。
通过掌握这些基本的计算公式,我们能够准确地计算杆件在不同受力情况下的变形量。
这对于工程实践中的结构设计和材料选用具有重要的指导意义。
除了以上习题,材料力学第二章还包括其他一些重要的内容,如应力、应变、弹性模量、截面形状对杆件变形的影响等。
材料力学习题第二章答案材料力学习题第二章答案材料力学是工程力学的重要分支,主要研究物质在外力作用下的变形和破坏规律。
在学习材料力学的过程中,习题是不可或缺的一部分。
通过解答习题,可以巩固理论知识,提高问题解决能力。
本文将针对材料力学习题第二章进行解答,并探讨其中的一些重要概念和原理。
第一题:一根长为L,截面积为A的均匀杆件,两端分别受到大小相等、方向相反的拉力F。
求该杆件的伸长量。
解答:根据胡克定律,杆件的伸长量与拉力成正比。
设伸长量为ΔL,则有ΔL = FL/EA,其中E为杨氏模量。
根据题意,两个拉力的大小相等,方向相反,因此合力为零。
根据牛顿第三定律,合力为零时,杆件处于力的平衡状态,即ΔL = 0。
因此,该杆件的伸长量为零。
第二题:一根长为L,截面积为A的均匀杆件,受到大小为F的拉力,使其产生弹性变形。
求该杆件的应变能。
解答:应变能是指物体在外力作用下所储存的能量。
对于弹性杆件,应变能可以通过应力-应变关系来计算。
设杆件的应变为ε,则有ε = σ/E,其中σ为杆件的应力。
应变能的计算公式为U = (1/2)σεV,其中V为杆件的体积。
将应力-应变关系代入,可得U = (1/2)σ^2V/E。
根据题意,杆件受到大小为F的拉力,应力为F/A,体积为AL,因此应变能为U = (1/2)(F^2/A^2)(AL)/E。
第三题:一根长为L,截面积为A的均匀杆件,受到大小为F的拉力,使其产生塑性变形。
求该杆件的塑性应变。
解答:塑性变形是指杆件在超过弹性极限后,无法恢复原状的变形。
对于塑性材料,应力-应变关系是非线性的。
设杆件的塑性应变为εp,则有εp = σp/E,其中σp为杆件的塑性应力。
根据题意,杆件受到大小为F的拉力,应力为F/A。
塑性应力通常大于弹性极限,因此可以将塑性应力近似为弹性极限σy,其中σy 为屈服强度。
由此可得塑性应变为εp = σy/E。
通过以上习题的解答,我们可以看到材料力学中一些重要的概念和原理的应用。
第二章轴向拉(压)变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:(1)求指定截面上的轴力FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。
(b)解:(1)求指定截面上的轴力FN 211=-02222=+-=-F F N (2)作轴力图FF F F N =+-=-2233轴力图如图所示。
(c)解:(1)求指定截面上的轴力FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=-轴力图如图所示。
(d)解:(1)求指定截面上的轴力FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图中间段的轴力方程为:x aF F x N ⋅-=)(]0,(a x ∈轴力图如图所示。
[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积2400mm A =,试求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 504001020231111-=⨯-==--σMPamm N A N 254001010232222-=⨯-==--σMPa mmN A N 254001010233333=⨯==--σ[习题2-3]试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。
解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 10020010202311111-=⨯-==--σMPa mmN A N 3.3330010102322222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-4]图示一混合屋架结构的计算简图。
第 3 章扭转思考题3-1何谓扭矩?扭矩的正负号如何规定的?如何计算扭矩?答轴在外力偶矩作用下,由截面法求出的横截面上分布内力向截面形心简化的合力(力偶矩)称为扭矩。
对扭矩T的正负规定为:若按右手螺旋法则把T表示为矢量,当矢量方向与截面的外法线n的方向一致时,T为正;反之为负。
用截面法计算扭矩,注意截面位置应偏离外力偶矩作用面。
3-2薄壁圆筒、圆轴扭转切应力公式分别是如何建立的?假设是什么?公式的应用条件是什么?答等厚薄壁圆筒在两端垂直于轴线的平面内作用大小相等而转向相反的外力偶M e所做试验结果现象表明,当薄壁圆筒扭转时,其横截面和包含轴线的纵向截面上都没有正应力,横截面上只有切应力⎜,因为筒壁的厚度 ™很小,可以假设沿薄壁圆筒筒壁厚度切应力不变。
又因在同一圆周上各点情况完全相同,应力也就相同,从而建立薄壁圆筒扭转切应力计算公式;在圆轴两端施加一对大小相等、方向相反的外力偶。
从实验中观察到的现象,假设轴变形后,横截面仍保持平面,其形状、大小与横截面间的距离均不改变,而且半径仍为直线(圆轴扭转平面假设),连同胡克定律和静力平衡条件推出圆轴扭转切应力计算公式。
公式应用条件为线弹性材料、小变形、等截面(锥度不大的变截面可近似用)。
3-3试述纯剪切和薄壁圆筒扭转变形之间的差异及相互关系。
答单元体 4 个互相垂直的面上只作用切应力的状态称为纯剪切;薄壁圆筒扭转变形时(忽略厚度影响)筒壁各点的应力状态为纯剪切。
3-4试述剪切胡克定律与拉伸(压缩)胡克定律之间的异同点及3 个弹性常量E, G, ⎧之间关系。
答剪切胡克定律⎜ = G©(反映角度的变化)与拉伸(压缩)胡克定律 ⎛ = E∑(反映长度的变化)皆为应力与应变成正比关系。
3 个弹性常量E, G, ⎧之间关系为G =E2(1 + ⎧ )。
3-5圆轴扭转时如何确定危险截面、危险点及强度条件?答等截面圆轴扭转时的危险截面为扭矩最大的横截面,变截面圆轴扭转时的危险截面在其扭矩与扭转截面系数比值最大的横截面;其危险点在该横截面的外边缘。
第二章拉伸、压缩与剪切第二章答案2.1求图示各杆指定截面的轴力,并作轴力图。
(a)4 40kN 350kN 225kN 1 20kNzP*1解:F R=5kNF R F N4 4 40kN 3 r - 1 1 FN3F N4=F R=5 kN FN3=F R+40=45 kNF N22 25kN 20kN•IT 121 20kNF NI]—^1F N2=-25+20=-5 kN FN i=20kN 45kN5kN20kN6kN10kN1 10kN2 6kN6kN1 — 1截面:F N 1=10 kN2—2截面:F N 2=10-10=010kN10kNF N 23—3截面:F N 33—I_|_6kN3F N 3=6 kN10kN1F N 1I © I2.2图示一面积为100mm 200mm的矩形截面杆,受拉力 F = 20kN的作用,试求:(1)m-m 上的应力;(2)最大正应力max 和最大剪应力 max 的大小及其作用1MPa2.3图示一正方形截面的阶梯形混凝土柱。
设重力加速度2.04 103kg/m 3,F = 100kN ,许用应力和b 。
解: pF 20 10330°0.1 0.21MPacos 230.75 MPa4严旦 0.433M Pa2 2max0.5 MPa-的斜截面 6面的方位角。
maxg = 9.8m/s 2,混凝土的密度为2MPa 。
试根据强度条件选择截面宽度a解:2.04 1039.8 22. 4N i4a2, 1 F NJ10 4 N/m 2 P4a2―3P100F N2在图示杆系中,BC试求夹角的值。
4a2103[],AC和100 103106 4 2 1040.228m4b2104 4 0.228 104 4 b2304.16V2 106 4 2 1040.398m 398mmBC两杆的材料相同,且抗拉和抗压许用应力相等,同为杆保持水平,长度为I ,AC杆的长度可随角的大小而变。
材料力学简明教程(景荣春)课后答案第一章:引言1.什么是材料力学?材料力学是研究材料的变形和断裂行为的一门学科。
它综合应用物理力学、力学、材料科学等知识,通过实验研究和理论分析,探索材料的力学性能和力学行为规律。
2.材料力学的研究对象有哪些?材料力学的研究对象主要包括各种材料的力学性能、力学变形行为和断裂行为。
常见的材料包括金属材料、非金属材料、复合材料等。
3.材料力学的研究内容有哪些?材料力学的研究内容主要包括材料的弹性力学性能、塑性力学性能、断裂力学性能等。
弹性力学性能研究材料在受力下的弹性变形规律;塑性力学性能研究材料在受力下的塑性变形规律;断裂力学性能研究材料在受力下的断裂行为规律。
第二章:基本理论1.什么是材料的弹性变形?材料的弹性变形是指在外力作用下,材料发生的可回复的形变。
在弹性变形过程中,材料受到外力的作用,内部产生应力,从而导致材料的形状和尺寸发生变化,当外力消失时,材料会恢复到原来的形状和尺寸。
2.什么是材料的塑性变形?材料的塑性变形是指在外力作用下,材料发生的不可回复的形变。
在塑性变形过程中,材料受到外力的作用,超过了其弹性变形能力,产生了永久性的形变。
塑性变形可以分为单轴压缩变形、剪切变形等形式。
3.材料的强度和硬度有何区别?材料的强度是指材料在受力下抵抗破坏的能力;而硬度是指材料抵抗外力穿透的能力。
强度是材料在受外力作用下的变形和破坏行为,与材料的断裂韧性有关;而硬度是材料表面的抵抗外力穿透的能力,与材料的高温软化、氧化等性质有关。
第三章:力学行为1.什么是材料的断裂行为?材料的断裂行为是指材料在受力作用下失去强度和稳定性,发生破坏的过程。
断裂行为通过断裂韧性、断裂模式等参数来描述。
常见的断裂模式有拉伸断裂、剪切断裂等。
2.什么是材料的疲劳行为?材料的疲劳行为是指在循环或交变载荷作用下,材料由于疲劳裂纹的形成逐渐失去强度,产生破坏的过程。
疲劳行为是材料的一个重要的力学性能指标,它与材料的疲劳极限、疲劳寿命等参数有关。