,得
l1
与
,
15 2
),
当直线 z x 2 y 过点 A 时 z 最小,但 A 不是整点,
而在可行域内,整点(4,8)和(6,7)都使 z 最小,
且 zmin 4 2 8 6 2 7 20 ,所以应分别截第一、
第二种钢板 4 张、8 张,或 6 张、7 张,能满足要求.
0.18x 0.08x
0.09y 0.28y
72 56
得
M(350,100)
即生产圆桌 350 张,生产衣柜 100 个,能使利润最大。
例4 要将两种大小不同的钢板截成A、B、C三种钢板, 每张钢板可同时截得三种规格的小钢板的块数如下表:每 张钢板的面积为:第一种1m2,第二种2 m2,今需要A、B、 C三种规格的成品各12、15、27块,问各截这两种钢板多 少张,可得所需的三种规格成品,且使所用钢板面积最小
分别求下列目x标函1数的最大值,最小值 : (1)z=6x+10y, (2)z=2x-y, (3)z=2x-y,(x,y均为整数)
(4)z=-2x+y,
(5)z= x2 y2
(3)同上,作出直线 L0:6x+10y=0,再将直线 L0 平移,
当 L0 的平行线过 C 点时,可使 z=2x-y 达到最小值 12 5
当 L0 的平行线过 A 点时,可使 z=2x-y 达到最大值 8
但由于 22 不是整数,而最优解(x,y)中,x,y 必须都是整数 5
所以可行域内的点 C(1, 22 )不是最优解 5
当 L0 的平行线经过可行域内的整点(1,4)时,可使 z=2x-y 达到最小值 所以 zmin=-2
3、线性规划的实际应用 例3、某木器厂有生产圆桌和衣柜两种木料,第一种有 72米3,第二种有56米3,假设生产每种产品都需要用两种 木料,生产一张圆桌和一个衣柜分别所需木料如下表所 示,每生产一张书桌可获利润6元,生产一个衣柜可获利 润10元,木器厂在现有木料条件下,圆桌和衣柜各生产多 少,才使获得的利润最多?