2016-2017学年江苏省常州市八年级(下)期末数学试卷(1)
- 格式:doc
- 大小:488.00 KB
- 文档页数:27
江苏省2016-2017学年度八年级下学期期末模拟数学试题(1) 本试卷由选择题、填空题和解答题三部分组成,考试范围为2013版苏科版教材八年级数学上册全部内容,试卷共28题,满分100分,考试时间120分钟.注意事项:1.答题前,考生务必将学校、班级、姓名、考试号等信息填写在答题卡相应的位置上;2.考生答题必须答在答题卡相应的位置上,答在试卷和草稿纸上一律无效。
一、选择题(本大题共10小题,每小题2分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案填在答题卡相应的位置上)1.计算:3π-的结果是( )A .3π-;B .3π+;C .3π-;D .(3)π--。
2.设n 为正整数,且n <<n +1,则n 的值为( ) A . 5 B . 6 C . 7 D . 83.一次函数y=x+3的图象不经过...的象限是( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4.下列交通标志图案是轴对称图形的是( )5.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )A . 0.845×104亿元B . 8.45×103亿元C . 8.45×104亿元D . 84.5×102亿元6.已知点M (1,a )和点N (2,b )是一次函数y =﹣2x +1图象上的两点,则a 与b 的大小关系是( )7.如图,边长分别为1和2的两个等边三角形,开始它们在左边重合,大三角形固定不动,然后把小三角形自左向右平移直至移出大三角形外停止.设小三角形移动的距离为x ,两个三角形重叠面积为y ,则y 关于x 的函数图象是( )B C .8.将两个斜边长相等的三角形纸片如图①放置,其中∠ACB =∠CED =90°,∠A =45°,∠D =30°.把△DCE 绕点C 顺时针旋转15°得到△D 1CE 1,如图②,连接D 1B ,则∠E 1D 1B 的度数为( )A .10°B . 20°C . 7.5°D . 15°9.已知点M (1,a )和点N (2,b )是一次函数y =﹣2x +1图象上的两点,则a 与b 的大小关系是( )10.如图,坐标平面上,△ABC 与△DEF 全等,其中A 、B 、C 的对应顶点分别为D 、E 、F ,且AB =BC =5.若A 点的坐标为(﹣3,1),B 、C 两点在方程式y =﹣3的图形上,D 、E 两点在y 轴上,则F 点到y 轴的距离为何?( )A .2B .3C .4D .5二、填空题(本大题共8小题,每小题2分,共16分,将答案填在答题卡相应的位置上) 11.4的平方根是 .12.函数y = 1x 中的自变量x 的取值范围是 . 13.取1.696238的近似值时,若要求精确到0.01,则为 .14.已知等腰三角形的一个角等于20°,则它的一个底角的度数为 .15.若实数x满足等式(x-3)3=-27,则x=.16.已知等边三角形的面积为,则它的周长为.(结果保留根号)17.已知:m、n为两个连续的整数,且m<<n,则m+n=.18.一次函数483y x=-+与X轴交于点A、与Y轴交于点B,若X轴有一点C,则能使△ABC成为等腰三角形的点C一共有_______ 个.(填写确切的数字)三、解答题(本大题共64分.解答时应写出必要的计算或说明过程,并把解答过程填写在答题卡相应的位置上)19.(本题满分5分)计算:()﹣1﹣(﹣2)0﹣|﹣3|+.20.(本题满分5分)过点(﹣1,7)的一条直线与x轴,y轴分别相交于点A,B,且与直线平行.求在线段AB上,横、纵坐标都是整数的点的坐标。
江苏省2016-2017学年八年级下学期期末测试数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1.每年4月23日是“世界读书日”,为了了解某校八年级500名学生对“世界读书日”的知晓情况,从中随机抽取了50名学生进行调查,在这次调查中,样本是 A .500名学生 B .所抽取的50名学生对“世界读书日”的知晓情况 C .50名学生 D .每一名学生对“世界读书日”的知晓情况 2.下列安全标志图中,是中心对称图形的是ABC D3.下列计算正确的是 A=B=C.3=D .632=⋅4.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球是白球的概率是A .12 B .13 C .14D .235.分式31x -有意义,则x 的取值范围是A .x=1B .x≠1C .x=-1D .x≠-1 6.若反比例函数的图象过点(2,1),则这个函数的图象一定过点 A.(2,-1) B.(1,-2) C.(-2,1)D.(-2,-1)7.如图,平行四边形ABCD 中,下列说法一定正确的是 A .AC =BD B .AC ⊥BD C .AB =CDD .AB =BC8.如图,在矩形ABCD 中,点E 、F 分别在边AB ,BC 上,且AE =31AB .将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q .对于下列结论:①EF =2BE ,②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是 A .①② B .②③ C .①③ D .①④二、填空题(本大题共有10小题,每小题2分,共20分.不需写出解答过程,请将答案直接写在答题卡相应位置上) 9,则x 的取值范围是 ▲ .10.若菱形两条对角线的长分别为6和8,则这个菱形的面积为 ▲ .第8题图ABC DEFQP (B ) ACBD第7题图图3第17题图第18题图11.若关于x 的分式方程311=---xm x x 有增根,则这个增根是 ▲ . 12.已知y 是x 的反比例函数,当x > 0时,y 随x 的增大而减小.请写出一个..满足以上条件的函数表达式 ▲ .13.计算=-+)23)(23( ▲ . 14.已知114a b -=,则2227a ab ba b ab---+的值等于 ▲ . 15.已知一只纸箱中装有除颜色外完全相同的红色、黄色、蓝色乒乓球共100个.从纸箱中任意摸出一球,摸到红色球、黄色球的概率分别是0.2、0.3.则纸箱中蓝色球有 ▲ 个. 16.如图,矩形ABCD 中,4=AB ,6=BC ,P 是CD 边上的中点,E 是BC 边上的一动点,M ,N分别是AE 、PE 的中点,则随着点E 的运动,线段MN 长的取值或取值范围为 ▲ .17.直线kx y =)0(>k 与双曲线xy 2=交于),(11y x A 、),(22y x B 两点,则122174y x y x -的值是 ▲ . 18.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+4,则图3中线段AB 的长为 ▲ .三、解答题(本大题共有9小题,共76分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 19.(本题满分5分)计算:|3|)21(2282-+-⨯- 20.(本题满分5分)解方程:01113=--+x x 21.(本题满分6分) 化简并求值:aa a a a +-÷--22421,其中23-=a22.(本题满分6分)网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题: (1)求条形统计图中a 的值;A BC(2)求扇形统计图中18﹣23岁部分所占的百分比;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数. 23.(本题满分8分)已知,如图,CE 是ABC ∆的角平分线,点D 、F 分别在AC 、BC 上,且DE ∥BC ,DF ∥AB .求证:CD BF =24.(本题满分10分)甲、乙两台机器加工相同的零件,甲机器加工160个零件所用的时间与乙机器加工120个零件所用的时间相等.已知甲、乙两台机器每小时共加工35个零件,求甲、乙两台机器每小时各加工多少个零件?25.(本题满分12分)如图,一次函数b ax y +=的图象与反比例函数y = – 3x的图像交于),3(n B 两点,与x 轴交于D 点,且C 、D 两点关于y 轴对称.(1)求A 、B 两点的坐标以及一次函数的函数关系式; (2)求ABC ∆的面积.(3)在 x 轴上是否存在点P ,使得PB PA -求出点P 的坐标,若不存在,请说明理由.26.(本题满分12分)(1)如图1,E 、F 是正方形ABCD 的边AB 及DC 延长线上的点,则BG 与BC 的数量关系是 ▲ .(2)如图2,D 、E 是等腰ABC ∆的边AB 及AC 延长线上的点,且CE BD =,连接DE 交BC 于点F ,BC DG ⊥交BC 于点G ,试判断GF 与BC 的数量关系,并说明理由;(3)如图3,已知矩形ABCD 的一条边4=AD ,将矩形ABCD 沿过A 的直线折叠,使得顶点B 落在CD 边上的P 点处。
2016-2017学年江苏省常州市八年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)剪纸艺术是中华文化的瑰宝,下列剪纸图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.2.(2分)下列运算中,错误的是()A.=﹣ B.=﹣1C.=﹣1 D.=a3.(2分)下列事件中必然事件的个数有()①当x时非负实数时,≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月.A.0个 B.1个 C.2个 D.3个4.(2分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形5.(2分)若A(a,b)、B(a﹣1,c)是函数y=﹣图象上的两点,且a<0,则b与c的大小关系为()A.b<c B.b=c C.b>c D.无法判断6.(2分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO、BO的中点.若AC+BD=24cm,EF的长为3cm,则△OAB的周长是()A.16cm B.18cm C.20cm D.22cm7.(2分)如图,在平面直角坐标系中,正方形ABCD的顶点A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y轴上有一点P(0,2),作点P关于点A 的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此规律操作下去,则点P2017的坐标为()A.(2,0) B.(0,2) C.(0,﹣2)D.(﹣2,0)8.(2分)已知x=,y=,则x2+xy+y2的值为()A.2 B.4 C.5 D.7二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)使二次根式有意义的x的取值范围是.10.(2分)当x=时,分式的值为零.11.(2分)为了解中学生获取资讯的主要渠道,设置“A:手机,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,则该调查的方式是.(填普查或抽样调查)12.(2分)在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是.13.(2分)若是整数,则正整数n的最小值是.14.(2分)已知反比例函数y=﹣,下列结论:①图象必经过点(﹣1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>﹣2.其中正确的有.(填序号)15.(2分)如图,将△ABC绕顶点C逆时针旋转40°,顶点A恰好转到AB边上点E的位置,则∠DBC=.16.(2分)如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数y=(x>0)的图象上.若点B的坐标为(﹣2,﹣2),则k=.三、解答题(本大题共9小题,共68分,第17~19题每题8分,第20、21题每题6分,第22题8分,第23~24题每题7分,第25题10分,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)17.(8分)计算:(1)﹣|﹣3|+;(2)+(2+)•(2﹣).18.(8分)(1)计算:﹣;(2)先化简,再求值:(+)÷,其中x=2.19.(8分)解方程:(1)=;(2)﹣=8.20.(6分)为了解全市九年级学生某次数学模拟考试情况,现从全市30000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:分数段频数频率x<60200.1060≤x<70280.1470≤x<80540.2780≤x<90a0.2090≤x<100240.12100≤x<11018b110≤x<120160.08请根据以上图表提供的信息,解答下列问题:(1)表格中的a=,b=;(2)请补全频数分布直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市30000名九年级学生中本次数学模拟考试成绩为优秀的学生约有多少名?21.(6分)小琳、晓明两人在100m的跑道上匀速跑步训练,他们同时从起点出发,跑向终点.(1)设小琳速度为v(m/s),写出小琳跑完全程(100m)所用的时间t(s)与速度v(m/s)之间的函数关系式;(2)已知晓明的速度是小琳速度的1.25倍,两人跑完全程(100m),小琳要比晓明多用4s,用分式方程求小琳、晓明两人匀速跑步的速度?22.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE ∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,AC=2,求四边形AODE的周长.23.(7分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,6),B (3,n)两点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出不等式kx+b﹣>0的解集;(3)若点M在x轴上、点N在y轴上,且以M、N、A、B为顶点的四边形是平行四边形,请直接写出点M、N的坐标.24.(7分)请仔细阅读下面材料,然后解决问题:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如:,;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:,.我们知道,假分数可以化为带分数,例如:==2+=2,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如:==1+.(1)将分式化为带分式;(2)当x取哪些整数值时,分式的值也是整数?(3)当x的值变化时,分式的最大值为.25.(10分)如图,在平面直角坐标系中,四边形OABC为矩形,点A(0,8),C(6,0).动点P从点B出发,以每秒1个单位长的速度沿射线BC方向匀速运动,设运动时间为t秒.(1)当t=s时,以OB、OP为邻边的平行四边形是菱形;(2)当点P在OB的垂直平分线上时,求t的值;(3)将△OBP沿直线OP翻折,使点B的对应点D恰好落在x轴上,求t的值.2016-2017学年江苏省常州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)剪纸艺术是中华文化的瑰宝,下列剪纸图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意,故此选项错误;B、不是轴对称图形,也不是中心对称图形,符合题意,故此选项正确;C、是轴对称图形,也是中心对称图形,不合题意,故此选项错误;D、是轴对称图形,不是中心对称图形,不合题意,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(2分)下列运算中,错误的是()A.=﹣ B.=﹣1C.=﹣1 D.=a【分析】根据分式的基本性质以及二次根式的性质计算即可求解.【解答】解:A、=﹣,正确,故本选项不符合题意;B、=﹣1,正确,故本选项不符合题意;C、=﹣1,正确,故本选项不符合题意;D、=|a|,错误,故本选项符合题意;故选:D.【点评】本题考查了二次根式的性质与化简,掌握二次根式的性质=|a|是解题的关键.也考查了分式的基本性质.3.(2分)下列事件中必然事件的个数有()①当x时非负实数时,≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月.A.0个 B.1个 C.2个 D.3个【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:①当x时非负实数时,≥0是必然事件;②打开数学课本时刚好翻到第12页是随机事件;③13个人中至少有2人的生日是同一个月是必然事件,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(2分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.5.(2分)若A(a,b)、B(a﹣1,c)是函数y=﹣图象上的两点,且a<0,则b与c的大小关系为()A.b<c B.b=c C.b>c D.无法判断【分析】根据反比例函数的性质:k<0时,在图象的每一支上,y随x的增大而增大进行分析即可.【解答】解:∵a<0,∴a﹣1<0,a>a﹣1,∵k=﹣1<0,∴在图象的每一支上,y随x的增大而增大,∵A(a,b)、B(a﹣1,c)是函数y=﹣图象上的两点,∴b>c,故选:C.【点评】此题主要考查了反比例函数图象的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.6.(2分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO、BO的中点.若AC+BD=24cm,EF的长为3cm,则△OAB的周长是()A.16cm B.18cm C.20cm D.22cm【分析】根据平行四边形的性质可知OA=AC,OB=BD,求出OB+OA=12cm,由三角形中位线定理求出AB的长,即可得出△OAB的周长.【解答】解:∵▱ABCD的对角线AC,BD相交于点O,∴OA=AC,OB=BD∵AC+BD=24cm,∴OB+0A=12cm,∵点E,F分别是线段AO,BO的中点,∴AB=2EF=6cm,∴△OAB的周长=OA+OB+AB=12+6=18(cm);故选:B.【点评】本题主要考查了三角形中位线定理以及平行四边形的性质;熟练掌握平行四边形的性质,求出AB的长是解决问题的关键.7.(2分)如图,在平面直角坐标系中,正方形ABCD的顶点A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y轴上有一点P(0,2),作点P关于点A 的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此规律操作下去,则点P2017的坐标为()A.(2,0) B.(0,2) C.(0,﹣2)D.(﹣2,0)【分析】首先求出点P1,P2,P3,P4的坐标,从而发现点的坐标以4为周期,作循环往复的周期变化,即可解决问题.【解答】解:∵点P坐标为(0,2),点A坐标为(1,1),∴点P关于点A的对称点P1的坐标为(2,0),点P1关于点B(1,﹣1)的对称点P2的坐标(0,﹣2),点P2关于点C(﹣1,﹣1)的对称点P3的坐标为(﹣2,0),点P3关于点D(﹣1,1)的对称点P4的坐标为(0,2),即点P4与点P重合了;∵2017=4×504+1,∴点P2017的坐标与点P1的坐标相同,∴点P2017的坐标为(2,0),故选:A.【点评】此题主要考查了点的坐标,解题的关键是首先探索出个别点的坐标的变化规律,然后从特殊到一般去发现一般规律,进而利用规律去解决问题.8.(2分)已知x=,y=,则x2+xy+y2的值为()A.2 B.4 C.5 D.7【分析】先把x、y的值代入原式,再根据二次根式的性质把原式进行化简即可.【解答】解:原式=(x+y)2﹣xy=(+)2﹣×=()2﹣=5﹣1=4.故选:B.【点评】本题考查的是二次根式的化简求值,熟知二次根式混合运算的法则是解答此题的关键.二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)使二次根式有意义的x的取值范围是x≤1.【分析】根据被开方数为非负数解答即可.【解答】解:由题意得:1﹣x≥0,解得:x≤1.故答案为:x≤1.【点评】本题考查二次根式有意义的条件,难度不大,注意掌握二次根式的被开方数为非负数这个知识点.10.(2分)当x=﹣3时,分式的值为零.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:要使分式由分子x2﹣9=0解得:x=±3.而x=﹣3时,分母x﹣3=﹣6≠0.x=3时分母x﹣3=0,分式没有意义.所以x的值为﹣3.故答案为:﹣3.【点评】本题考查了分式的值为零的条件,分式有意义的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.11.(2分)为了解中学生获取资讯的主要渠道,设置“A:手机,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,则该调查的方式是抽样调查.(填普查或抽样调查)【分析】运用抽样调查的定义即可得出答案.【解答】解:先随机抽取50名中学生进行该问卷调查,则该调查的方式是抽样调查,故答案为:抽样调查.【点评】此题主要考查了抽样调查的定义,正确把握定义是解题关键.12.(2分)在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是10.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,n=10.故估计n大约有10个.故答案为:10.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.13.(2分)若是整数,则正整数n的最小值是5.【分析】将45写成平方数乘以非平方数的形式,然后确定出n的最小值即可.【解答】解:=,∵是整数,∴正整数n的最小值是5.故答案为:5.【点评】本题考查了实数,主要利用了算术平方根的定义,难点在于分解因数.14.(2分)已知反比例函数y=﹣,下列结论:①图象必经过点(﹣1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>﹣2.其中正确的有①③④.(填序号)【分析】根据反比例函数的性质,可得答案.【解答】解:①当x=﹣1时,y=2,即图象必经过点(﹣1,2);②k=﹣2<0,每一象限内,y随x的增大而增大;③k=﹣2<0,图象在第二、四象限内;④k=﹣2<0,每一象限内,y随x的增大而增大,若x>1,则0>y>﹣2,故答案为:①③④.【点评】本题考查了反比例函数的性质,熟记反比例函数的性质是解题关键.15.(2分)如图,将△ABC绕顶点C逆时针旋转40°,顶点A恰好转到AB边上点E的位置,则∠DBC=70°.【分析】根据旋转的性质,即可得到CB=CD,∠BCD=40°,再根据三角形内角和定理进行计算,即可得到∠DBC的度数.【解答】解:由旋转可得,CB=CD,∠BCD=40°,∴等腰三角形BCD中,∠DBC=(180°﹣∠BCD)=(180°﹣40°)=70°,故答案为:70°.【点评】本题主要考查了旋转的性质、等腰三角形的性质、三角形内角和定理的综合运用,熟练掌握旋转的性质是解决问题的关键.解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.16.(2分)如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数y=(x>0)的图象上.若点B的坐标为(﹣2,﹣2),则k=4.【分析】根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形GOFD =S 四边形HBEO ,根据反比例函数比例系数的几何意义即可求出k=4即可.【解答】解:根据题意得:四边形ABCD 、AHOG 、HBEO 、OECF 、GOFD 为矩形, ∵AO 为四边形AHOG 的对角线,OC 为四边形OECF 的对角线,∴S △AGO =S △AOH ,S △OCF =S △OCE ,S △CAD =S △ABC ,∴S △CAD ﹣S △AOG ﹣S △OCF =S △ABC ﹣S △AOH ﹣S △OCE ,∴S 四边形GOFD =S 四边形HBEO =2×2=4,∵点D 在反比例函数y=(x >0)的图象上,∴k=S 四边形GOFD =4,故答案为:4.【点评】本题考查了反比例函数k 的几何意义、矩形的性质,熟练掌握矩形的性质,证出S 四边形GOFD =S 四边形HBEO 是解决问题的关键.三、解答题(本大题共9小题,共68分,第17~19题每题8分,第20、21题每题6分,第22题8分,第23~24题每题7分,第25题10分,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)17.(8分)计算:(1)﹣|﹣3|+;(2)+(2+)•(2﹣).【分析】(1)先利用二次根式的性质化简,然后去绝对值后合并即可;(2)先利用二次根式的除法法则和平方差公式运算,然后合并即可.【解答】解:(1)原式=2+﹣3+3=3;(2)原式=﹣1+4﹣2=+1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)(1)计算:﹣;(2)先化简,再求值:(+)÷,其中x=2.【分析】(1)根据分式的运算法则即可求出答案.(2)先化简分式,然后将x的值代入即可求出答案.【解答】解:(1)原式====(2)当x=2时,∴原式=(+)•=•==2【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(8分)解方程:(1)=;(2)﹣=8.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3x+3=x+2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:x﹣8+1=8x﹣56,解得:x=7,经检验x=7是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(6分)为了解全市九年级学生某次数学模拟考试情况,现从全市30000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:分数段频数频率x<60200.1060≤x<70280.1470≤x<80540.2780≤x<90a0.2090≤x<100240.12100≤x<11018b110≤x<120160.08请根据以上图表提供的信息,解答下列问题:(1)表格中的a=40,b=0.09;(2)请补全频数分布直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市30000名九年级学生中本次数学模拟考试成绩为优秀的学生约有多少名?【分析】(1)直接利用=频率,进而得出答案;(2)直接利用(1)中所求,补全条形统计图即可;(3)直接利用样本估计总体进而得出答案.【解答】解:(1)由表格中数据可得,样本总人数为:20÷0.10=200(人),则a=200×0.2=40(人),b==0.09,故答案为:40,0.09;(2)如图所示:(3)由题意可得:(0.12+0.09+0.08)×30000=0.29×30000=8700(名),答:该市30000名九年级学生中本次数学模拟考试成绩为优秀的学生约有8700名.【点评】此题主要考查了频数分布直方图以及利用样本估计总体,正确求出样本总人数是解题关键.21.(6分)小琳、晓明两人在100m的跑道上匀速跑步训练,他们同时从起点出发,跑向终点.(1)设小琳速度为v(m/s),写出小琳跑完全程(100m)所用的时间t(s)与速度v(m/s)之间的函数关系式;(2)已知晓明的速度是小琳速度的1.25倍,两人跑完全程(100m),小琳要比晓明多用4s,用分式方程求小琳、晓明两人匀速跑步的速度?【分析】(1)利用路程、时间、速度之间的关系写出即可;(2)利用常量、变量的定义直接写出即可;(3)设出两人的速度,利用路程差8列出方程求解.【解答】解:(1)由题意t=.(2)设小琳速度为xm/s,则晓明的速度为1.25xm/s.由题意:﹣=4,解得x=5,经检验:x=5是分式方程的解,1.25x=,答:小琳、晓明两人匀速跑步的速度分别为5m/s,m/s.【点评】本题考查了反比例函数的应用及分式方程的应用,解题的关键是了解三个量之间的关系,学会构建分式方程解决问题.22.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE ∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,AC=2,求四边形AODE的周长.【分析】(1)根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形;(2)由菱形的性质和勾股定理求出OB,得出OD,由矩形的性质即可得出答案.【解答】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四边形AODE是矩形;(2)解:∵四边形ABCD为菱形,∴AO=AC=1,OD=OB,∵∠AOB=90°,∴OB==,∴OD=,∵四边形AODE是矩形,∴DE=OA=1,AE=OD=,∴四边形AODE的周长=2+2.【点评】本题考查了菱形的性质、矩形的判定与性质、勾股定理、平行四边形的判定;熟练掌握矩形的判定与性质和菱形的性质是解决问题的关键.23.(7分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,6),B (3,n)两点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出不等式kx+b﹣>0的解集;(3)若点M在x轴上、点N在y轴上,且以M、N、A、B为顶点的四边形是平行四边形,请直接写出点M、N的坐标.【分析】(1)由A点坐标可求得m的值,可求得反比例函数解析式,则可求得B点坐标,由A、B两点坐标,利用待定系数法可求得直线AB的解析式;(2)结合函数图象可知不等式的解集即为一次函数图象在反比例函数图象上方时对应的x的取值范围,结合A、B坐标可求得答案;(3)当AB为平行四边形的边时,①当M在x轴正半轴,N在y轴正半轴时,过A作AC∥y轴,过B作BC∥x轴,可证明△ABC≌△NMO,则可求得OM和ON,②当M在x轴负半轴,N在y轴负半轴时,同理可求得OM和ON的长,则可求得M、N的坐标;当AB为对角线时,可求得M、N、A、B四点共线,不合题意.【解答】解:(1)反比例函数y=的图象过A(1,6),∴m=1×6=6,∴反比例函数解析为y=,把x=3代入可得n=2,∴B(3,2),设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,∴一次函数解析式为y=﹣2x+8;(2)不等式kx+b﹣>0可化为不等式kx+b>,即直线在反比例函数图象上方时所对应的自变量x的取值范围,∵A(1,6),B(3,2),∴不等式kx+b﹣>0的解集为1<x<3或x<0;(3)当AB为平行四边形的边时,①当M在x轴正半轴,N在y轴正半轴时,如图1,过A作AC∥y轴,过B作BC∥x轴,∵A(1,6),B(3,2),∴BC=3﹣1=2,AC=6﹣2=4,∵MN∥AB,且MN=AB,∴∠ONM=∠CAB,在△NOM和△ACB中∴△NOM≌△ACB(AAS),∴OM=BC=2,ON=AC=4,∴M(2,0),N(0,4);②当M在x轴的负半轴、N在y轴的负半轴时,同理可求得M(﹣2,0),N(0,﹣4);当AB为对角线时,设M(x,0),N(0,y),∵A(1,6),B(3,2),∴平行四边形的对称中心为(2,4),∴x+0=4,y+0=8,解得x=4,y=8,此时M(4,0),N(0,8),在y=﹣2x+8中,令y=0可得x=4,令x=0可得y=8,∴A、B、M、N四点共线,不合题意,舍去;综上可知以M、N、A、B为顶点的四边形是平行四边形时,M(﹣2,0),N(0,﹣4)或(2,0),N(0,4).【点评】本题为反比例函数的综合应用,涉及待定系数法、函数图象的交点、全等三角形的判定和性质、平行四边形的性质、方程思想及数形结合思想等知识.在(1)中注意待定系数法的应用,在(2)中注意数形结合,在(3)中确定出M、N的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(7分)请仔细阅读下面材料,然后解决问题:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如:,;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:,.我们知道,假分数可以化为带分数,例如:==2+=2,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如:==1+.(1)将分式化为带分式;(2)当x取哪些整数值时,分式的值也是整数?(3)当x的值变化时,分式的最大值为.【分析】(1)仿照阅读材料中的方法加你个原式变形即可;(2)原式变形后,根据结果为整数确定出整数x的值即可;(3)原式变形后,确定出分式的最大值即可.【解答】解:(1)原式==2+;(2)由(1)得:=2+,要使为整数,则必为整数,∴x﹣1为3的因数,∴x﹣1=±1或±3,解得:x=0,2,﹣2,4;(3)原式==2+,当x2=0时,原式取得最大值.故答案为:【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.(10分)如图,在平面直角坐标系中,四边形OABC为矩形,点A(0,8),C(6,0).动点P从点B出发,以每秒1个单位长的速度沿射线BC方向匀速运动,设运动时间为t秒.(1)当t=16s时,以OB、OP为邻边的平行四边形是菱形;(2)当点P在OB的垂直平分线上时,求t的值;(3)将△OBP沿直线OP翻折,使点B的对应点D恰好落在x轴上,求t的值.【分析】(1)先有菱形的性质得出PC=BC=8,进而得出BP=16即可得出结论;(2)由线段的垂直平分线的性质得出PO=PB=t,再利用勾股定理即可求出结论;(3)分点P在x轴坐标轴和负半轴上,利用勾股定理即可建立方程求解.【解答】解:(1)如图1,∵A(0,8),∴OA=8,C(6,0),∴OC=6,∵四边形OABC是矩形,∴BC=OA=8,∵以OB、OP为邻边的平行四边形是菱形,∴CP=BC=OA=8,∴BP=BC+CP=16,t=16÷1=16s,故答案为16;(2)如图2,∵点P是OB的垂直平分线上,∴PO=PB=t,∴PC=BC﹣PB=8﹣t,在Rt△POC中,OC=6,根据勾股定理得,OC2+PC2=OP2,∴62+(8﹣t)2=t2,∴t=,(3)当点P在x轴的坐标轴上时,如图3,由折叠知,△OBP≌△ODP,∴PD=PB=t,OD=OB==10,∴CD=OD﹣OC=4,在Rt△PCD中,CD=4,PC=BC﹣PB=8﹣t,PD=t,根据勾股定理得,PC2+CD2=PD2,∴42+(8﹣t)2=t2,∴t=5,当点P在x轴负半轴上时,如图4,由折叠知,PB=PD=t,OD=OB=10,∴CD=OD+OC=16,PC=t﹣8,在Rt△PCD中,根据勾股定理得,PC2+CD2=PD2,∴(t﹣8)2+162=t2,∴t=20,即:满足条件的t的值为5s或20s.【点评】此题是一次函数综合题,主要考查了矩形的性质,菱形的性质,折叠的性质,勾股定理,垂直平分线定理,解(1)的关键是求出BP=2BC=16,解(2)的关键是利用线段的垂直平分线得出OP=PB,解(3)的关键是利用勾股定理建立方程求解,是一道常规题.。
最新八年级(下)数学期末考试题【答案】一、选择题(本大题共10小题,每小题3分,共30分)1. 在下列汽车标志中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .2. 如果a b >,那么下列各式正确的是( )A . a +5<b +5B .5a <5bC .a ﹣5<b ﹣5D .b a 3131-<-3. 使分式22+x 有意义的x 的取值范围是( )A . 2-≠xB .2≠xC .2->xD .2-<x4. 下列从左到右的变形,是因式分解的是( )A .(x ﹣y )(x + y )= x 2﹣y 2B .2x 2+4xy = 2x (x +2y ) C .x 2+2x +3 = x (x +2)+3 D .(m ﹣2)2 = m 2﹣4m +4 5. 如图,在平行四边形ABCD 中,下列结论中错误的是( ) A .∠1=∠2 B .AB ⊥AC C . AB =CD D .∠BAD +∠ABC=180°6. 下面的平面图形中,不能镶嵌平面的图形是( )A .正三角形B . 正六边形 C. 正四边形 D .正五边形 7.若不等式组的解集为13x -≤<,则图中表示正确的是( )8. 一个多边形的每个内角都等于135°,则这个多边形的边数为( )A . 5B . 6C . 7D . 89. 如图,在Rt △ABC 中,∠A =90°,∠B =30°,BC 的垂直平分线交AB 于点E ,垂足为D ,若AE =1,则BE 的长为( ) A .2 BCD .110. 如图,∆ABC 中,∠ACB =90°,∠ABC =22.5°,将∆ABC 绕着点C 顺时针旋转,使得点A 的对应点D 落在边BC 上,点B 的对应点是点E ,连接BE .下列说法中,正确的有( )①DE ⊥AB ②∠BCE 是旋转角 ③∠BED =30° ④∆BDE 与∆CDE 面积之比是2:1DE第5题图第9题图 第10题图A . 1个 B. 2个 C. 3个 D. 4个二、填空题(本大题共6小题,每小题4分,共24分) 11. 因式分解:3x x -= .12. 若分式25x x -+的值为0,则x = . 13.已知实数x y 、满足08|3|=-+-y x ,则以x y 、的值为两边长的等腰三角形的周长是 .14.如图是一次函数y =kx +b 的图象,当y <0时,x 的取值范围是 .15.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E ,连接BE ,点F 、G 分别是BE 、BC 的中点,若AB =6,BC =4,则FG 的长 .16.如图,在平面直角坐标系中,∆OAB 是边长为4的等边三角形,OD 是AB 边上的高,点P 是OD 上的一个动点,若点C 的坐标是)3,0(-,则PA +PC 的最小值是 .GFAxyCDBAO P第14题图第15题图第16题图18.先化简,再求值:21111a a a a -⎛⎫-÷⎪++⎝⎭,其中1a =19.如图,在平行四边形ABCD 中,AE =CF ,求证:四边形BFDE 是平行四边形.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形, 每个小正方形的顶点叫格点,∆ABC 的顶点均在格点上.(1)先将∆ABC 向上平移4个单位后得到的∆A 1B 1C 1,再将∆A 1B 1C 1 绕点C 1按顺时针方向旋转90°后所得到的∆A 2B 2 C 1, 在图中画出∆A 1B 1C 1和∆A 2B 2 C 1.(2)∆A 2B 2 C 1能由∆ABC 绕着点O 旋转得到, (3)请在网格上标出点O .21.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的13后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务,求原计划每小时抢修道路多少米?22. 如图1,在∆ABC 中,∠A =80°,BD 、CE 分别平分∠ABC 、∠ACB ,BD 与CE 交于点F .(1)求∠BFC 的度数;(2)如图2,EG 、DG 分别平分∠AEF 、∠ADF , EG 与DG 交于点G ,求∠EGD 的度数.DB第19题图第20题图第22题图1 第22题图2五、解答题(三)(本大题共3小题,每小题9分,共27分) 23. 如图所示,点P 的坐标为(1,3),把点P 绕坐标原点O 逆时针旋转90°后得到点Q . (1)写出点Q 的坐标是________;(2)若把点Q 向右平移a 个单位长度,向下平移a 个单位长度后,得到的点(,)M m n 落在第四象限,求a 的取值范围;(3)在(2)条件下,当a 取何值,代数式2+25m n +24. 已知∆ABC 为等边三角形,点D 、E 分别在直线AB 、BC 上,且AD =BE .(1)如图1,若点D 、E 分别是AB 、CB 边上的点,连接AE 、CD 交于点F ,过点E 作∠AEG =60°,使EG=AE ,连接GD ,则∠AFD = (填度数); (2)在(1)的条件下,猜想DG 与CE 存在什么关系,并证明; (3)如图2,若点D 、E 分别是BA 、CB 延长线上的点,(2)中结论是否仍然成立?请给出判断并证明.第24题图1 第24题图2BBGE CG第23题图25. 如图,在长方形ABCD 中,AB=6,BC=8,点O 在对角线AC 上,且OA=OB=OC ,点P 是边CD 上的一个动点,连接OP ,过点O 作OQ ⊥OP ,交BC 于点Q . (1)求OB 的长度;(2)设DP= x ,CQ= y ,求y 与x 的函数表达式(不要求写自变量的取值范围); (3)若∆OCQ 是等腰三角形,求CQ 的长度.第25题图参考答案与评分标准(八年级数学)一、选择题(每题3分,共30分)11.)1)(1(-+x x x 12.2 13.19 14.2x < 15.1 16.31 三、解答题(本大题3小题,每小题6分,共18分)以下评分细则仅供参考. 17.解:解①得x >21-, …………2分 解②得x≤0, …………4分 则不等式组的解集是:21-<x≤0. …………6分 18. 解:21111a a a a -⎛⎫-÷⎪++⎝⎭QABP=1111(1)a a a a a +-+⨯+- …………2分=11a -, …………4分当1a =+…………6分19.证明:∵四边形ABCD 是平行四边形, …………1分 ∴AB ∥CD ,且AB =CD , …………2分 又∵AE =CF ,∴AB-AE=CD-FC …………3分 ∴BE =DF , …………4分 ∴BE ∥DF 且BE =DF , …………5分 ∴四边形BFDE 是平行四边形. …………6分 20.解: (1)如图所示,△A 1B 1C 1和△A 2B 2 C 1为所求. ---------1分21.解:设原计划每小时抢修道路x 米, …………1分 根据题意得:x1200+()x %5011200-3600+=10, …………4分 解得:x =280, …………5分O经检验:x=280是原方程的解.…………6分答:原计划每小时抢修道路280米.…………7分22.(1)∵BD、CE分别平分∠ABC、∠ACB∴新人教版八年级第二学期下册期末模拟数学试卷(含答案)一、选择题(共8小题;共40分)1. 在下列各式中,不是二次根式的有① ;② ;③ (,同号且);④ ;⑤ .A. 个B. 个C. 个D. 个2. 要使代数式有意义,则的A. 最大值是B. 最小值是C. 最大值是D. 最小值是3. 下列计算结果正确的个数是① ;② ;③ ;④当时,.A. B. C. D.4. 下列式子中为最简二次根式的是A. B. C. D.5. 下列计算正确的是A. B.C. D.6. 算式的值为A. B. C. D.7. 若是整数,则正整数的最小值是A. B. C. D.8. 甲、乙两人计算的值,当的时候得到不同的答案,甲的解答是;乙的解答是.下列判断正确的是A. 甲、乙都对B. 甲、乙都错C. 甲对,乙错D. 甲错,乙对二、填空题(共9小题;共45分)9. 若,则.10. 已知,则.11. 把进行化简,得到的最简结果是(结果保留根号).12. 计算:等于.13. 在实数范围内分解因式:.14. 对于任意不相等的两个数,,定义一种运算“”如下:.如,那么.15. 设,,则.16. 若实数新八年级下学期期末考试数学试题(含答案)一、选择题(本大题共10小题,共30.0分)1.如果有意义,那么实数x的取值范围是A. B. C. D.【答案】A【解析】解:由题意可知:,故选:A.根据二次根式有意义的条件即可求出x的取值范围.本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件.2.以下列各组数为三角形的三边,能构成直角三角形的是A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23【答案】B【解析】解:A、,故不是直角三角形,故此选项错误;B、,故是直角三角形,故此选项正确;C、,故不是直角三角形,故此选项错误;D、,故不是直角三角形,故此选项错误.故选:B.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.下列计算正确的是A. B. C. D.【答案】D【解析】解:A、,无法计算,故此选项错误;B、,故此选项错误;C、,故此选项错误;D、,正确.故选:D.直接利用二次根式混合运算法则计算得出答案.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.4.如图,在中,,,,点D,E分别是边AB,CB的中点,那么DE的长为A. B. 2 C. 3 D. 4【答案】B【解析】解:点D,E分别是边AB,CB的中点,,故选:B.根据三角形中位线定理解答即可.本题考查的是三角形中位线定理的应用,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.5.下列各式中,最简二次根式是A. B. C. D.【答案】C【解析】解:A、,不是最简二次根式,故本选项不符合题意;B、,不是最简二次根式,故本选项不符合题意;C、是最简二次根式,故本选项符合题意;D、,不是最简二次根式,故本选项不符合题意;故选:C.根据最简二次根式的定义逐个判断即可.本题考查了最简二次根式的定义,能熟记最简二次根式的定义的内容是解此题的关键.6.某鞋店试销一款学生运动鞋,销量情况如图所示,鞋店经理要关心哪种型号的鞋是否畅销,下列统计量最有意义的是平均数中位数众数方差【答案】C【解析】解:对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选:C.众数是一组数据中出现次数最多的数,可能不止一个,对这个鞋店的经理来说,他最关注的是数据的众数.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.关于函数,下列说法错误的是A. 它是正比例函数B. 图象经过C. 图象经过一、三象限D. 当,【答案】D【解析】解:关于函数,A、它是正比例函数,说法正确,不合题意;B、当时,,图象经过,说法正确,不合题意;C、图象经过一、三象限,说法正确,不合题意;D、当时,,说法错误,符合题意;故选:D.根据正比例函数的定义与性质判定即可.此题考查了正比例函数的性质和定义,熟练掌握正比例函数的定义与性质是解题关键.8.关于四边形ABCD:两组对边分别平行;两组对边分别相等;有一组对边平行且相等;对角线AC和BD相等;以上四个条件中可以判定四边形ABCD是平行四边形的有A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:符合平行四边形的定义,故正确;两组对边分别相等,符合平行四边形的判定条件,故正确;由一组对边平行且相等,符合平行四边形的判定条件,故正确;对角线互相平分的四边形是平行四边形,故错误;所以正确的结论有三个:,故选:C.平行四边形的五种判定方法分别是:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形按照平行四边形的判定方法进行判断即可.本题考查了平行四边形的判定,熟练掌握平行四边形的定义和判定方法是解答此类题目的关键.9.将直线向上平移1个单位长度,得到的一次函数解析式为A. B. C. D.【答案】A【解析】解:由“上加下减”的原则可知,将直线向上平移1个单位长度,得到的一次函数解析式为.故选:A.根据函数解析式“上加下减”的原则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知函数解析式“上加下减”的原则是解答此题的关键.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,沿的路径匀速移动,设P点经过的路径长为x,A、P、D三点连线所围成图形的面积是y,则能大致反映y与x之间的函数关系的图象是A. B.C. D.【答案】B【解析】解:根据题意,当点P由A到D过程中,,当点P由C到B时,,故选:B.根据题意研究图象代表意义即可.本题为动点问题的函数图象探究题,考查了函数图象所代表的实际意义,应用了数形结合的数学思想.二、填空题(本大题共6小题,共18.0分)11.计算:______.【答案】4【解析】解:原式.故答案为:4原式利用二次根式的乘法法则计算,将结果化为最简二次根式即可.此题考查了二次根式的乘除法,熟练掌握运算法则是解本题的关键.12.甲、乙两名射击手的50次测试的平均成绩都是8环,方差分别是甲,乙,则成绩比较稳定的是______填“甲”或“乙”【答案】甲【解析】解:甲,乙,,甲乙成绩比较稳定的是甲;故答案为:甲.根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.13.已知一组数据3、x、4、8、6,若该组数据的平均数是5,则x的值是______.【答案】4【解析】解:由题意得:解得:.故答案为4.根据算术平均数的计算方法列方程求解即可.考查算术平均数的意义和求法,掌握计算方法是解决问题的关键.14.边长为2的等边三角形的面积为______.【答案】【解析】解:等边三角形高线即中点,,,在中,,,,,故答案为:.根据等边三角形三线合一的性质可得D为BC的中点,即,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.本题考查的是等边三角形的性质,熟知等腰三角形“三线合一”的性质是解题的关键.15.如图,矩形ABCD的两条对角线相交于点O,若,,则AC的长为______.【答案】6【解析】解:在矩形ABCD中,,,,,又,.故答案为:6.根据矩形的对角线互相平分且相等可得,再根据三角形的一个外角等于与它不相邻的两个内角的和求出,然后根据直角三角形角所对的直角边等于斜边的一半解答.本题考查了矩形的性质,主要利用了矩形的对角线互相平分且相等的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.16.在直角坐标系中,直线与y轴交于点,按如图方式作正方形、、,、、在直线上,点、、在x轴上,图中阴影部分三角形的面积从左到右依次记为、、、,则的值为______用含n的代数式表示,n为正整数.【答案】【解析】解:令一次函数中,则,点的坐标为,.四边形为正整数均为正方形,,,,.令一次函数中,则,即,,.轴,.,,,.,,,,为正整数.故答案为:.结合正方形的性质结合直线的解析式可得出:,,,,结合三角形的面积公式即可得出:,,,,根据面积的变化可找出变化规律“为正整数”,依此规律即可得出结论.本题考查了一次函数图象上点的坐标特征、正方形的性质、三角形的面积公式的知识,此题属规律性题目,比较复杂.三、计算题(本大题共1小题,共7.0分)17.计算:【答案】解:原式;原式.【解析】先把二次根式化为最简二次根式,然后合并即可;先把二次根式化为最简二次根式,然后把可能内合并后进行二次根式的除法运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.四、解答题(本大题共8小题,共65.0分)18.化简:;【答案】解:原式.【解析】先把二次根式化为最简二次根式,然后合并后进行二次根式的除法运算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.已知:如图,在平行四边形ABCD中,,,垂足分别为点E,点求证:【答案】解:四边形ABCD是平行四边形,,,,,,在和中,≌ ,;【解析】根据平行四边形的性质可得,,然后利用AAS定理证明 ≌ 可得;此题主要考查了平行四边形的性质和判定,平行四边形的判定与性质的作用:平行四边形对应边相等,对应角相等,对角线互相平分及它的判定,是我们证明直线的平行、线段相等、角相等的重要方法.20.求该同学这个同学这一学期平时成绩的平均数;总评成绩权重规定如下:平时成绩占,期中成绩占,期末成绩占,请计算出小华同学这一个学期的总评成绩是多少分?【答案】。
江苏省2016-2017学年度八年级下学期期末考试数学试题一、选择题:(本题共10小题,每题3分,共30分)1. 下列平面图形中,不是轴对称图形的是………………………………………………( )2.如图,数轴上A 、B和5.1,则A 、B 两点之间表示整数的点共有……( )A .6个;B . 5个 ; C.4个; D . 3个;3. 如图,已知∠1=∠2,则不一定能使△ABD≌△ACD 的条件是……………………( ) A .AB=AC ;B .BD=CD ;C .∠B=∠C;D .∠BDA=∠CDA;4.已知点A 与点(-4 , -5)关于y 轴对称,则A 点坐标是………………………………( ) A .(4 , -5) B . (-4 , 5) C . (-5 , -4) D . (4 , 5) 5.(2014•济南)函数1y x =+自变量x 的取值范围是………………………( ) A .0x ≥ ; B .1x ≠-; C .0x >; D .0x ≥且1x ≠-;6.在-23.14,223,0 ;中有理数的个数是…………………………( )A.5;B.4;C.3;D.2;7.如果一个数的平方根等于它的立方根,则这个数是…………………………( ) A .1 ; B .-1; C .±1; D .0; 8.一条直线y=kx+b ,其中k+b=-5、kb=6,那么该直线经过……………………………( ) A .第二、四象限 B .第一、二、三象限 C .第一、三象限 D .第二、三、四象限 9.有一个数值转换器,原理如下:当输入的x=64时,输出的y 等于…………………………………………………………( )A. B. C. D.第2题图第10题图第3题图A .2B .8C .22D .2310. 如图,在△ABC 中,∠ACB=90°,以AC 为一边在△ABC 外侧作等边三角形ACD ,过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E ,连接CE ,AB=15cm ,BC=9cm ,P 是射线DE 上的一点.连接PC 、PB ,若△PBC 的周长最小,则最小值为……………………………………( ) A .22cm ; B .21cm ; C .24 cm ; D . 27cm ; 二、填空题:(本题共8小题,每题3分,共24分) 11.4的算术平方根为__________.12.已知函数1)1(2-+-=m x m y 是正比例函数,则m 为__________. 13.已知等腰三角形的两边长分别为2和6,则它的周长为 .14.若点()14,y -,()22,y 都在直线25y x =-+上,则1y 与2y 的大小关系是 . 15.已知点P (),a b 在一次函数41y x =+的图像上,则代数式42a b -+的值等于 . 16.(2014•宿迁)如图,在Rt △ABC 中,∠ACB=90°,AD 平分∠BAC 与BC 相交于点D ,若BD=4,CD=2,则AB 的长是 .17.如图,在△ABC 中,AB =AC =10厘米,∠B =∠C ,BC =8厘米,点D 为AB 的中点,如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时点Q 在线段CA 上由C 点向A 点运动,当一个点停止运动时,另一个点也随之停止运动,当点Q 的运动速度为 时,能够在某一时刻使△BPD 与△CQP 全等.18.(2013•苏州)如图,在平面直角坐标系中,Rt △OAB 的顶点A 在x 轴的正半轴上.顶点B的坐标为(,点C 的坐标为1,02⎛⎫⎪⎝⎭,点P 为斜边OB 上的一个动点,则PA+PC 的最小值为 .三、解答题:(本题共12题,总分76分) 19.(本题满分8分) (1)计算:()02111124π----+;(2)已知:16)5(2=+x ,求x ;20. (本题满分5分)第16题图第17题图 第18题图如图,在平面直角坐标系中,△ABC 的三个顶点都在格点上,点A 的坐标为(2,4),请解答下列问题:(1)画出△ABC 关于x 轴对称的111A B C ,并写出点1A 的坐标.(2)画出111A B C 先向左平移3个单位长度,再向上平移4个单位长度得到的222A B C ,并写出点2A 的坐标.21.(本题满分6分)如图,△ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连接EC . (1)求∠ECD 的度数;(2)若CE=5,求BC 长.22.(本题满分6分)已知:如图,△ABC 和△ECD 都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB 边上一点,求证:(1)△ACE≌△BCD; (2)222AD AE DE +=.23.(本题满分5分)(2014•鄂尔多斯)一个数的算术平方根为26M -,平方根为()2M ±-,求这个数.24.(本题满分5分)已知a ,b ,c 实数在数轴上的对应点如图所示,()a b c a -+-+.25.(本题6分)已知:3y 与x+1成正比例,且当x = 3时,y 的值为8. (1)求y 与x 之间的函数关系式;(2)求(1)中所求函数的图像与两坐标轴围成的三角形的周长.26.(本题满分8分)如图,在平面直角坐标系,A (a ,0),B (b ,0),C (﹣1,2),且()221240a b a b ++++-=. (1)求a ,b 的值;(2)在x 轴的正半轴上存在一点M ,使12COM ABC S S = ,求出点M 的坐标;27.(本题9分)已知点A 与点B (-1,1) 关于x 轴对称,点C 在y 轴的负半轴上,且到原点的距离为2,一直线经过点A 和点C .(1)求直线AC 的函数表达式,并直接写出y >1时x 的取值范围; (2)求直线AC 关于y 轴对称的直线的解析式;(3)直线AC 是由直线DE 先向上平移2个单位,再向左平移3个单位得到的,求直线DE 的解析式.28.(本题9分)如图,直线y =kx+2与x 轴、y 轴分别交于A 、B 两点,OA ∶OB =21.以线段AB 为边在第二象限内作等腰Rt △ABC ,∠BAC=90°. (1)求点A 的坐标和k 的值; (2)求点C 坐标; (3)直线12y x在第一象限内的图像上是否存在点P ,使得△ABP 的面积与△ABC 的面积相等?如果存在,求出点P 坐标,如果不存在,请说明理由.29.(本题满分9分)OxyCOBxAy(2014•齐齐哈尔)已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是_________ 千米/时,乙车的速度是_________ 千米/时,点C的坐标为_________ ;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?初二数学期末考试综合试卷(4)参考答案一、选择题:1.A ;2.C ;3.B ;4.A ;5.D ;6.A ;7.D ;8.D ;9.C ;10.C ; 二、填空题:11.2;12.-1;13.14;14. 12y y >;15.1;16. 17.3或154; 18. 2; 三、解答题: 19.(1)3;(2)x =-1或-9;20. 图略,点1A 的坐标(2,-4);图略;点2A 的坐标(-1,0); 21. (1)36︒;(2)5 22. 证明:(1)∵△ACB 和△DCE 都是等腰直角三角形,∴CE=CD,AC=CB ,∠ACB=∠DCE=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,∴∠ACE=∠DCB, 在△ACE 和△BCD 中∴△ACE≌△BCD(SAS ).(2)∵∠ACB=90°,AC=BC ,∴∠B=∠BAC=45°,∵△ACE≌△BCD, ∴∠B=∠CAE=45°,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴在Rt△AED 中,由勾股定理得:AD 2+AE 2=DE 2.23. 解:①2M﹣6=M ﹣2,解得M=4,2M ﹣6=8﹣6=2;22=4; ②2M﹣6=﹣(M ﹣2),解得M=,2M ﹣6=﹣6=﹣(不合题意舍去).故这个数是4.24. 2a b c --+;25.(1) 设3y =k (x+1)(k ≠0),将x =3, y =8代入,得k =6,所以y =2x+2;(2) 设y =2x+2与x 轴交于点A ,与y 轴交于点B ,则A (-1,0),B (0,2),所以AB∴△ABC 的周长为326. 解(1)∵|2a+b+1|+(a+2b ﹣4)2=0,又∵|2a+b+1|和(a+2b ﹣4)2都是非负数, 所以得,解方程组得,,∴a=﹣2,b=3.(2)①由(1)得A ,B 点的坐标为A (﹣2,0),B (3,0),|AB|=5.∵C(﹣1,2), ∴△ABC 的AB 边上的高是2,∴.要使△COM 的面积是△ABC 面积的,而C 点不变,即三角形的高不变,M 点在x 轴的正半轴上,只需使.此时.∴M 点的坐标为,解得,.则直线AC 的函数表达式为y=﹣x ﹣2.∵OA:OB=,∴OA=1,即A (﹣1,0),将x=﹣1,y=0代入直线解析式得:0=﹣k+2,即k=2; (2)过C 作CM⊥x 轴,可得∠AMC=∠BOA=90°,∴∠ACM+∠CAM=90°,∵△ABC 为等腰直角三角形,即∠BAC=90°,AC=BA ,∴∠CAM+∠BAO=90°,∴∠ACM=∠BAO, 在△CAM 和△ABO 中,,∴△CAM≌△ABO (AAS ),∴AM=OB=2,CM=OA=1,即OM=OA+AM=1+2=3,∴C(﹣3,1);(3)假设存在点P 使得△ABP 的面积与△ABC 的面积相等,在直线y=x 第一象限上取一点P ,连接BP ,AP ,设点P (m ,m ), ∴131144ABP ABO BPO AOP S S S S m m m =+-=+-=+ ,而2115222ABC S AB AC AB === ; 可得1+m=,解得:m=2, 则P 坐标为(2,1). 29. 解:(1)甲车提速后的速度:80÷2×1.5=60千米/时,乙车的速度:80×2÷(2﹣)=96千米/时;点C的横坐标为2++=,纵坐标为80,坐标为(,80);(2)设乙车返回时y与x的函数关系式y=kx+b,代入(,80)和(4,0)得,解得,所以y与x的函数关系式y=﹣96x+384(≤x≤4);(3)(260﹣80)÷60﹣80÷96=3﹣=(小时).答:甲车到达B市时乙车已返回A市小时.。
江苏省2016-2017学年度八年级下学期期末考试数学试题一、选择题:(本题共10小题,每题3分,共30分)1.(2014•德州)下列计算正确的是……………………………………………………( )A .()239--=;B .3=; C . ()021--=; D . 33-=-;2.(2014•滨州)下列四组线段中,可以构成直角三角形的是……………………………( )A . 4,5,6;B . 1.5,2,2.5;C . 2,3,4;D . 1,3;3. (2014•黄冈)函数y =中,自变量x 的取值范围是…………………………( ) A . x ≠0; B . x ≥2; C . x >2且x ≠0; D . x ≥2且x ≠0;4.(2014•大连)在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是………( )A .(1,3);B .(2,2);C .(2,4);D .(3,3);5.(2013•资阳)资阳市2012年财政收入取得重大突破,地方公共财政收入用四舍五入取近似值后为27.39亿元,那么这个数值……………………………………………………( )A .精确到亿位;B .精确到百分位;C .精确到千万位;D .精确到百万位;6.(2014•菏泽)若点M (),x y 满足()2222x y x y +=+-,则点M 所在象限是…………( ) A . 第一象限或第三象限; B . 第二象限或第四象限;C . 第一象限或第二象限;D . 不能确定;7. (2014•淄博)如图,矩形纸片ABCD 中,点E 是AD 的中点,且AE=1,BE 的垂直平分线MN 恰好过点C .则矩形的一边AB 的长度为…………………………………………………( )A . 1; BCD .2;8.(2014•孝感)如图,直线y x m =-+与()40y nx n n =+≠的交点的横坐标为﹣2,则关于x 的不等式40x m nx n -+>+>的整数解为…………………………………( )A .﹣1;B .﹣5;C .﹣4;D .﹣3;9. 如图,在△ABC 与△ADE 中,∠BAC=∠DAE=90°,AB=AC ,AD=AE ,点C 、D 、E 在同一条直线上,连接BD 、BE .则以下结论正确的的个数有……………………………………( ) ①BD=CE ; ②∠ACE+∠DBC=45°;③BD ⊥CE ; ④()2222BE AB AD=+.第7题图第9题图第8题图A .1个;B .2个;C .3个;D .4个;10. 已知:如图Rt △ABC 中,∠B=90°,AB=BC=8,M 在BC 上,且BM=2,N 是AC 上一动点,则BN+MN 的最小值为…………………………………………………………………( )A .8;B .9;C .10;D .12;二、填空题:(本题共8小题,每题3分,共24分)11.(2013•云南)25的算术平方根是 _________ .12.(2014•大庆)若0x y -+=,则3y x -的值为 _________ .13.(2014•吉林)若a b <<,且a ,b 为连续正整数,则22b a -= _________ .14. (2014•绥化)如图,AC 、BD 相交于点O ,∠A=∠D ,请补充一个条件,使△AOB ≌△DOC ,你补充的条件是 (填出一个即可).15.(2014•扬州)若等腰三角形的两条边长分别为7cm 和14cm ,则它的周长为 cm .16.(2014•无锡)如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点.若AD=6,DE=5,则CD 的长等于 _________ .17.(2014•鄂州)如图,直线y=kx+b 过A (﹣1,2)、B (﹣2,0)两点,则0≤kx+b ≤﹣2x 的解集为 .18. (2014•高青县模拟)如图,正方形111A B C O ,2221A B C C ,3332A B C C ,…按照如图所示的方式放置,点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线y=kx+b (k >0)和x 轴上,已知点1B (1,1),2B (3,2),则3B 的坐标是.三、解答题:(本题共12题,总分76分)19.(本题满分4分)计算:20.(本题满分8分)求x 的值:(1) 1272+=x ; (2)()327164x +=.21. (本题满分5分)已知2x -的平方根是2±,27x y ++的立方根是3,求22x y +的平方根和立方根.第10题图 第14题图 第16题图 第17题图 第18题图22.(本题满分6分)(2014•长沙)如图,四边形ABCD 是矩形,把矩形沿对角线AC 折叠,点B 落在点E 处,CE 与AD 相交于点O .(1)求证:△AOE ≌△COD ;(2)若∠OCD=30°,AOC 的面积.23.(本题满分6分)如图,在△ABC 中,AB=AC ,过腰AB 的中点D 作AB 的垂线,交另一腰AC 于E ,连结BE .(1)若BE=BC ,求∠A 的度数;(2)若AD+AC=24cm ,BD+BC=20cm .求△BCE 的周长.24.(本题满分6分)如图是规格为4×6的正方形网格,请在所给网格中......按下列要求画图. (1)在图1中画一个三边长分别为5、10、13的△ABC ;(2)在图2中画一个三边长均为无理数,且各边都不相等的直角△DEF .25.(本题满分7分已知一次函数y=kx+b 的图象经过点(1,3),且与正比例函数y=2x 的图象相交于点(2,m ).(1)求m 的值;(2)求一次函数y=kx+b 的解析式;(3)求这两个函数图象与x 轴所围成的三角形面积.26.(本题满分8分)(2014•三明)为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费,设每户家庭每月用水量为x 吨时,应交水费y 元.(1)分别求出0≤x ≤20和x >20时,y与x 之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨?图1 图227.(本题满分9分)如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=40°,DE交线段AC于点E.(1)当∠BDA=115°时,∠EDC= °,∠AED= °;(2)线段DC的长度为何值时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,求∠BDA的度数;若不可以,请说明理由.28.(本题满分7分)(2014•盐城)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x 小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.29. (本题满分10分)如图,在△ABC中,AB=AC,D为三角形内一点,且△DBC为等边三角形.(1)求证:直线AD垂直平分BC;(2)以AB为一边,在AB的右侧画等边△ABE,连接DE,试判断以DA,DB,DE三条线段是否能构成直角三角形?请说明理由.初二数学期末考试综合试卷(3)参考答案一、选择题:1.B ;2.B ;3.B ;4.C ;5.D ;6.B ;7.C ;8.D ;9.C ;10.C ;二、填空题:11.5;12.12;13.7;14.AB=CD (答案不唯一);15.35;16.8;17.21x -≤≤-;18.(7,4);三、解答题:19.-3;20.(1)x =(2)13x =;21.±1022.(1)证明略;(223. (1)36°; (2)28cm ;24.25.(1)∵点(2,m )在正比例函数y=2x 的图象上,∴m=2×2=4;(2)将点(1,3),(2,4)代入y=kx+b 得:,解得:,∴此一次函数y=kx+b 的解析式为:y=x+2;(3)令x=0,则x+2=0,解得x=﹣2,所以,所围成的三角形面积=×2×4=4.26. 解:(1)当0≤x ≤20时,y 与x 的函数表达式是y=2x ;当x >20时,y 与x 的函数表达式是y=2×20+2.8(x ﹣20)=2.8x ﹣16;(2)因为小颖家五月份的水费都不超过40元,四月份的水费超过40元,所以把y=38代入y=2x 中,得x=19;把y=45.6代入y=2.8x ﹣16中,得x=22.所以22﹣19=3吨.答:小颖家五月份比四月份节约用水3吨.27. 解:(1)∠EDC=180°﹣∠ADB ﹣∠ADE=180°﹣115°﹣40°=25°.∠AEDC=∠EDC+∠C=40°+25°=65°.(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,在△ABD 和△DCE 中,∴△ABD≌△DCE(AAS )(3)当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形,∵∠BDA=110°时,∴∠ADC=70°,∵∠C=40°,∴∠DAC=70°,∴△ADE 的形状是等腰三角形;F E D C BA∵当∠BDA的度数为80°时,∴∠ADC=100°,∵∠C=40°,∴∠DAC=40°,∴△ADE的形状是等腰三角形.28. 解:(1)由题意可得出:甲乙两地之间的距离为560千米;故答案为:560;(2)由题意可得出:慢车和快车经过4个小时后相遇,相遇后停留了1个小时,出发后两车之间的距离开始增大知直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.(3)由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,当慢车行驶了8小时后,快车已到达甲地,此时两车之间的距离为240﹣3×60=60km,∴D(8,60),∵慢车往返各需4小时,∴E(9,0),设DE的解析式为:y=kx+b,∴,解得:.∴线段DE所表示的y与x之间的函数关系式为:y=﹣60x+540(8≤x≤9).29.证明:(1)∵△DBC为等边三角形,∴DB=DC,∴D在BC的垂直平分线上,∵AB=AC,∴A在BC的垂直平分线上,∴直线AD垂直平分BC;(2)以DA,DB,DE三条线段能构成直角三角形;理由:连接CE,∵∠ABD=∠ABE﹣∠DBE=60°﹣∠DBE=∠DBC﹣∠DBE=∠EBC,在△EBC和△ABD中,,∴△EBC≌△ABD(SAS),∴∠BCE=∠ADB,AD=CE,在△ADB和△ADC中,,∴△ADB≌△ADC(SSS),∴∠ADB=∠ADC,∴∠ADB=(360°﹣∠BCD)=150°,∴∠BCE=∠BDA=150°,∴∠DCE=∠BCE﹣∠BCD=150°﹣60°=90°,∵CE=DA,DC=DB,∴以DA,DB,DE三条线段能构成直角三角形.。
常州市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018九上·徐闻期中) 抛物线y=3x2先向上平移1个单位,再向左平移1个单位,所得的抛物线是()A . y=3(x﹣1)2+1B . y=3(x+1)2﹣1C . y=(x﹣1)2﹣1D . y=3(x+1)2+12. (2分)如图,在平面直角坐标系中,点A(1,m)在直线y=﹣2x+3上,点A关于y轴的对称点恰好落在直线y=kx+2上,则k的值为()A . ﹣2B . 1C .D . 23. (2分)(2017·深圳) 下列哪一个是假命题()A . 五边形外角和为B . 切线垂直于经过切点的半径C . 关于轴的对称点为D . 抛物线对称轴为直线4. (2分) (2017八下·房山期末) 下列各点中,在一次函数的图象上的点为().A . (3,5)B . (2,-2)C . (2,7)D . (4,9)5. (2分) (2017八下·房山期末) 如图,在ABCD中,AB=4,AD=7,∠ABC的平分线BE交AD于点E ,则DE的长是()A . 4B . 3C . 3.5D . 26. (2分) (2017八下·房山期末) 方程的根的情况是().A . 有两个不相等的实数根B . 有两个相等的实数根C . 有一个实数根D . 没有实数根7. (2分) (2017八下·房山期末) 用配方法解方程,方程应变形为().A .B .C .D .8. (2分) (2017八下·房山期末) 已知关于x的方程有两个实数根,则m的取值范围是().A .B .C .D .9. (2分) (2017八下·房山期末) 如图,在△ABC中,AB=6,AC=10,点D , E , F分别是AB , BC , AC 的中点,则四边形ADEF的周长为().A . 16B . 12C . 10D . 810. (2分) (2017八下·房山期末) 2022年将在北京---张家口举办冬季奥运会,很多学校开设了相关的课程.某校8名同学参加了滑雪选修课,他们被分成甲、乙两组进行训练,身高(单位:cm)如下表所示:队员1队员2队员3队员4甲组176177175176乙组178175177174设两队队员身高的平均数依次为,,方差依次为,,则下列关系中完全正确的是()A .B .C .D .二、填空题. (共5题;共7分)11. (3分) (2019七下·郴州期末) 推理填空:如图,,,将说明成立的理由填写完整.解:因为(已知),所以(________)又因为(已知),所以(等量代换),所以________(同位角相等,两直线平行),所以(________)12. (1分)如图,在直角坐标系中,△AOB是等边三角形,若B点的坐标是(2,0),则A点的坐标是________.13. (1分) (2017八下·房山期末) 有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________.14. (1分) (2017八下·房山期末) 如图,在平面直角坐标系xOy中,A(1,1),B(2,2),直线与线段AB有公共点,则的取值范围是________.15. (1分) (2017八下·房山期末) 如图,菱形ABCD的周长为16,若,E是AB的中点,则点E的坐标为________.三、解答题。
江苏省常州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)一次函数y=-2x+4的图象与x轴的交点坐标是()A . (2,0)B . (0,2)C . (0,4)D . (4,0)2. (2分) (2017九上·海口期中) 化简的结果是()A . ﹣3B . 3C . ±3D . 93. (2分) (2017八上·虎林期中) 下列命题中正确的是()①全等三角形对应边相等;②三个角对应相等的两个三角形全等;③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
A . 4个B . 3个C . 2个D . 1个4. (2分)(2019·白云模拟) 若一组数据为:2,3,1,3,3.则下列说法错误的是()A . 这组数据的众数是3B . 事件“在这组数据中随机抽取1个数,抽到的数是“是不可能事件C . 这组数据的中位数是3D . 这组数据的平均数是35. (2分)下列计算正确的是()A .B .C .D .6. (2分) (2018九上·梁子湖期末) 如图,半径为5的⊙A中,DE=2 ,∠BAC+∠EAD=180°,则弦BC 的长为()A .B .C . 4D . 37. (2分)给出下列判断:①一组对边平行,另一组对边相等的四边形是平行四边形.②对角线相等的四边形是矩形.③对角形互相垂直且相等的四边形是正方形.④有一条对角线平分一个内角的平行四边形为菱形.其中,不正确的有()A . 1个B . 2个C . 3个D . 4个8. (2分)如图是有相同对称轴的两条抛物线,则下列关系中正确的是()A . h=m,k=nB . h=m,k>nC . h=m,k<nD . h>m,k>n9. (2分) (2017八下·莒县期中) 如图,直线y=kx+b经过点A(3,1)和点B(6,0),则不等式0<kx+b < x的解集为()A . x<0B . 0<x<3C . 3<x<6D . x>610. (2分) (2018八上·自贡期末) 如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的是()A . ①②③B . ①③④C . ①②④D . ①②③④二、填空题 (共6题;共6分)11. (1分)(2019·河池模拟) ________.12. (1分) (2019八下·端州期中) 平行四边形ABCD中,∠A=20°,那么∠C=________.13. (1分) (2018八下·花都期末) 将直线y=3x﹣1向上平移1个单位长度,得到的一次函数解析式为________.14. (1分) (2017八下·路南期末) 如图,正方形ABCD中,AE⊥BE于E ,且AE=3,BE=4,则阴影部分的面积是________.15. (1分)(2017·衢州) 二次根式中字母的取值范围是________16. (1分) (2019七下·南通月考) 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0)→(2,0)→(2,1)→(1,1)→(1,2)→(2,2)→,…,根据这个规律,第2019个点的坐标为________.三、解答题 (共9题;共110分)17. (10分)(2017·德州模拟) 计算:.18. (10分)(2017·丰南模拟) 已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?证明你的结论.19. (15分) (2017八下·海淀期中) 已知四边形中,,,,,.(1)求的面积.(2)若为中点,求线段的长.20. (15分) (2018八上·南山期末) 南山区某中学七、八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:队别平均分中位数方差合格率优秀率七年级6 3.4190%20%八年级7.1m80%10%(1)观察条形统计图和上方表格,可以发现:a=________,m=________;八年级成绩的标准差________七年级成绩的标准差(填“>”、“<”或“=”),(2)计算七年级的平均分;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你以题中的信息为依据写出两条条支持八年级队成绩好的理由.21. (10分) (2019八上·南关期末) 如图,AB=AD.AC=AE,∠BAD=∠CAE.(1)求证:(2)若AC=9,AD=12,BE=15,请你判断△ABE的形状并说明理由.22. (10分)(2019·咸宁模拟) 我们定义:如图1,在△ABC看,把AB点A顺时针旋转α(0°<α<180°)得到AB',把AC绕点A逆时针旋转β得到AC',连接B'C'.当α+β=180°时,我们称△A'B'C'是△ABC的“旋补三角形”,△AB'C'边B'C'上的中线AD叫做△ABC的“旋补中线”,点A叫做“旋补中心”.(1)特例感知:在图2,图3中,△AB'C'是△ABC的“旋补三角形”,AD是△ABC的“旋补中线”.①如图2,当△ABC为等边三角形时,AD与BC的数量关系为AD=________BC;②如图3,当∠BAC=90°,BC=8时,则AD长为________.(2)猜想论证:在图1中,当△ABC为任意三角形时,猜想AD与BC的数量关系,并给予证明.23. (10分)(2019·陕西模拟) 问题发现.(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为________.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.24. (15分)(2017·岳阳模拟) 2015年某企业按餐厨垃圾处理费50元/吨、建筑垃圾处理费20元/吨的收费标准,共支付餐厨和建筑垃圾处理费7000元.从2016年元月起,收费标准上调为:餐厨垃圾处理费120元/吨,建筑垃圾处理费40元/吨.若该企业2016年处理的这两种垃圾数量与2015年相比没有变化,就要多支付垃圾处理费8600元.(1)该企业2015年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业计划2016年将上述两种垃圾处理总量减少到200吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2016年该企业最少需要支付这两种垃圾处理费共多少元?25. (15分)(2017·嘉兴模拟) 如图,已知抛物线经过点A(2,0)和B(t,0)(t≥2),与y轴交于点C,直线l:y=x+2t经过点C,交x轴于点D,直线AE交抛物线于点E,且有∠CAE=∠CDO,作CF⊥AE于点F.(1)求∠CDO的度数;(2)求出点F坐标的表达式(用含t的代数式表示);(3)当S△COD﹣S四边形COAF=7时,求抛物线解析式;(4)当以B,C,O三点为顶点的三角形与△CEF相似时,请直接写出t的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共110分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、25-4、。
2016----2017学年第二学期八年级数学期末试卷 试卷分值:100 分 考试时间: 120分钟一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3 D.2(4)-=-43.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->b x ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( ) A .100B .110C .115D .1200PCA 小刚小军小华(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( )A .4B .3C .2D .18.各个内角都相等多边形中,一个外角等于一个内角的12,这个多边形的边数是( )A .5B .6C .7D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:(每小题3分,共24分,把答案直接填在答题卷的横线上.) 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______. 14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________. 15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______. 17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│3y -则x=_______,y=_______.三、解答题:(本大题共7个小题,共46分)19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.县学校姓名考号班级…………………………………………………..密……………………………………….封……………………………………………….线………………………………………………….CBAD火车站李庄C 1A 1ABB 1 CD20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
八年级(下)期末数学试卷一、选择题(每小题4分,共40分)1.化简分式,结果是()A.x﹣2B.x+2C.D.2.寨卡病毒是一种通过蚊虫进行传播的虫媒病毒,其直径约为0.0000021cm.将数据0.0000021用科学记数法表示为()A.2.1×10﹣7B.2.1×107C.2.1×10﹣6D.2.1×1063.下列图形中,不属于中心对称图形的是()A.等边三角形B.菱形C.矩形D.平行四边形4.如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BC D.AB∥DC,AB=DC【5.已知ABCD的周长为32,AB=4,则BC=()A.4B.12C.24D.286.为筹备期末座谈会,班长对全班同学爱吃哪几种水果作了民意调查.根据调查数据决定最终买什么水果应参照的统计量是()A.众数B.中位数C.平均数D.方差7.为了解某小区中学生在暑期期间的学习情况,王老师随机调查了7位学生一天的学习时间,结果如下(单位:小时):3.5,3.5,5,6,4,7,6.5.这组数据的中位数是()A.6B.6.5C.4D.58.如图,水以恒速(即单位时间内注入水的体积相同)注入如图的容器中,容器中水的高度h与时间t的函数关系图象可能为()A.B.C.D.9.已知函数y=2x﹣3的自变量x取值范围为1<x<5,则函数值的取值范围是()A.y<﹣2,y>2B.y<﹣1,y>7C.﹣2<y<2D.﹣1<y<7 10.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35°B.55°C.65°D.75°二、填空题(每题4分,共24分).11.若分式的值为0,则x的值等于.12.已知A(1,﹣2)与点B关于y轴对称.则点B的坐标是.13.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=3.5.则射击成绩比较稳定的是(填“甲”或“乙“).14.在ABCD中,若∠B=50°,则∠C=°.15.在菱形ABCD中,AC=3,BD=6,则菱形ABCD的面积为.16.已知函数y=2x+b经过点A(2,1),将其图象绕着A点旋转一定角度,使得旋转后的函数图象经过点B(﹣2,7).则①b=;②旋转后的直线解析式为.三、解答题(共86分).17.计算:.18.先化简,再求值:÷,其中x=﹣3.19.解分式方程:.20.如图,在平面直角坐标系中,已知一次函数y=﹣2x+6的图象与x轴交于点A,与y轴交于点B.试求出△OAB的面积.21.如图,在ABCD中,E,F分别在AD,BC上,且AE=CF,连结BE、DF.求证:BE=DF.22.某校八年级共有四个班,各班的人数如图1所示,人数比例如图2所示.(1)试求出该校八年级的学生总人数;(2)请补充条形统计表;(3)在一次数学考试中,1班、2班、3班、4班的平均成绩分别为92分、91分、90分、95分.试求出该校八年级学生在本次数学考试的平均分.23.如图,已知四边形ABCD的对角线AC、BD相交于点O,OB=OD,BF=DE,AE∥CF.(1)求证:△OAE≌△OCF;(2)若OA=OD,猜想:四边形ABCD的形状,请证明你的结论.24.小聪、小明两兄弟一起从家里出发到泉港区图书馆查阅资料,已知他们家到区图书馆的路程是5千米.小聪骑自行车,小明步行,当小聪从原路回到家时,小明刚好到达区图书馆.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离家的路程S(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)填空:小聪在泉港区图书馆查阅资料的时间为分钟;(2)试求出小明离开家的路程S(千米)与所经过的时间t(分钟)之间的函数关系式;(3)探究:当小聪与小明迎面相遇时,他们离家的路程是多少千米?25.如图,在平面直角坐标系中,A(a,0)、B(0,b)是矩形OACB的两个顶点.定义:如果双曲线y=经过AC的中点D,那么双曲线y=为矩形OACB的中点双曲线.(1)若a=3,b=2,请判断y=是否为矩形OACB的中点曲线?并说明理由.(2)若y=是矩形OACB的中点双曲线,点E是矩形OACB与中点双曲线y=的另一个交点,连结OD、OE,四边形ODCE的面积S=4,试求出k的值.26.已知正方形ABCD,AB=8,点E、F分别从点A、D同时出发,以每秒1m的速度分别沿着线段AB、DC向点B、C方向的运动,设运动时间为t.(1)求证:OE=OF.(2)在点E、F的运动过程中,连结AF.设线段AE、OE、OF、AF所形成的图形面积为S.探究:①S的大小是否会随着运动时间为t的变化而变化?若会变化,试求出S与t的函数关系式;若不会变化,请说明理由.②连结EF,当运动时间为t为何值时,△OEF的面积恰好等于的S.江苏省常州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.化简分式,结果是()A .x ﹣2【考点】约分.B .x+2C .D .【分析】把分子进行因式分解,进而约分即可.【解答】解:故选B .==x+2.【点评】本题考查了约分的定义及方法,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.由约分的概念可知,要首先将分子、分母转化为乘积的形式,再找出分子、分母的最大公因式并约去,注意不要忽视数字系数的约分.2.寨卡病毒是一种通过蚊虫进行传播的虫媒病毒,其直径约为0.0000021cm .将数据0.0000021用科学记数法表示为()A .2.1×10﹣7B .2.1×107C .2.1×10﹣6D .2.1×106【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将数据0.0000021用科学记数法表示为:2.1×10﹣6.故选C .【点评】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.下列图形中,不属于中心对称图形的是()A.等边三角形B.菱形C.矩形D.平行四边形【考点】中心对称图形.【分析】结合选项根据中心对称图形的概念求解即可.【解答】解:A、不是中心对称图形,故本选项正确;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误.故选A.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.如图,下列四组条件中.不能判定四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BC D.AB∥DC,AB=DC 【考点】平行四边形的判定.【分析】平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.【解答】解:根据平行四边形的判定,A、B、D均符合是平行四边形的条件,C则不能判定是平行四边形.故选:C.【点评】此题主要考查了学生对平行四边形的判定的掌握情况.对于判定定理:“一组对边平行且相等的四边形是平行四边形.”应用时要注意必须是“一组”,而“一组对边平行且另一组对边相等”的四边形不一定是平行四边形.5.已知ABCD的周长为32,AB=4,则BC=()A.4B.12C.24D.28【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AB=CD,AD=BC,根据2(AB+BC)=32,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长是32,∴2(AB+BC)=32,∴BC=12.故选B.【点评】本题主要考查对平行四边形的性质的理解和掌握,能利用平行四边形的性质进行计算是解此题的关键.6.为筹备期末座谈会,班长对全班同学爱吃哪几种水果作了民意调查.根据调查数据决定最终买什么水果应参照的统计量是()A.众数B.中位数C.平均数D.方差【考点】统计量的选择.【分析】班长最值得关注的应该是哪种水果爱吃的人数最多,即众数.【解答】解:由于众数是数据中出现次数最多的数,故班长最值得关注的应该是统计调查数据的众数.故选:A.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数的意义.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.为了解某小区中学生在暑期期间的学习情况,王老师随机调查了7位学生一天的学习时间,结果如下(单位:小时):3.5,3.5,5,6,4,7,6.5.这组数据的中位数是()A.6【考点】中位数.B.6.5C.4D.5【分析】求中位数可将一组数据从小到大依次排列,最中间的数据(或中间两数据的平均数)即为所求.【解答】解:数据按从小到大排列后为3.5,3.5,4,5,6,6.5,7,最中间的数是5,所以这组数据的中位数是5.故选D.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.8.如图,水以恒速(即单位时间内注入水的体积相同)注入如图的容器中,容器中水的高度h与时间t的函数关系图象可能为()A.B.C.D.【考点】函数的图象.【分析】考查容器的形状来确定其高度的变化规律,选择图形即可.【解答】解:此容器从下往上口径先由小、变大,再由大变小,故等速注入液体其高度增加先是越来越慢,再变快,只有C满足条件,故选C.【点评】本题主要考查函数的变化快慢问题,考查函数应用,属于中档题.9.已知函数y=2x﹣3的自变量x取值范围为1<x<5,则函数值的取值范围是()A.y<﹣2,y>2B.y<﹣1,y>7C.﹣2<y<2D.﹣1<y<7【考点】一次函数的性质.【分析】先令x=1求出y的值,再令x=5,求出y的值,进而可得出结论.【解答】解:∵当x=1时,y=2﹣3=﹣1;当x=5时,y=10﹣3=7,∴函数值的取值范围是﹣1<x<7.故选D.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.10.如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为()A.35°B.55°C.65°D.75°【考点】菱形的性质.【分析】由菱形的性质以及已知条件可证明△BOE≌△DOF,所以可得BO=DO,即O为BD的中点,进而可得AO⊥BD,再由∠CBD=35°,则可以求出∠DAO的度数.【解答】解:∵四边形ABCD是菱形,∴AB∥CD,∴∠OEB=∠OFD,∠EBO=∠ODF,∵BE=DF,∴在△BOE和△DOF中,,∴△BOE≌△DOF,∴BO=OD,∴AO⊥BD,∴∠AOD=90°,∵∠CBD=35°,∴∠ADO=35°,∴∠DAO=55°,故选B.【点评】本题考查了菱形的性质、全等三角形的判定和性质,证明出AO⊥BD是解题的关键.二、填空题(每题4分,共24分).11.若分式的值为0,则x的值等于3.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x﹣3=0,且x≠0,再解即可.【解答】解:由题意得:x﹣3=0,且x≠0,解得:x=3,故答案为:3.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.已知A(1,﹣2)与点B关于y轴对称.则点B的坐标是(﹣1,﹣2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据“关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变”解答即可.【解答】解:∵A(1,﹣2)与点B关于y轴对称,∴点B的坐标是(﹣1,﹣2).故答案为:.【点评】本题考查了关于x轴、y轴对称的点的坐标,(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y).(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).13.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=3.5.则射击成绩比较稳定的是甲(填“甲”或“乙“).【考点】方差;算术平均数.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为甲的方差最小,所以射击成绩比较稳定的是甲,故答案为:甲【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.14.在▱ABCD中,若∠B=50°,则∠C=130°.【考点】平行四边形的性质.【分析】根据平行四边形的邻角互补即可得出∠C的度数.【解答】解:∵在▱ABCD中∠B=50°,∴∠C=180°﹣∠A=180°﹣50°=130°.故答案为130°.【点评】本题考查平行四边形的性质,比较简单,解答本题的关键是掌握平行四边形的对角相等,邻角互补的性质.15.在菱形ABCD 中,AC=3,BD=6,则菱形ABCD 的面积为9.【考点】菱形的性质.【分析】由菱形ABCD 的对角线AC ,BD 的长,根据菱形的面积等于其对角线积的一半,即可求得菱形ABCD 的面积.【解答】解:∵菱形ABCD 的对角线AC=3,BD=6,∴菱形ABCD 的面积为: ACBD=×3×6=9.故答案为:9.【点评】此题考查了菱形的性质.解此题的关键是掌握菱形的面积等于其对角线积的一半定理的应用.16.已知函数y=2x+b 经过点A (2,1),将其图象绕着A 点旋转一定角度,使得旋转后的函数图象经过点B (﹣2,7).则①b=﹣3;②旋转后的直线解析式为y=﹣x+4.【考点】一次函数图象与几何变换.【分析】把A 点的坐标代入y=2x+b ,即可求出b ,设旋转后的直线的解析式为y=kx+a ,把A 、B 的坐标代入就,即可求出k 、a ,即可得出答案.【解答】解:把A (2,1)代入y=2x+b 得:1=4+b ,解得:b=﹣3,即y=2x ﹣3,设旋转后的直线的解析式为y=kx+a ,把A 、B 的坐标代入得:解得:k=﹣,a=4,,即旋转后的直线的解析式为y=﹣x+4,故答案为:﹣3,y=﹣x+4.【点评】本题考查了一次函数与几何变换,用待定系数法求一次函数的解析式的应用,灵活运用知识点进行计算是解此题的关键..三、解答题(共86分).17.计算:【考点】实数的运算;零指数幂;负整数指数幂.【分析】原式利用零指数幂、负整数指数幂法则,以及算术平方根定义计算即可得到结果.【解答】解:原式=1﹣5+3=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:【考点】分式的化简求值.÷,其中x=﹣3.【分析】利用分解因式和消元等方法将原分式化简成x ﹣2,并找出x 的取值范围,再将x=﹣3代入化简后的整式中即可得出结论.【解答】解:原式=∵(x+2)x ≠0,∴x ≠﹣2且x ≠0,当x=﹣3时,=x ﹣2.原式=x ﹣2=﹣3﹣2=﹣5.【点评】本题考查了分式的化简求值,解题的关键是将原分式化简成x ﹣2.本题属于基础题,难度不大,解决该题型题目时,先对原分式进行化简,再将给定的数值代入化简后的分式(或整式)中求出结果即可.19.解分式方程:【考点】解分式方程..【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x+4=3x ﹣3,解得:x=7,经检验x=7是分式方程的解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.20.如图,在平面直角坐标系中,已知一次函数y=﹣2x+6的图象与x 轴交于点A ,与y 轴交于点B .试求出△OAB 的面积.【考点】一次函数图象上点的坐标特征.【分析】根据坐标轴上点的坐标特征求A 点和B 点坐标,利用三角形面积公式解答即可.【解答】解:当y=0时,﹣2x+6=0,解得x=3,则A 点坐标为(3,0);∴OA=3;当y=0时,y=﹣2x+6=6,则B 点坐标为(0,6);∴OB=6;∴△OAB 的面积=.【点评】本题考查了一次函数图象上点的坐标特征,关键是根据坐标轴上点的坐标特征求A 点和B 点坐标.21.如图,在ABCD 中,E ,F 分别在AD ,BC 上,且AE=CF ,连结BE 、DF .求证:BE=DF.【考点】平行四边形的性质.【分析】根据平行四边形性质得出AD∥BC,AD=BC,求出DE=BF,DE∥BF,得出四边形DEBF 是平行四边形,根据平行四边形的性质推出即可.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.【点评】本题考查了平行四边形的性质和判定;熟练掌握平行四边形的性质,证明四边形DEBF是平行四边形是解决问题的关键.22.某校八年级共有四个班,各班的人数如图1所示,人数比例如图2所示.(1)试求出该校八年级的学生总人数;(2)请补充条形统计表;(3)在一次数学考试中,1班、2班、3班、4班的平均成绩分别为92分、91分、90分、95分.试求出该校八年级学生在本次数学考试的平均分.【考点】条形统计图;扇形统计图;加权平均数.【分析】(1)由1班有39人,占26%,即可求得该校八年级的学生总人数;(2)首先求得2班人数,继而补充条形统计表;(3)利用加权平均数的方法求解即可求得答案.【解答】解:(1)∵1班有39人,占26%,∴该校八年级的学生总人数为:39÷26%=150(人);(2)2班:150﹣39﹣39﹣30=42(人);如图:(3)该校八年级学生在本次数学考试的平均分为:=91.8(分).【点评】此题考查了条形统计图与扇形统计图的知识以及加权平均数的知识.注意掌握条形统计图与扇形统计图各量的对应关系是解此题的关键.23.如图,已知四边形ABCD的对角线AC、BD相交于点O,OB=OD,BF=DE,AE∥CF.(1)求证:△OAE≌△OCF;(2)若OA=OD,猜想:四边形ABCD的形状,请证明你的结论.【考点】全等三角形的判定与性质.【分析】(1)由AE∥CF,得到两对内错角相等,再由OB=OD,BF=DE,得到OE=OF,利用AAS即可得证;(2)若OA=OD,则四边形ABCD为矩形,理由为:由OA=OD,得到OB=OC,即OD=OA=OC=OB,利用对角线互相平分且相等的四边形为矩形即可得证.【解答】(1)证明:∵AE∥CF,∴∠AEO=∠CFO,∠EAO=∠FCO,∵OB=OD,BF=DE,∴OB﹣BF=OD﹣DE,即OE=OF,在△OAE和△OCF中,,∴△OAE≌△OCF(AAS);(2)若OA=OD,则四边形ABCD是矩形,理由为:证明:∵△OAE≌△OCF,∴OA=OC,∵OD=OA,∴OA=OB=OC=OD,且BD=AC,∴四边形ABCD为矩形.【点评】此题考查了全等三角形的判定与性质,矩形的判定与性质,以及平行线的性质,熟练掌握全等三角形的判定与性质是解本题的关键.24.小聪、小明两兄弟一起从家里出发到泉港区图书馆查阅资料,已知他们家到区图书馆的路程是5千米.小聪骑自行车,小明步行,当小聪从原路回到家时,小明刚好到达区图书馆.图中折线O﹣A﹣B﹣C和线段OD分别表示两人离家的路程S(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)填空:小聪在泉港区图书馆查阅资料的时间为15分钟;(2)试求出小明离开家的路程S(千米)与所经过的时间t(分钟)之间的函数关系式;(3)探究:当小聪与小明迎面相遇时,他们离家的路程是多少千米?【考点】一次函数的应用.【分析】(1)直接根据图象上所给的数据的实际意义可求解;(2)由图象可知,s是t的正比例函数,设所求函数的解析式为s=kt(k≠0),把(45,5)代入解析式利用待定系数法即可求解;(3)由图象可知,小聪在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0),把(30,5),(45,0)代入利用待定系数法先求得函数关系式,再根据求函数图象的交点方法求得交点坐标即可.【解答】解:(1)由图象可知,小聪在泉港区图书馆查阅资料的时间为:30﹣15=15(分钟),故答案为:15;(2)由图象可知,s是t的正比例函数设所求函数的解析式为s=kt(k≠0)代入(45,5),得5=45k解得k=,故s与t的函数关系式s=t(0≤t≤45);(3)由图象可知,小军在30≤t≤45的时段内s是t的一次函数,设函数解析式为s=mt+n (m≠0)代入(30,5),(45,0),得,解得.∴s=﹣t+15(30≤t≤45)令﹣t+15=t,解得t=,当t=时,S=×=千米..答:当小聪与小明迎面相遇时,他们离家的路程是【点评】主要考查了一次函数的实际运用和读图能力.从图象中获得所需的信息是需要掌握的基本能力,还要会熟练地运用待定系数法求函数解析式和使用方程组求交点坐标的方法.25.如图,在平面直角坐标系中,A(a,0)、B(0,b)是矩形OACB的两个顶点.定义:如果双曲线y=经过AC的中点D,那么双曲线y=为矩形OACB的中点双曲线.(1)若a=3,b=2,请判断y=是否为矩形OACB的中点曲线?并说明理由.(2)若y=是矩形OACB的中点双曲线,点E是矩形OACB与中点双曲线y=的另一个交点,连结OD、OE,四边形ODCE的面积S=4,试求出k的值.【考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【分析】(1)求出点D(3,1)代入y=中判断即可;(2)设出点D(m,n),表示出点C的坐标,表示出矩形OACB的面积,再用三角形的面积和求出矩形OACB的面积,建立方程求解即可.【解答】解:(1)是,理由:a=3,b=2,∴A(3,0),B(0,2),∴C(3,2),∴AC的中点坐标为(3,1),当x=3时,y===1,∴AC的中点在双曲线y=的图象上,∴y=是为矩形OACB的中点曲线.(2)如图,∵点D,E在双曲线y=的图象上,∴S△OBE=k,S△OAD=k,∵四边形ODCE的面积S=4,∴矩形OACB的面积=k+4,∵y=是矩形OACB的中点双曲线,设点D(m,n),∴mn=k,C(m,2n),∴矩形OACB的面积为2mn=2k,∴2k=k+4,∴k=4,【点评】此题是反比例函数系数k的几何意义,主要考查了新定义,几何图形的面积,解本题的关键是用两种方法表示出矩形OACB的面积,求出k.26.已知正方形ABCD,AB=8,点E、F分别从点A、D同时出发,以每秒1m的速度分别沿着线段AB、DC向点B、C方向的运动,设运动时间为t.(1)求证:OE=OF .(2)在点E 、F 的运动过程中,连结AF .设线段AE 、OE 、OF 、AF 所形成的图形面积为S .探究:①S 的大小是否会随着运动时间为t 的变化而变化?若会变化,试求出S 与t 的函数关系式;若不会变化,请说明理由.②连结EF ,当运动时间为t 为何值时,△OEF 的面积恰好等于的S .【考点】四边形综合题.【分析】(1)根据正方形的性质得出OA=OD ,∠EAO=∠FDO=45°,求出AE=DF=t ,根据SAS 推出△EAO ≌△FDO 即可;(2)①延长EO 交DC 于M ,求出△AOE ≌△COM ,根据全等三角形的性质得出AE=CM=t ,根据S=S 四边形AEMF ﹣S △FOM 求出即可;②根据全等得出OE=OM ,求出S△EOF =S △EFM=16﹣4t ,即可得出方程16﹣4t=×16,求出即可.【解答】(1)证明:∵四边形ABCD 是正方形,∴OA=OD ,∠EAO=∠FDO=45°,∵点E 、F 分别从点A 、D 同时出发,以每秒1m 的速度分别沿着线段AB 、DC 向点B 、C 方向的运动,设运动时间为t ,∴AE=DF=t ,在△EAO 和△FDO 中∴△EAO ≌△FDO (SAS ),∴OE=OF ;(2)解:①S 的大小不会随着运动时间为t 的变化而变化,理由是:延长EO 交DC 于M ,∵四边形ABCD 是正方形,∴∠OAE=∠MCO=45°,OA=OC ,在△AOE 和△COM 中∴△AOE ≌△COM (ASA ),∴AE=CM=t ,∴S=S 四边形AEMF ﹣S △FOM=(t+8﹣t ﹣t )8﹣×(8﹣t ﹣t )4=16,所以S 的大小不会随着运动时间为t 的变化而变化;②∵△AOE ≌△COM ,∴OE=OM ,∴S △EOF =S △FOM =S △EFM =×(8﹣t ﹣t )8=16﹣4t ,∵△OEF 的面积恰好等于的S ,∴16﹣4t=×16,解得:t=,即当运动时间为t 为时,△OEF 的面积恰好等于的S .【点评】本题考查了正方形的性质,全等三角形的性质和判定,三角形的面积的应用,能综合运用知识点进行推理是解此题的关键,综合性比较强,难度偏大.。
八年级数学期末试卷答案1—5 CDCAB 6-10 ACDCA11. (m+3)(m - 3)12. x < 313. 十二14. 50°15. 12或2016. 5√6/217. (1) a(a-b)2 (2) x=2(增根) (3) -2<x≤618.图5 图6 图719.∵ABCD为平行四边形∴A D∥BC∴∠EAO=∠FCO且AO=C O……………2′又∠AOE=∠COF(对顶角相等)……………4′∴△AO E≌△COF(ASA)………………5′∴OE=OF………………6′20.∵AD平分∠BAC,∴∠EAD=∠CAD∵DE⊥AB∴∠DEA=90︒=∠ACB………………3′又AD=AD ∴Rt△ADE≌Rt△ADC………………5′∴AE=AC………………6′又AD平分∠BAC ∴AD是CE的垂直平分线………………8′21.解:设该地驻军原来每天加固x米………………1′依题有600/x+(4800-600)∕2x =9 ………………4′解这个分式方程得x=300 ………………7′答:该地驻军原来每天加固的米数是300米。
…………8′22. (1)不彻底…………2′,(x-2)4…………4′(2)令x²-2x=y,则原式=y(y+2)+1=y²+2y+1=(y+1)²=(x²-2x+1)²=[(x-1)²]²=(x-1)4………………8′23.(1)设BC边长为a.………………1′∵△ABC为Rt△且∠BAC=30︒∴AB=2a,由勾股定理得AC=√AB²-BC² =√3 a………………2′又∵△ABE为等边三角形且EF⊥AB∴F为AB中点,AF=a,又AE=2a由勾股定理得EF=√3 a ………………4′∴AC=EF ………………………………5′(2)∵△ACD为等边三角形∴∠DAC=60︒又∠BAC=30︒∴∠DAB=90︒………………………………6′又EF⊥AB∴∠DAF=∠EFA∴AD‖EF(内错角相等,两直线平行)………………8′又由(1)知AD=EF∴ADFE是平行四边形。
2016——2017学年度第二学期八年数学试题答案一、选择题:(每题2分,共16分)1、D2、B3、A4、D5、C6、B7、C8、A9、C 10、D 二、填空题:(每题2分,共16分) 11、3 12、4 13、96 14、2.3 15、y =-2x-2 16、 17、25 18、①②④ 三、解答题:(本题50分) 19、 原式= (6分)20、解:(1)∵四边形ABCD 是矩形,∴∠ABC=90°又∠ACB=30°, ∴AC=2AB ,设AB=x ,则在Rt △ABC 中, 有 ,解得,∴AB=,AC= (4分)(2)四边形BOCE 是菱形,理由是:∵BE ∥AC ,CE ∥BD ,∴四边形BOCE 是平行四边形, 又∵四边形ABCD 是矩形,AO=CO ,BO=DO ,AC=BD , ∴BO=CO ,∴平行四边形BOCE 是菱形 (8分) 21、解:(1)过点P 作PA ⊥x 轴于点A ,在Rt △PAM 中,PA=12,AM=14-9=5,则PM= (4分)(2)作图正确 (6分) 点N 坐标(23,12) (8分) 22、(1)a=5;m=6;p=8;q=7.5 (每个2分,共8分)(2)答案不唯一,正确即可;例如,八年级平均分高;中位数高; 方差小,成绩比较稳定等等 (10分)23、(1) (2分) (4分) (2)当时,有解得 (6分)当时,有 (8分)∵x 为正整数,∴当贡献奖奖状的个数小于等于25个时,选B 公司比较合算;当贡献奖奖状的个数多于25个时,选A 公司比较合算 (10分)四、解答题:(本题18分)24、解:(1) (1分)(2)①填表正确, (3分) 图像正确 (5分)② (1,2);1;2;减小;增大 (8分)(错一空扣一分)③ 设长方形的长为x ,周长为y ,由长方形面积为1,则它的宽为, 根据题意,,由②得,当x=1时,周长最小,最小值为4, ∴长方形的长和宽都为1时,周长为最小 (10分)3323210-222)2(3x x =+3=x 3321351222=+986.13504)102(8.41+=+++=x x x y 543.155.4)102(4.52+=++=x x x y 21y y >543.15986.13+>+x x 171525<x 21y y <171525>x 0≠x x 1)1(2xx y +=25、解:(1)证出 (3分) ∴∠EAF=45° (4分)(2)写出结论 (5分) 证出 (7分) (9分)(3)画出图形 (10分) 直接代入(2)式求值:MN=9 (12分)ADF AGF AGE ABE ∆≅∆∆≅∆,AHN AMN ∆≡∆222MN BM DN =+。
2016-2017学年江苏省常州市八年级(下)期末数学试卷一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)剪纸艺术是中华文化的瑰宝,下列剪纸图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.2.(2分)下列运算中,错误的是()A.=﹣ B.=﹣1C.=﹣1 D.=a3.(2分)下列事件中必然事件的个数有()①当x时非负实数时,≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月.A.0个 B.1个 C.2个 D.3个4.(2分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形5.(2分)若A(a,b)、B(a﹣1,c)是函数y=﹣图象上的两点,且a<0,则b与c的大小关系为()A.b<c B.b=c C.b>c D.无法判断6.(2分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO、BO的中点.若AC+BD=24cm,EF的长为3cm,则△OAB的周长是()A.16cm B.18cm C.20cm D.22cm7.(2分)如图,在平面直角坐标系中,正方形ABCD的顶点A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y轴上有一点P(0,2),作点P关于点A 的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此规律操作下去,则点P2017的坐标为()A.(2,0) B.(0,2) C.(0,﹣2)D.(﹣2,0)8.(2分)已知x=,y=,则x2+xy+y2的值为()A.2 B.4 C.5 D.7二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)使二次根式有意义的x的取值范围是.10.(2分)当x=时,分式的值为零.11.(2分)为了解中学生获取资讯的主要渠道,设置“A:手机,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,则该调查的方式是.(填普查或抽样调查)12.(2分)在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是.13.(2分)若是整数,则正整数n的最小值是.14.(2分)已知反比例函数y=﹣,下列结论:①图象必经过点(﹣1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>﹣2.其中正确的有.(填序号)15.(2分)如图,将△ABC绕顶点C逆时针旋转40°,顶点A恰好转到AB边上点E的位置,则∠DBC=.16.(2分)如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数y=(x>0)的图象上.若点B的坐标为(﹣2,﹣2),则k=.三、解答题(本大题共9小题,共68分,第17~19题每题8分,第20、21题每题6分,第22题8分,第23~24题每题7分,第25题10分,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)17.(8分)计算:(1)﹣|﹣3|+;(2)+(2+)•(2﹣).18.(8分)(1)计算:﹣;(2)先化简,再求值:(+)÷,其中x=2.19.(8分)解方程:(1)=;(2)﹣=8.20.(6分)为了解全市九年级学生某次数学模拟考试情况,现从全市30000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:分数段频数频率x<60200.1060≤x<70280.1470≤x<80540.2780≤x<90a0.2090≤x<100240.12100≤x<11018b110≤x<120160.08请根据以上图表提供的信息,解答下列问题:(1)表格中的a=,b=;(2)请补全频数分布直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市30000名九年级学生中本次数学模拟考试成绩为优秀的学生约有多少名?21.(6分)小琳、晓明两人在100m的跑道上匀速跑步训练,他们同时从起点出发,跑向终点.(1)设小琳速度为v(m/s),写出小琳跑完全程(100m)所用的时间t(s)与速度v(m/s)之间的函数关系式;(2)已知晓明的速度是小琳速度的1.25倍,两人跑完全程(100m),小琳要比晓明多用4s,用分式方程求小琳、晓明两人匀速跑步的速度?22.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE ∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,AC=2,求四边形AODE的周长.23.(7分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,6),B (3,n)两点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出不等式kx+b﹣>0的解集;(3)若点M在x轴上、点N在y轴上,且以M、N、A、B为顶点的四边形是平行四边形,请直接写出点M、N的坐标.24.(7分)请仔细阅读下面材料,然后解决问题:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如:,;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:,.我们知道,假分数可以化为带分数,例如:==2+=2,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如:==1+.(1)将分式化为带分式;(2)当x取哪些整数值时,分式的值也是整数?(3)当x的值变化时,分式的最大值为.25.(10分)如图,在平面直角坐标系中,四边形OABC为矩形,点A(0,8),C(6,0).动点P从点B出发,以每秒1个单位长的速度沿射线BC方向匀速运动,设运动时间为t秒.(1)当t=s时,以OB、OP为邻边的平行四边形是菱形;(2)当点P在OB的垂直平分线上时,求t的值;(3)将△OBP沿直线OP翻折,使点B的对应点D恰好落在x轴上,求t的值.2016-2017学年江苏省常州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分)1.(2分)剪纸艺术是中华文化的瑰宝,下列剪纸图案中,既不是中心对称图形也不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意,故此选项错误;B、不是轴对称图形,也不是中心对称图形,符合题意,故此选项正确;C、是轴对称图形,也是中心对称图形,不合题意,故此选项错误;D、是轴对称图形,不是中心对称图形,不合题意,故此选项错误.故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(2分)下列运算中,错误的是()A.=﹣ B.=﹣1C.=﹣1 D.=a【分析】根据分式的基本性质以及二次根式的性质计算即可求解.【解答】解:A、=﹣,正确,故本选项不符合题意;B、=﹣1,正确,故本选项不符合题意;C、=﹣1,正确,故本选项不符合题意;D、=|a|,错误,故本选项符合题意;故选:D.【点评】本题考查了二次根式的性质与化简,掌握二次根式的性质=|a|是解题的关键.也考查了分式的基本性质.3.(2分)下列事件中必然事件的个数有()①当x时非负实数时,≥0;②打开数学课本时刚好翻到第12页;③13个人中至少有2人的生日是同一个月.A.0个 B.1个 C.2个 D.3个【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:①当x时非负实数时,≥0是必然事件;②打开数学课本时刚好翻到第12页是随机事件;③13个人中至少有2人的生日是同一个月是必然事件,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(2分)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.5.(2分)若A(a,b)、B(a﹣1,c)是函数y=﹣图象上的两点,且a<0,则b与c的大小关系为()A.b<c B.b=c C.b>c D.无法判断【分析】根据反比例函数的性质:k<0时,在图象的每一支上,y随x的增大而增大进行分析即可.【解答】解:∵a<0,∴a﹣1<0,a>a﹣1,∵k=﹣1<0,∴在图象的每一支上,y随x的增大而增大,∵A(a,b)、B(a﹣1,c)是函数y=﹣图象上的两点,∴b>c,故选:C.【点评】此题主要考查了反比例函数图象的性质,关键是掌握反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.6.(2分)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO、BO的中点.若AC+BD=24cm,EF的长为3cm,则△OAB的周长是()A.16cm B.18cm C.20cm D.22cm【分析】根据平行四边形的性质可知OA=AC,OB=BD,求出OB+OA=12cm,由三角形中位线定理求出AB的长,即可得出△OAB的周长.【解答】解:∵▱ABCD的对角线AC,BD相交于点O,∴OA=AC,OB=BD∵AC+BD=24cm,∴OB+0A=12cm,∵点E,F分别是线段AO,BO的中点,∴AB=2EF=6cm,∴△OAB的周长=OA+OB+AB=12+6=18(cm);故选:B.【点评】本题主要考查了三角形中位线定理以及平行四边形的性质;熟练掌握平行四边形的性质,求出AB的长是解决问题的关键.7.(2分)如图,在平面直角坐标系中,正方形ABCD的顶点A(1,1),B(1,﹣1),C(﹣1,﹣1),D(﹣1,1),y轴上有一点P(0,2),作点P关于点A 的对称点P1,作点P1关于点B的对称点P2,作点P2关于点C的对称点P3,作点P3关于点D的对称点P4,作点P4关于点A的对称点P5,作点P5关于点B的对称点P6,…,按此规律操作下去,则点P2017的坐标为()A.(2,0) B.(0,2) C.(0,﹣2)D.(﹣2,0)【分析】首先求出点P1,P2,P3,P4的坐标,从而发现点的坐标以4为周期,作循环往复的周期变化,即可解决问题.【解答】解:∵点P坐标为(0,2),点A坐标为(1,1),∴点P关于点A的对称点P1的坐标为(2,0),点P1关于点B(1,﹣1)的对称点P2的坐标(0,﹣2),点P2关于点C(﹣1,﹣1)的对称点P3的坐标为(﹣2,0),点P3关于点D(﹣1,1)的对称点P4的坐标为(0,2),即点P4与点P重合了;∵2017=4×504+1,∴点P2017的坐标与点P1的坐标相同,∴点P2017的坐标为(2,0),故选:A.【点评】此题主要考查了点的坐标,解题的关键是首先探索出个别点的坐标的变化规律,然后从特殊到一般去发现一般规律,进而利用规律去解决问题.8.(2分)已知x=,y=,则x2+xy+y2的值为()A.2 B.4 C.5 D.7【分析】先把x、y的值代入原式,再根据二次根式的性质把原式进行化简即可.【解答】解:原式=(x+y)2﹣xy=(+)2﹣×=()2﹣=5﹣1=4.故选:B.【点评】本题考查的是二次根式的化简求值,熟知二次根式混合运算的法则是解答此题的关键.二、填空题(本大题共8小题,每小题2分,共16分)9.(2分)使二次根式有意义的x的取值范围是x≤1.【分析】根据被开方数为非负数解答即可.【解答】解:由题意得:1﹣x≥0,解得:x≤1.故答案为:x≤1.【点评】本题考查二次根式有意义的条件,难度不大,注意掌握二次根式的被开方数为非负数这个知识点.10.(2分)当x=﹣3时,分式的值为零.【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【解答】解:要使分式由分子x2﹣9=0解得:x=±3.而x=﹣3时,分母x﹣3=﹣6≠0.x=3时分母x﹣3=0,分式没有意义.所以x的值为﹣3.故答案为:﹣3.【点评】本题考查了分式的值为零的条件,分式有意义的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.11.(2分)为了解中学生获取资讯的主要渠道,设置“A:手机,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,则该调查的方式是抽样调查.(填普查或抽样调查)【分析】运用抽样调查的定义即可得出答案.【解答】解:先随机抽取50名中学生进行该问卷调查,则该调查的方式是抽样调查,故答案为:抽样调查.【点评】此题主要考查了抽样调查的定义,正确把握定义是解题关键.12.(2分)在一个不透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复试验后发现,摸到红球的频率稳定于0.2,那么可以推算出n大约是10.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,n=10.故估计n大约有10个.故答案为:10.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.13.(2分)若是整数,则正整数n的最小值是5.【分析】将45写成平方数乘以非平方数的形式,然后确定出n的最小值即可.【解答】解:=,∵是整数,∴正整数n的最小值是5.故答案为:5.【点评】本题考查了实数,主要利用了算术平方根的定义,难点在于分解因数.14.(2分)已知反比例函数y=﹣,下列结论:①图象必经过点(﹣1,2);②y随x的增大而增大;③图象在第二、四象限内;④若x>1,则y>﹣2.其中正确的有①③④.(填序号)【分析】根据反比例函数的性质,可得答案.【解答】解:①当x=﹣1时,y=2,即图象必经过点(﹣1,2);②k=﹣2<0,每一象限内,y随x的增大而增大;③k=﹣2<0,图象在第二、四象限内;④k=﹣2<0,每一象限内,y随x的增大而增大,若x>1,则0>y>﹣2,故答案为:①③④.【点评】本题考查了反比例函数的性质,熟记反比例函数的性质是解题关键.15.(2分)如图,将△ABC绕顶点C逆时针旋转40°,顶点A恰好转到AB边上点E的位置,则∠DBC=70°.【分析】根据旋转的性质,即可得到CB=CD,∠BCD=40°,再根据三角形内角和定理进行计算,即可得到∠DBC的度数.【解答】解:由旋转可得,CB=CD,∠BCD=40°,∴等腰三角形BCD中,∠DBC=(180°﹣∠BCD)=(180°﹣40°)=70°,故答案为:70°.【点评】本题主要考查了旋转的性质、等腰三角形的性质、三角形内角和定理的综合运用,熟练掌握旋转的性质是解决问题的关键.解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.16.(2分)如图,矩形ABCD的边分别与两坐标轴平行,对角线AC经过坐标原点,点D在反比例函数y=(x>0)的图象上.若点B的坐标为(﹣2,﹣2),则k=4.【分析】根据矩形的对角线将矩形分成面积相等的两个直角三角形,找到图中的所有矩形及相等的三角形,即可推出S四边形GOFD =S 四边形HBEO ,根据反比例函数比例系数的几何意义即可求出k=4即可.【解答】解:根据题意得:四边形ABCD 、AHOG 、HBEO 、OECF 、GOFD 为矩形, ∵AO 为四边形AHOG 的对角线,OC 为四边形OECF 的对角线,∴S △AGO =S △AOH ,S △OCF =S △OCE ,S △CAD =S △ABC ,∴S △CAD ﹣S △AOG ﹣S △OCF =S △ABC ﹣S △AOH ﹣S △OCE ,∴S 四边形GOFD =S 四边形HBEO =2×2=4,∵点D 在反比例函数y=(x >0)的图象上,∴k=S 四边形GOFD =4,故答案为:4.【点评】本题考查了反比例函数k 的几何意义、矩形的性质,熟练掌握矩形的性质,证出S 四边形GOFD =S 四边形HBEO 是解决问题的关键.三、解答题(本大题共9小题,共68分,第17~19题每题8分,第20、21题每题6分,第22题8分,第23~24题每题7分,第25题10分,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)17.(8分)计算:(1)﹣|﹣3|+;(2)+(2+)•(2﹣).【分析】(1)先利用二次根式的性质化简,然后去绝对值后合并即可;(2)先利用二次根式的除法法则和平方差公式运算,然后合并即可.【解答】解:(1)原式=2+﹣3+3=3;(2)原式=﹣1+4﹣2=+1.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)(1)计算:﹣;(2)先化简,再求值:(+)÷,其中x=2.【分析】(1)根据分式的运算法则即可求出答案.(2)先化简分式,然后将x的值代入即可求出答案.【解答】解:(1)原式====(2)当x=2时,∴原式=(+)•=•==2【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(8分)解方程:(1)=;(2)﹣=8.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:3x+3=x+2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:x﹣8+1=8x﹣56,解得:x=7,经检验x=7是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.(6分)为了解全市九年级学生某次数学模拟考试情况,现从全市30000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:分数段频数频率x<60200.1060≤x<70280.1470≤x<80540.2780≤x<90a0.2090≤x<100240.12100≤x<11018b110≤x<120160.08请根据以上图表提供的信息,解答下列问题:(1)表格中的a=40,b=0.09;(2)请补全频数分布直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市30000名九年级学生中本次数学模拟考试成绩为优秀的学生约有多少名?【分析】(1)直接利用=频率,进而得出答案;(2)直接利用(1)中所求,补全条形统计图即可;(3)直接利用样本估计总体进而得出答案.【解答】解:(1)由表格中数据可得,样本总人数为:20÷0.10=200(人),则a=200×0.2=40(人),b==0.09,故答案为:40,0.09;(2)如图所示:(3)由题意可得:(0.12+0.09+0.08)×30000=0.29×30000=8700(名),答:该市30000名九年级学生中本次数学模拟考试成绩为优秀的学生约有8700名.【点评】此题主要考查了频数分布直方图以及利用样本估计总体,正确求出样本总人数是解题关键.21.(6分)小琳、晓明两人在100m的跑道上匀速跑步训练,他们同时从起点出发,跑向终点.(1)设小琳速度为v(m/s),写出小琳跑完全程(100m)所用的时间t(s)与速度v(m/s)之间的函数关系式;(2)已知晓明的速度是小琳速度的1.25倍,两人跑完全程(100m),小琳要比晓明多用4s,用分式方程求小琳、晓明两人匀速跑步的速度?【分析】(1)利用路程、时间、速度之间的关系写出即可;(2)利用常量、变量的定义直接写出即可;(3)设出两人的速度,利用路程差8列出方程求解.【解答】解:(1)由题意t=.(2)设小琳速度为xm/s,则晓明的速度为1.25xm/s.由题意:﹣=4,解得x=5,经检验:x=5是分式方程的解,1.25x=,答:小琳、晓明两人匀速跑步的速度分别为5m/s,m/s.【点评】本题考查了反比例函数的应用及分式方程的应用,解题的关键是了解三个量之间的关系,学会构建分式方程解决问题.22.(8分)如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE ∥BD.(1)求证:四边形AODE是矩形;(2)若AB=2,AC=2,求四边形AODE的周长.【分析】(1)根据题意可判断出四边形AODE是平行四边形,再由菱形的性质可得出AC⊥BD,即∠AOD=90°,继而可判断出四边形AODE是矩形;(2)由菱形的性质和勾股定理求出OB,得出OD,由矩形的性质即可得出答案.【解答】(1)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=∠AOD=90°,∴四边形AODE是矩形;(2)解:∵四边形ABCD为菱形,∴AO=AC=1,OD=OB,∵∠AOB=90°,∴OB==,∴OD=,∵四边形AODE是矩形,∴DE=OA=1,AE=OD=,∴四边形AODE的周长=2+2.【点评】本题考查了菱形的性质、矩形的判定与性质、勾股定理、平行四边形的判定;熟练掌握矩形的判定与性质和菱形的性质是解决问题的关键.23.(7分)如图,一次函数y=kx+b与反比例函数y=的图象交于A(1,6),B (3,n)两点.(1)求反比例函数和一次函数的表达式;(2)根据图象写出不等式kx+b﹣>0的解集;(3)若点M在x轴上、点N在y轴上,且以M、N、A、B为顶点的四边形是平行四边形,请直接写出点M、N的坐标.【分析】(1)由A点坐标可求得m的值,可求得反比例函数解析式,则可求得B点坐标,由A、B两点坐标,利用待定系数法可求得直线AB的解析式;(2)结合函数图象可知不等式的解集即为一次函数图象在反比例函数图象上方时对应的x的取值范围,结合A、B坐标可求得答案;(3)当AB为平行四边形的边时,①当M在x轴正半轴,N在y轴正半轴时,过A作AC∥y轴,过B作BC∥x轴,可证明△ABC≌△NMO,则可求得OM和ON,②当M在x轴负半轴,N在y轴负半轴时,同理可求得OM和ON的长,则可求得M、N的坐标;当AB为对角线时,可求得M、N、A、B四点共线,不合题意.【解答】解:(1)反比例函数y=的图象过A(1,6),∴m=1×6=6,∴反比例函数解析为y=,把x=3代入可得n=2,∴B(3,2),设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,∴一次函数解析式为y=﹣2x+8;(2)不等式kx+b﹣>0可化为不等式kx+b>,即直线在反比例函数图象上方时所对应的自变量x的取值范围,∵A(1,6),B(3,2),∴不等式kx+b﹣>0的解集为1<x<3或x<0;(3)当AB为平行四边形的边时,①当M在x轴正半轴,N在y轴正半轴时,如图1,过A作AC∥y轴,过B作BC∥x轴,∵A(1,6),B(3,2),∴BC=3﹣1=2,AC=6﹣2=4,∵MN∥AB,且MN=AB,∴∠ONM=∠CAB,在△NOM和△ACB中∴△NOM≌△ACB(AAS),∴OM=BC=2,ON=AC=4,∴M(2,0),N(0,4);②当M在x轴的负半轴、N在y轴的负半轴时,同理可求得M(﹣2,0),N(0,﹣4);当AB为对角线时,设M(x,0),N(0,y),∵A(1,6),B(3,2),∴平行四边形的对称中心为(2,4),∴x+0=4,y+0=8,解得x=4,y=8,此时M(4,0),N(0,8),在y=﹣2x+8中,令y=0可得x=4,令x=0可得y=8,∴A、B、M、N四点共线,不合题意,舍去;综上可知以M、N、A、B为顶点的四边形是平行四边形时,M(﹣2,0),N(0,﹣4)或(2,0),N(0,4).【点评】本题为反比例函数的综合应用,涉及待定系数法、函数图象的交点、全等三角形的判定和性质、平行四边形的性质、方程思想及数形结合思想等知识.在(1)中注意待定系数法的应用,在(2)中注意数形结合,在(3)中确定出M、N的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.24.(7分)请仔细阅读下面材料,然后解决问题:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”.例如:,;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:,.我们知道,假分数可以化为带分数,例如:==2+=2,类似的,假分式也可以化为“带分式”(整式与真分式和的形式),例如:==1+.(1)将分式化为带分式;(2)当x取哪些整数值时,分式的值也是整数?(3)当x的值变化时,分式的最大值为.【分析】(1)仿照阅读材料中的方法加你个原式变形即可;(2)原式变形后,根据结果为整数确定出整数x的值即可;(3)原式变形后,确定出分式的最大值即可.【解答】解:(1)原式==2+;(2)由(1)得:=2+,要使为整数,则必为整数,∴x﹣1为3的因数,∴x﹣1=±1或±3,解得:x=0,2,﹣2,4;(3)原式==2+,当x2=0时,原式取得最大值.故答案为:【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.(10分)如图,在平面直角坐标系中,四边形OABC为矩形,点A(0,8),C(6,0).动点P从点B出发,以每秒1个单位长的速度沿射线BC方向匀速运动,设运动时间为t秒.(1)当t=16s时,以OB、OP为邻边的平行四边形是菱形;(2)当点P在OB的垂直平分线上时,求t的值;(3)将△OBP沿直线OP翻折,使点B的对应点D恰好落在x轴上,求t的值.【分析】(1)先有菱形的性质得出PC=BC=8,进而得出BP=16即可得出结论;(2)由线段的垂直平分线的性质得出PO=PB=t,再利用勾股定理即可求出结论;(3)分点P在x轴坐标轴和负半轴上,利用勾股定理即可建立方程求解.【解答】解:(1)如图1,∵A(0,8),∴OA=8,C(6,0),∴OC=6,∵四边形OABC是矩形,∴BC=OA=8,∵以OB、OP为邻边的平行四边形是菱形,∴CP=BC=OA=8,∴BP=BC+CP=16,t=16÷1=16s,故答案为16;(2)如图2,∵点P是OB的垂直平分线上,∴PO=PB=t,∴PC=BC﹣PB=8﹣t,在Rt△POC中,OC=6,根据勾股定理得,OC2+PC2=OP2,∴62+(8﹣t)2=t2,∴t=,(3)当点P在x轴的坐标轴上时,如图3,由折叠知,△OBP≌△ODP,∴PD=PB=t,OD=OB==10,∴CD=OD﹣OC=4,在Rt△PCD中,CD=4,PC=BC﹣PB=8﹣t,PD=t,根据勾股定理得,PC2+CD2=PD2,∴42+(8﹣t)2=t2,∴t=5,当点P在x轴负半轴上时,如图4,由折叠知,PB=PD=t,OD=OB=10,∴CD=OD+OC=16,PC=t﹣8,在Rt△PCD中,根据勾股定理得,PC2+CD2=PD2,∴(t﹣8)2+162=t2,∴t=20,即:满足条件的t的值为5s或20s.【点评】此题是一次函数综合题,主要考查了矩形的性质,菱形的性质,折叠的性质,勾股定理,垂直平分线定理,解(1)的关键是求出BP=2BC=16,解(2)的关键是利用线段的垂直平分线得出OP=PB,解(3)的关键是利用勾股定理建立方程求解,是一道常规题.。