第一学期中教学质量评估八年级数学附答案
- 格式:doc
- 大小:512.50 KB
- 文档页数:10
2022年秋季八年级教学过程质量监测数学试卷注意事项:1.本试卷分为试题卷和答题卷两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分组成,试题卷4页,答题卷4页,共8页。
满分100分。
考试时间:90分钟。
2.答卷前请将答题卷的密封线内项目填写清楚。
考试结束后请将答题卷交回。
第Ⅰ卷选择题(36分)一、选择题:(每小题3分,共36分,每小题给出四个答案中,只有一个符合题目要求,请把你认为正确的题号填入题后面的括号内)1、下列运算中,正确的是()A.B.C.=D.-102、到三角形三边的距离都相等的点是这个三角形的( )A.三条中线的交点B.三条高的交点C.三条内角平分线的交点D.有无数个3、如图,点EF在AC上,AE=CF.AD=CB,下列条件中不能推断△ADF≌△CBE的是( )A. ∠D=∠BB. ∠A=∠CC. BE=DFD. AD∥BC4、如图,已知在△ABC中,CD是AB边上的高线,BE平分ABC,交CD于点E,BC=10,DE=3则△BCE的面积等于( )A.10B.20C.15D.305、如图,是利用割补法求图形面积的示意图,下列公式中与之相对应的是( )A. (a+b)2=a2+2ab+b2B. (a-b)2 =a2-2ab+b2C. (a+b)(a-b)= a2- b2D.(ab)2= a2 b26、如图,在锐角三角形ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC', △AEB ≌△AEB',且C'D∥EB'∥BC,BE,CD相交于点F,若∠BAC=a,∠BFC=β,则a,β的关系为( )A.2a+β=1800B.2β-a=1800C.a+β=1500D.β-a=6007、若24×22=2m,则m的值为( )A.8B.6C.5D.28、已知多项式与2的乘积中不含2x项,则常数a的值是( )A.-1B.0C.1D.29、四张长为a、宽为b(a>b)的长方形纸片按如图所示的方式拼成一个边长为a+b的正方形,图中空白部分的面积为1S,阴影部分的面积为2S.若S1=22S,则a、b满足( )A.2a=5bB.2a=3bC.a=3bD.a=2b10、若一个多边的外角和与它的内角和相等,则这个多边形是( )A.三角形B.四边形C.五边形D.六边形11、三条笔直的公路将地面分成七块区域点且P到三条公路的距离相等,则这样的点P有()A.4个B.3个C.2个D.1个12、已知△ABC的三边长分别为3,4,5,△DEF的三边长分别为3,3x-2,2x+1,若这两个三角形全等,则x的值为( )A.2B.2或73C.73或32D.2或73或32第Ⅱ卷(非选择题,64分)二、填空题:(本大题共6个小题,每小题3分,共18分.将答案直接填写在题中横线上)。
包河区2019-2020学年第一学期期中教学质量检测八年级数学试卷一.选择题(本题共10小题,每小题3分,满分30分)1.在平面直角坐标系中,点A(-1,a2+1)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.若函数y=(k一4)x+5是一次函数,则k应满足的条件为()A.k>4B.k<4C.k=4D.k≠43.函数的自变量x的取值范围是()√x+3A.x>-3B.x≥-3C.x≠-3D.x≤-34.若点A(-1,a),B(-4,b)在一次函数y=-5x-3图象上,则a与b的大小关系是()A. a<bB. a>bC.a=bD.无法确定5.关于函数y=-3x+1,下列结论正确的是()A.图象必经过点(一3,1)B.图象经过第一、二、三象限C.当x>1时,y<0 D.y随x的增大而增大36.在平面直角坐标系中,过点(2,-1)的直线l经过一、二、四象限,若点(m,一2),(0,n)都在直线l上,则下列判断正确的是()A.m<0B.m>2C.n<-1D.n=07.在平面直角坐标系中,点P(x,y)在第一象限内,且x+y=8,点A的坐标为(6,0).设△OPA的面积为S,S与x之间的函数关系式是(.)A.S=-x+8(0<x<8)B.S=-3x+24(0<x<8)x+8(0<x<8)C.S=-3x+12(0<x<4)D.S=-138.如图,直线y=kx+b与y=mx+n分别交x轴于点(-0.5,0)B(2, 0),则不等式(kx+b)(mx+n)<0 的解集为()A.x>2B.0<x<2C.-0.5<x<2D.x<-0.5或x>29.广宇同学以每千克1.1元的价格从批发市场购进若干千克西瓜到周谷堆市场上销售,在销售了40千克之后,余下的打七五折全部售完,销售金额y(元)与售出西瓜的千克数x(千克)之间的关系如图所示,下列结论正确的是()A.降价后西瓜的单价为2元/千克B.广宇一共进了50千克西瓜C.售完西瓜后广字获得的总利润为44元D.降价前的单价比降价后的单价多0.6元10.如图,在△ABC中,E是BC上一点,BC=3BE,点F是AC的中点,若S△ABC=a,则S△ADF-S△BDE=()A.12a B. 13a C.16a D.112a (第8题)(第9题)(第10题)二.填空题(本题共5小题,每小题3分,满分15分)11.点Q在第四象限内,并且到x轴的距离为3,到y轴的距离为5,则点Q的坐标为.12.已知y+2与x-1成正比例关系,且当x=3时,y=2,则y=3时,x= .13.已知BD是△ABC的中线,AB=7,BC=3,且△ABD的周长为15,则△BCD的周长为.14.已知n为整数,若一个三角形的三边长分别是4n+31,n-13,6n,则所有满足条件的n值的和为.15.对于点P(a,b),点Q(c,d),如果a-b=c-d,那么点P与点Q就叫作等差点,例如:点P(1,2),点Q(-1,0),因为1-2=-1-0=-1,则点P与点Q就是等差点,如图在矩形(长方形)GHMN中,点H(3,5),点N(-3,-5),MN△y轴,HM△x轴,点P是直线y=x+b上的任意一点(点P不在矩形的边上),若矩形GHMN的边上存在两个点与点P是等差点,则b的取值范围为.三.解答题(本题共7小题,满分55分)16.(6分)在平面直角坐标系中,有A(-2,a+2),B(a-3,4) C(b-4,b)三点.(1)当AB△x轴时,求A、B两点间的距离;(2)当CD△x轴于点D,且CD=3时,求点C的坐标.17.(6分)如图,在△ABC中,△B=△ACB,△A=36°,线段CD和CE分别为△ABC的角平分线和高线,求△ADC、△DCE的大小.18.(7分)已知一次函数y=kx+b的图象与直线y=-2x+1平行,且经过点(-1,5)(1)该一次函数的表达式为;(2)若点N(a,b)在(1)中所求的函数的图象上,且a-b=6,求点N的坐标。
正定县2023-2024学年度第一学期期中质量检测八年级数学试卷一、选择题(本大题共16个小题,每小题2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的.)10,,,0.101001001……(相邻两个1之间依次多一个0),其中无理数有( )A .1个B .2个C .3个D .4个2.代数式,,,,,,中,属于分式的有()A .2个B.3个C .4个D .5个3x 的取值范围是( )A .B .C .D .4.精确到0.1,得到21.0的数是下面的( )A .21.12B .21.05C .20.95D .20.9455.若分式中的x ,y 都扩大原来的3倍,那么分式的值( )A .扩大为原来的9倍B .扩大为原来的3倍C .不变D .缩小到原来的6.如图,若两个三角形全等,图中字母表示三角形边长,则的度数为( )6题图A .40°B .50°C .60°D .70°7.如图,是嘉淇同学做的练习题,他最后的得分是( )π1325x 1π224x +223x -1x 12xx ++211x x --2x ≥2x <2x ≠-2x >232x yx y +-131∠(4)请写出一个无理数——7题图A .5分B .10分C .15分D .20分8.解分式方程时,去分母后变形为( )A .B .C .D .9.如图,将边长分别为2和1的矩形沿图中虚线剪开,拼成一个正方形,则该正方形的边长最接近整数( )9题图A .1B .2C .3D .410.在中,,为边上一点.将沿折叠,使点恰好落在边上的点处.若,,,则的周长是( )10题图A .6B .7C .8D .911.若运算的结果为整式,则“□”中的式子可能是( )A .B .C .D .12.若关于的方程的解为正数,则的取值范围是( )A .B .C .且D .且13.在和中,,,.已知,则( )A .40°B .40°或140°C .或D .14.老师上课提出问题:“某超市的一种瓶装饮料每箱售价为36元,五一期间对该瓶装饮料进行促销活动,买一箱送两瓶,这相当于每瓶按原价九折销售,求这家超市销售这种饮料的原价每瓶是多少元及每箱多少瓶?”以下为四位同学列出的方程,正确的是( )π-22311x x x++=--()()2231x x ++=-()2231x x -+=-()()2231x x -+=-()()2231x x -+=-Rt ABC △90ACB ∠=︒D AB ABC △CD A BC E 3AC =4BC =5AB =BDE △22x x y y x ÷+- y x-y x +1x 3x x 2111x m x x ++=--m 3m <3m >3m >1m ≠3m <1m ≠ABC △A B C '''△40B B '∠=∠=︒6AB A B ''==4AC A C ''==C n ∠=︒C ∠'=n ︒180n ︒-︒n ︒甲:设该品牌的饮料每瓶是元,则 乙:设该品牌饮料每箱瓶,则丙:设该品牌的饮料每瓶是元,则 丁:设该品牌饮料每箱瓶,则A .甲、丁B .甲、乙C .乙、丙D .甲、乙、丙15.如图,在和中,点A ,E ,B ,D 在同一直线上,,,只添加一个条件,能判定的是( )15题图A .B .C .D .16.如图,点在线段上,于点,于点,,且,,点从点开始以速度沿向终点运动,同时点以的速度从点开始,在线段上往返运动(即沿运动),当点到达终点时,、同时停止运动.过、分别作的垂线,垂足分别为、.设运动的时间为,当以、、三点为顶点的三角形与全等时,t 的值为( )s .16题图A .1B .1或3C .2或4D .1或4二、填空题(本大题共4小题,每小题3分,20题第一个空1分,第二个空2分,共12分,请把答案填在题中的横线上)17的平方根是______.18.是方程的解,则a 的值为______.19.化简:的结果为______.20.如图,在中,,.点在线段上运动(不与,重合),连接,作,交线段于点.(1)当时,______°;x 363620.9x x-=x 36360.92x x ⨯=+x ()0.936236x ⨯+=x 36360.92x x ⨯=+ABC △DEF △//AC DF AC DF =ABC DEF ≌△△BC DE =ABC D ∠=∠A DEF ∠=∠AE DB=C BD AB BD ⊥B ED BD ⊥D 90ACE ∠=︒7cm AC =8cm CE =P A 2cm/s AC C Q 3cm/s E EC E C E →→P P Q P Q BD M N s t P C M QCN △5x =122x x a=-+2211x x x+--ABC △3AB AC ==40B C ∠=∠=︒D BC D B C AD 40ADE ∠=︒DE AC E 120BDA ∠=︒DEC ∠=(2)当______时,.三、解答题(本大题共6小题,共56分.解答应写出必要的文字说明、证明过程或演算步骤)21.(本小题满分8分)以下是某同学化简分式的部分运算过程:解:原式①②③…(1)上面的运算过程中第______步出现了错误;(2)请你写出完整的解答过程.22.(本小题满分8分)已知点A ,B 在数轴上所对应的数分别为,,A ,B 两点关于原点对称.(1)当时,求的值;(2)若不存在满足条件的,求的值.23.(本小题满分8分)已知正数的两个平方根分别是和互为相反数,求的平方根.24.(本小题满分8分)如图,已知,,,.求的值.25.(本小题满分12分)为加快公共领域充电基础设施建设,某停车场计划购买A ,B 两种型号的充电桩.已知型充电桩比型充DC =ABD DCE ≌△△2113422x x x x +⎛⎫-÷ ⎪-+-⎝⎭()()1122223x x x x x ⎡⎤+-=-⋅⎢⎥+-+⎣⎦()()()()12222223x x x x x x x ⎡⎤+--=-⋅⎢⎥+-+-⎣⎦()()122223x x x x x +---=⋅+-8m x -78x x--2m =x x m a 3x +26x -2a b +EC AC =BCE DCA ∠=∠A E ∠=∠4BC =DC A B电桩的单价少0.3万元,且用12万元购买型充电桩与用18万元购买型充电桩的数量相等.(1)A ,B 两种型号充电桩的单价各是多少?(2)该停车场计划共购买20个A ,B 型充电桩,购买总费用不超过15万元,且型充电桩购买数量不超过12个.问:共有哪几种购买方案?哪种方案所需购买总费用最少?26.(本小题满分12分)如图所示,在中,,点是线段延长线上一点,且,点是线段上一点,连接,以为斜边作等腰,连接,且.(1)过点作,垂足为.①求证:②求证:;(2)如图2,若点是线段延长线上一点,其他条件不变,请写出线段,,之间的数量关系,并说明理由.图1 图2A B A Rt ABC △90C ∠=︒D CA AD AB =F AB DF DF Rt DFE △EA EA AB ⊥D DG AE ⊥G DEG EFA≌△△AE AF BC =+F BA AE AF BC正定县2023-2024学年度第一学期期中教学质量检测八年级数学答案一、选择题1--5DCDCC 6--10ABCAA 11--15DDCCDB二、填空题17.; 18.1; 19.; 20.(1)120°;(2)3三、解答题21.(本题满分8分)解:(1)③--------------------------------2分(2)原式--------------------------------4分----------------------------------------6分-----------------------------------------------8分22.(本题满分8分)解:(1)根据题意得:把代入得:----------------------1分去分母得:--------------------------------------2分解得:-------------------------------------------3分经检验,是分式方程的解.--------------------------4分(2)去分母得:------------------------------------------5分已知不存在满足条件的x 的值,则,--------------------------6分把代入得-------------------------------------------------------------7分2±2-()()1122223x x x x x ⎡⎤+--⋅⎢⎥+-+⎣⎦()()()()12222223x x x x x x x ⎡⎤+--=-⋅⎢⎥+-+-⎣⎦()()122223x x x x x +-+-=⋅+-()()32223x x x -=⋅+-12x =+7088m x x x-+=--2m =27088x x x -+=--()270x --=9x =9x =7088m x x x-+=--()70m x --=8x =8x =()70m x --=()870m --=解得----------------------------------------------------------8分23.(本题满分8分)解:∵正数a 的两个平方根分别是和∴--------------------------------------------2分∴----------------------------------------------------3分∴------------------------------------------4分∴,-------------------------------------------5分∴,-----------------------------------------------------6分∴------------------------------7分∴的平方根是------------------------------8分24.(本题满分8分)解:∵,∴---------------------------------------2分在和中------------------------------5分∴--------------------------------6分∴.--------------------------------------------------8分25.(本题满分12分)解:(1)设A 型充电桩的单价为x 万元,则B 型充电桩的单价万元,根据题意得----------------------------------4分解得,经检验是原方程的解,---------------------6分答:A 型充电桩的单价为0.6万元,则B 型充电桩的单价为0.9万元;(2)设购买A 型充电桩m 个,则购买B 型充电桩个,根据题意,得:-----------------------------------------------------------------9分解得:又因,且是整数-∴,11,12--------------------------------------------------------10分∴该停车场有3种购买方案,1m =3x +26x -()3260x x ++-=1x =()2316a x =+=()23430b b -+-=10b =21621036a b +=+⨯=2a b +6±BCE ACD ∠=∠ACB ECD ∠=∠ACB △ECD △A E AC ECBCA DCE ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA ACB ECD ≌△△4BC CD ==()0.3x +12180.3x x =+0.6x =0.6x =0.30.9x +=()20m -()0.60.92015m m +-≤10m ≥12m ≤10m =方案一:购买10个A 型充电桩、10个B 型充电桩;方案二购买11个A 型充电桩、9个B 型充电桩;方案三:购买12个A 型充电桩、8个B 型充电桩.----------------------------------------11分∵A 型机床的单价低于B 型机床的单价,∴购买方案三总费用最少,最少费用(万元)--------------------------12分26.(本题满分12分)证明(1)∵①,∴,∵,∴∴---------------------------2分在△DEG 和△EFA 中,∴---------------------------4分②证明:∵,,∴,∵,,∴----------------------6分∴,∵,∴,∴-----------------------8分(2),--------------------------------9分理由如下,如图2,过点D 作,交AE 的延长线于点G ,则,∵,∴,∵△DEE 是以DF 为斜边的等腰直角三角形,∴,,∴,∴,∴,---------------------10分∴,∵,∴,∴------------------------------------11分120.680.914.4=⨯+⨯=DG AE ⊥90DEG EDG ∠+∠=︒90DEF ∠=︒90DEG AEF ∠+∠=︒EDG FEA ∠=∠DGE EAF EDG FEADE EF ∠=∠∠=∠=⎧⎪⎨⎪⎩()AAS DEG EFA ≌△△90GDA GAD ∠+∠=︒90GAD BAC ∠+∠=︒GDA BAC ∠=∠AD AB =90DGA C ∠=∠=︒()AAS GDA CAB ≌△△BC AG =DEG EFA ≌△△EG AF =AE AG GE AF BC =+=+BC AE AF =+DG AE ⊥90DGE ∠=︒AE AB ⊥90EAF DGE ∠=∠=︒90DEF ∠=︒DE EF =90GDE GED GED AEF ∠+∠=∠+∠=︒GDE AEF ∠=∠()AAS GDE AEF ≌△△GE AF =90DGE EAF ∠=∠=︒//DG AB GDA CAB ∠=∠在和中,∴,∴,∴------------------------------------12分GDA∠CAB∠DGA CGDA CABAD AB∠=∠∠=∠=⎧⎪⎨⎪⎩()AASGDA CAB≌△△BC AG= BC EG AE AF AE=+=+。
2022-2023学年八年级第一学期期中考试数学(人教版)(总分120分,考试时间120分钟)一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.钢架雪车是2022年北京冬奥会的比赛项目之一.下面这些钢架雪车运动标志是轴对称图形的是( )2.在平面直角坐标系中,点A(−1,4)关于x轴对称的点的坐标为( )A.(1,4)B.( −1,4)C.(0,−4)D.(−1,−4)3.下列正多边形中,内角和是540°的是( )4.如图,用纸板挡住部分三角形后,能用尺规画出与此三角形全等的三角形,其全等的依据是( )A.ASAB.AASC.SASD.HL5.若α为正六边形的一个外角,则α的度数为( )A.45°B.50°C.60°D.72°4题图A5题图B E F C6.如图,△ABF ≌△ACE ,点B 和点C 是对应顶点,则下列结论中不一定...成立的是() A.∠B=∠C B.BE=CF C.∠BAE=∠CAF D.AE=EF7.如图,物业公司计划在小区内修建一个电动车充电桩,要求到A ,B ,C 三个出口的距离都相等,则充电桩应建在( )A.△ABC 的三条高的交点处B.△ABC 的三条角平分线的交点处C.△ABC 的三条中线的交点处D.△ABC 的三条边的垂直平分线的交点处 8.如图,E 是△ABC 的边AC 的中点,CF ∥AB ,连接FE 并延长交AB 于点D ,若AB=9,CF=6,则BD 的长为( )A.1.5B.2C.3D.3.59.如图,在△ABC 中,CD 是边AB 上的高,BE 平分∠ABC ,交CD 于点E ,若BC=10,DE=3,则△BCE 的面积为( )A.14B.15C.18D.30 10.具备下列条件的△ABC ,不是..直角三角形的是( ) A.∠A ︰∠B ︰∠C=5︰2︰3 B.∠A −∠C=∠B C.∠A=∠B=2∠C D.∠A=12∠B=13∠C11.如图,△ABC 与△A 1B 1C ,关于直线MN 对称,P 为MN 上任一点(P 不与AA 1共线),下列结论不正确...的是( ) A.AP=A 1P B.△ABC 与△A 1B 1C 1的面积相等 C.MN 垂直平分线段AA 1 D.直线AB ,A 1B 1的交点不一定在MN 上 12.如图所示,已知在△ABC 中,∠C=90°,AD=AC ,DE ⊥AB 交BC 于点E ,若∠B=28°,A8题图BCEFD 7题图ABC9题图则∠AEC=( )A.28°B.59°C.60°D.62°13.如图,将三角形纸片ABC 翻折,点A 落在点A ´的位置,折痕为DE.若∠A=30°,∠BDA ´=80°,则∠CEA ´的度数为( )A.15°B.20°C.30°D.40°14.如图,小亮和小明分别用尺规作∠APB 的平分线PQ ,则关于两人的作图方法,下列判断正确的是( )A.小亮、小明均正确B.只有小明正确C.只有小亮正确D.小亮、小明均不正确15.如图,AD 为△ABC 的中线,DE 平分∠ADB ,DF 平分∠ADC ,BE ⊥DE ,CF ⊥DF ,下列结论正确的有( )①∠EDF=90°;②∠BAD=∠CAD ;③△BDE ≌△DCF ;④EF ∥BC. A.4个 B.3个 C.2个 D.1个16.有一道题目:“如图,∠AOB=60°,点M ,N 分别在OA ,OB 上运动(不与点O 重合),13题图A CBDE A ´A14题图APP B BQQ小明小亮11题图A MN CBP A 1B 1C 112题图ME 平分∠AMN ,ME 的反向延长线与∠MNO 的平分线交于点F ,在点M ,N 的运动过程中,求∠F 的度数.”甲的解答:∠F 的度数不能确定,它随着点M ,N 的运动而变化,且随∠OMN 的增大而减小;乙的解答:∠F 始终等于45°,下列判断正确的是( )A.甲说的对B.乙说的对C.乙求的结果不对,∠F 始终等于30°D.两人说的都不对,凭已知条件无法确定∠F 的值或变化趋势二、填空题(本大题共3个小题,每小题3分,共9分.其中18小题第一空2分,第二空1分;19小题每空1分)17.如图,AB=AC ,点D ,E 分别在AB ,AC 上,连接BE ,CD ,要使△ABE ≌△ACD ,则添加的条件是_______.(只需填一个即可)18.如图,在△ABC 中,AB 的垂直平分线交AC 于点D ,若△BCD 的周长为5,BC=2,则AC 的长为_______,边AB 长的取值范围是_______.19.如图,在△ABC 中,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AD 于点E.17题图ACEDB18题图19题图ABCD E16题图A EBFMON 15题图(1)若∠C=50°,∠BAC=60°,则∠ADB的度数为_______.(2)若∠BED=45°,则∠C的度数为_______.(3)猜想∠BED与∠C的数量关系为_______.三、解答题(本大题共7个小题,共69分.解答应写出文字说明、证明过程或演算步骤)20.已知一个多边形的边数为n.(1)若n=7,求这个多边形的内角和.比一个四边形的外角和多90°,求n的值.(2)若这个多边形的内角和的1421.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,−4),B(3,−3),C(1,−1).(1)画出△ABC关于y轴对称的△A1B1C1.(2)写出(1)中所画的△A1B1C1的各顶点坐标.(3)连接CC1,BB1,则四边形BCC1B1的面积为_______.22.如图,在Rt△ABC中,∠ACB=90°,D为边AB上一点.将△ACB沿CD折叠,使点A恰好落在边BC上的点E处.(1)若AC=6,BC=8,AB=10,求△BDE 的周长. (2)若∠B=37°,求∠CDE 的度数.23.已知:如图,在△ABC 中,∠ABC 和∠ACB 的角平分线相交于点P ,且PE ⊥AB ,PF ⊥AC ,垂足分别为E 、F. (1)求证:PE=PF.(2)若∠BAC=60°,连接AP ,求∠EAP 的度数.24.在△ABC 中,AF 平分∠BAC ,CD ⊥AF ,垂足为F ,与AB 交于点D.(1)如图1,若∠BAC=80°,∠B=40°,求∠BCD 的度数. (2)如图2,在△ABC 内部作∠ACE=∠B ,求证:∠BCD=∠DCE.A图2图1AAD BEC25.如图,AE=AF ,AE ⊥AF ,点E ,F ,B 在同一直线上,AB=AC ,∠BAC=90°.(1)判断△AEB 与△AFC 是否全等?若全等,请给出证明;若不全等,请说明理由. (2)当EF 和BF 满足什么数量关系时,CE=CB?请给出结论并说明理由.26.【问题提出】如图1,△ABC 是直角三角形,∠BAC=90°,AB=AC ,直线l 经过点A ,分别过点B ,C 向直线l 作垂线,垂足分别为D ,E.求证:△ABD ≌△CAE.【变式探究】若图1中的点B ,C 在直线l 的两侧,其他条件不变(如图2所示),判断△ABD 与△CAE 是否依然全等,并说明理由.【深入思考】如图3,在△ABC 中,AB=AC ,直线l 经过点A ,且点B ,C 位于直线l 的两侧,若∠BDA+∠BAC=180°,∠BDA=∠AEC ,判断线段BD ,CE ,DE 之间的数量关系,并加以说明.图1l图2图3ACD E BlF2022-2023学年八年级第一学期期中考试数学(人教版)(总分120分,考试时间120分钟)一、选择题(本大题共16个小题.1~10小题每题3分,11~16小题每题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.钢架雪车是2022年北京冬奥会的比赛项目之一.下面这些钢架雪车运动标志是轴对称图形的是( )1.解:D 是轴对称图形,关于对称轴两侧对称且能完全重合,故选D 。
姓名 准考证号 2023—2024学年第一学期八年级教学质量检测(一) 数 学(北师版) 注意事项:1、本试卷共6页,满分120分,考试时间90分钟。
2、答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置。
3、答案全部在答题卡上完成,答在本试卷上无效。
4、考试结束后,将本试卷和答题卡一并交回。
一.选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.27的立方根是( )A .3B .±3C .√3D .±√32.要使二次根式√a +1有意义,a 的值可以是( ) A .﹣1 B .﹣2 C .﹣3D .﹣4 3.下列二次根式是最简二次根式的是( )A .√2B .√4C .√8D .√124.下列运算中,正确的是( )A .√2+√3=√5B .2+√3=2√3C .(√3)2=3D .√(−2)2=−25.如图是课堂上同学们在探究勾股定理时用到的图形,已知网格中小正方形的边长为1,则线段AB 的长为( )A .√13B .5C .9D .136.直角三角形的两条直角边的长分别为6,8,则其斜边上的高为( )A .6B .8C .12D .2457.在勾股定理的学习过程中,我们已经学会了运用如图图形,验证著名的勾股定理,这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是( )A .统计思想B .分类讨论思想C .数形结合思想D .函数思想8.一个数的两个平方根分别是2a﹣1与﹣a+2,则这个数是()A.﹣1B.3C.9D.﹣39.估计√15−1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间10.在我国古代数学名著《算法统宗》里有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和身高为5尺的人一样高,秋千的绳索始终是拉直的,试问绳索有多长?”设绳索长为x尺,则所列方程为()A.x2=102+(x-5-1)2 B.x2=(x-5)2+102 C.x2=102+(x+1-5)2 D.x2=(x+1)2+102二.填空题(本大题共5个小题,每小题3分,共15分)11.比较大小:6 ▲√37(用“>”或“<”号填空).12.如图所示,已知OA=AB=BC=CD=1cm,那么线段OD的长度是▲cm.13.如图,一只蚂蚁从长、宽都是4,高是8的长方体纸箱的A点沿纸箱爬到B点(点B为所在棱的中点),那么它所爬行的最短路线的长度是▲14.对角线互相垂直的四边形叫做“垂美”四边形,现有如图所示的“垂美”四边形ABCD,对角线AC,BD交于点O.若AD=2,BC=5,则AB2+CD2=▲.15.如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF.则△ABE的面积为▲ .15题12题13题14题三.解答题(本大题共8小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(1)计算:√32+√8−√50;(2)下面是小文同学进行二次根式混合运算的过程,请认真阅读,完成相应的任务:解:(√3−√2)2×(5+2√6)=(3−2√6+2)×(5+2√6) (1)=(5−2√6)×(5+2√6) (2)=25﹣12 (3)=13 (4)任务:①上述解答过程中,第1步依据的乘法公式为▲(用字母表示);②上述解答过程,从第▲步开始出错,具体的错误是▲;③计算的正确结果为▲.17.如图,在电线杆AB上的点C处,向地面拉有一条10m长的钢缆CD,地面固定点D到电线杆底部的距离BD=6m,AB⊥BD于B,电线杆上的固定点C到电线杆顶端A的距离为2.5m,求电线杆的高度AB.18.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来400m2的正方形场地改建成315m2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.19.如图,在2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,求:(1)AB的长;(2)AB边上的高.20.先来看一个有趣的现象:√223=√83=√22×23=2√23,这里根号里的因数2经过适当的演变,2竟“跑”到了根号的外面,我们不妨把这种现象称为“穿墙”,具有这一性质的数还有许多,如:√338=3√38、√4415=4√415等等(1)请你写一个有“穿墙”现象的数,并验证;(2)你能只用一个正整数n(n≥2)来表示含有上述规律的等式吗?证明你找到的规律.21.阅读与思考三国时期吴国的数学家赵爽创建了一幅“弦图”,利用面积法给出了勾股定理的证明.实际上,该“弦图”与完全平方公式有着密切的关系.如图2,这是由8个全等的直角边长分别为a,b,斜边长为c的三角形拼成的“弦图”.(1)在图2中,正方形ABCD的面积可表示为▲,正方形PQMN的面积可表示为▲.(用含a,b的式子表示)(2)请结合图2用面积法说明(a+b)2,ab,(a﹣b)2三者之间的等量关系.(3)已知a+b=5,ab=4,求正方形EFGH的面积.22.综合与实践如图1,教材P21页有这样一个探究:把两个边长为1dm的小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就可以得到一个面积为2dm2的大正方形.试根据这个研究方法回答下列问题:(1)所得到的面积为2dm2的大正方形的边就是原先边长为1dm的小正方形的对角线长,因此,可得小正方形的对角线长为▲;(2)由此,我们得到了一种方法,能在数轴上画出无理数所对应的点,则图2中A,B两点表示的数为▲,▲;(3)通过动手操作,小张同学把长为5,宽为1的长方形进行裁剪,拼成如图3所示的一个正方形.请用(2)中相同的方法在两条数轴上分别找到表示√5以及√5−3的点.(作图过程中标出必要线段长)23.综合与探究问题情境:“综合实践”课上,老师提出如下问题:如图,在△ABC中,∠ACB=90°,AC=6cm,AB=10cm.动点P从点A出发,沿着A→C→B→A的路径,以每秒2cm的速度运动,当P回到A点时运动结束,设点P运动的时间为t秒.试求:当t=2时,求△BPC的面积数学思考:(1)请你解答老师提出的问题深入探究:(2)①若AP平分∠CAB,求t的值;②若点P运动到边AB,且△ACP是等腰三角形,请直接写出t的值.备用图。
2023~2024学年第一学期八年级期中教学质量检测数学试题(2023.11)考试时间120分钟满分150分第Ⅰ卷(选择题共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在平面直角坐标系中,点在()A.第一象限B.第二象限C.第三象限D.第四象限2.下列各式中,是最简二次根式的是()ABCD3.下列关于的函数是一次函数的是()A.B.C.D.4.是下面哪个二元一次方程的解()A.B.C.D.5.下列计算正确的是()ABCD6.一次函数的图象过点,且随的增大而减小,则的值为()A.B.或2C.1D.27.将第一象限的“小旗”各点的横坐标保持不变,纵坐标分别乘以,符合上述要求的图形是()A.B.C.D.8.某校规定学生体测成绩由三部分组成:长跑占成绩的,50米跑占成绩的,立定跳远占成绩的.小明上述三项成绩依次是92分,100分,80分,则小明本次的体测成绩为()分.A.95B.93C.91D.899.一次函数与的图象如图所示,下列选项正确的是()()1,2Ax2yx=y=21y x=-52y x=-53xy=⎧⎨=⎩27x y-=2y x=-+2x y=--231x y-=-+===2+=()20y mx m m=+≠()0,4y x m2-2-1-50%25%25%1y kx b=+2y mx n=+第9题图①对于函数来说,随的增大而减小;②函数的图象不经过第一象限;③A .①②B .①③C .②③D .①②③10.两地相距240千米,早上9点,甲车从地出发去地,20分钟后,乙车从地出发去地.甲、乙两车离开各自出发地的路程(千米)与甲车出发的时间(小时)之间的关系如图所示,下列描述中不正确的有()个.第10题图①甲车的平均速度是60千米/小时;②乙车的平均速度是80千米/小时;③甲车与乙车在早上10点相遇;④两车在10:40或10:58时相距20千米.A .1B .2C .3D .4第Ⅱ卷(非选择题共110分)二、填空题(本大题共6个小题,每小题4分,共24分.)11.如图,在“笑脸”的“嘴巴”上找一格点,这一格点的坐标可以为______(写出一点即可).第11题图12.赵老师每天登录“学习强国”进行学习,在获得信息和知识的同时,还能获得“点点通”奖励.上表是王1y kx b =+s t y kx n =+22k m n b -=-AB A B B A 12s s 、t老师最近一周每日“点点通”奖励情况,这组数据的平均数是______点.星期一二三四五六日“点点通”(点)15202523211719第12题图13.列方程组解题:“今有马二、牛一,直金七两;马三、牛二,直金十二两.马、牛各直金几何?”其大意是:2匹马,1头牛,一共价值7两;3匹马,2头牛,一共价值12两,问每匹马、每头牛各价值多少两?设每匹马两,每头牛两.根据题意,可列方程组为______.14.直线与直线相交于点,则关于的方程组的解为______.15.下表列出了一项实验的统计数据(单位:):5080100150 (30)455580…它表示皮球从一定高度落下时,弹跳高度是下落高度的一次函数,那么变量与之间的关系式为______.16.如图,在平面直角坐标系中,直线表达式为,点是直线上一点,直线过点,且与直线的夹角,则直线的表达式为______.第16题图三、解答题(本大题共10个小题,共86分.请写出文字说明、证明过程或演算步骤.)17.(本小题满分6分)计算:(1);(2.18.(本小题满分6分)解方程组:(1);(2).19.(本小题满分6分)x y 1y x =+y mx n =+()1,M b ,x y 1x yy mx n+=⎧⎨-=⎩cm x yy x y x AB 13y x =()3,1M AB CD M AB 45AMC ∠=︒CD (22++127x y x y =+⎧⎨+=⎩351458x y x y -=-⎧⎨+=⎩和都是方程的解,求与的值.20.(本小题满分8分)如图,直线是一次函数的图象,且经过点和点.第20题图(1)求和的值;(2)求直线与两坐标轴所围成的三角形的面积.21.(本小题满分8分)如图,在平面直角坐标系中,.第21题图(1)作出;(2)作出关于轴的对称图形;(3)求的面积.22.(本小题满分8分)2023年中秋、国庆双节假期期间,济南趵突泉景区共纳客200多万人次,为迎接游客,甲、乙两个纪念品商店对标价都是每个10元纪念印章推出优惠活动:甲商店购买5个以上,从第6个开始按标价的9折卖:乙商店从第1个开始就按标价的9.5折卖.(1)直接写出两商店优惠后的价格(元)与购买数量(个)的关系式();(2)小明要买8个纪念印章,到哪个商店购买比较省钱,请说明理由;21x y =-⎧⎨=⎩14x y =⎧⎨=⎩ax y b -=a b l y kx b =+()0,4A ()5,2B --k b l ()()()4,1,3,3,2,2A B C ----ABC △ABC △y 111A B C △111A B C △y x 5x >(3)若纪念印章的成本为每个7元,请写出甲商店的利润(元)与卖出数量(个)的关系(卖出5个以上).23.(本小题满分10分)2023年10月1日是中华人民共和国成立74周年,学校开展了“迎国庆·弘扬中华传统文化”知识竞赛活动,学校从初中三个年级各随机抽取10人进行相关测试,获得了他们的成绩(单位:分),并对数据(成绩)进行整理、描述和分析,下面给出了相关信息:a .30名同学中华传统文化知识测试成绩的统计图如图1:图1b .30名同学中华传统文化知识测试成绩的频数分布直方图如图2(数据分成6组:,).图2c .测试成绩在这一组的是:70 72 72 74 74 74 75 77d .小明的中华传统文化知识测试成绩为77分.根据以上信息,回答下列问题:(1)测试成绩在这一组的同学成绩的众数为______分;(2)小明的测试成绩在抽取的30名同学的成绩中从高到低排名第______名;(3)抽取的30名同学的成绩的中位数为______分;(4)序号(见图1横轴)为1-10的学生是七年级的,他们成绩的方差记为;序号为11-20的学生是八年级的,他们成绩的方差记为;序号为21-30的学生是九年级的,他们成绩的方差记为.直接写出①,②,③中最小的是______(填序号);(5)成绩80分及以上记为优秀,若该校初中三个年级1800w x 4050x ≤<5060,6070,7080,8090,90100x x x x x ≤<≤<≤<≤<≤<7080x ≤<7080x ≤<21s 22s 23s 21s 22s 23s名同学都参加测试,请估计成绩优秀的同学人数.24.(本小题满分10分)根据以下素材,探索完成任务.如何设计布料剪裁方案?素材1图1中是第31届世界大学生夏季运动会吉祥物“蓉宝”玩偶,经测量,制作该款吉祥物头部所需布料尺寸为,身子布料尺寸.图2是两部分布料的尺寸示意图.图1图2素材2某工厂制作该款式吉祥物,经清点库存时发现,需在市场上购进某型号布料加工制作该款式的玩偶.已知该布料长为,宽为.(剪裁时不计损耗)我是布料剪裁师任务一拟定剪裁方案若要不造成布料浪费,请你设计出一匹该布料的所有剪裁方案:方案一:剪裁头部布料16张和身子布料0张.方案二:剪裁头部布料______张和身子布料______张.方案三:剪裁头部布料______张和身子布料______张.任务二解决实际问题工厂目前已有裁剪好的12张头部布料和4张身子布料,经商议,现需购买一批该型号布料,其中一部分按照方案二裁剪,另一部分按照方案三裁剪,一共制作700个“蓉宝”玩偶.请问:需要购买该型号布料共多少匹(恰好全部用完)?25.(本小题满分12分)为激发学生们对科技的好奇心和探索欲,培养学生的创新意识和创新精神,某学校开展了“智能小车实验探究”50cm 15cm ⨯50cm 40cm ⨯240cm 50cm活动.某小组观察探究小车运动中的函数关系,如图,在一条长为的水平直线轨道上,放置一辆长为的智能小车,开始时小车左端与处挡板重合,然后以的速度匀速向右行驶,当小车接触到处的挡板时因为要改变方向需停顿,然后以相同的速度返回,至再次与处的挡板接触时小车停止运动.在这个过程中,设小车的右端与处挡板的距离为,小车出发后的时间为,请根据所给条件解决下列问题:第25题图(1)小车运动时间为时,的值为______;(2)小车从处驶向处的过程中,求与的函数表达式;(3)当小车左端与处挡板的距离比小车右端与处挡板距离的2倍多时,请求出的值.26.(本小题满分12分)如图,直线与轴、轴分别交于点,直线与轴、轴分别交于点.第26题图第26题备用图(1)直线过定点的坐标为______(填写合适的选项);A .B .C .D .(2)若直线将的面积分为两部分,请求出的值.(3)当时,将直线沿直线作轴对称得直线,此时直线与轴平行,直接写出此时的值.初二年级期中检测数学试题参考答案(2023.11)一、选择题(本大题共10个小题,每小题4分,共40分.)50cm 4cm A 2cm /s B 1s A B ()cm s ()s t 3s s cm B A s t A B 4cmt 1:l y =+x y ,60A B BAO ∠=︒、2:l y kx k =-+x y C D、y kx k =-+M ()1,3(32⎛⎝(2,2l AOB △1:7k 0k >2l 1l 3l 3lx 2:l y kx k =-+k题号12345678910答案ACDABABCDC二、填空题(本大题共6个小题,每小题4分,共24分.)题号111213141516答案答案不唯一20三.解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)17.(满分共6分)(1)(218.(满分共6分)(1)解:将①代入②得:,解得:将代入①得:原方程组的解为(2)解:由①+②得:,解得:将代入②得:,解得:原方程组的解为19.(满分共6分)解:将代入,得:()0,2-273212x y x y +=⎧⎨+=⎩12x y =⎧⎨=⎩152y x =+1522y x =-+()2222431+=-=-=0+=-+=127x y x y =+⎧⎨+=⎩①②127y y ++=2y =2y =213x =+=∴32x y =⎧⎨=⎩351458x y x y -=-⎧⎨+=⎩①②77x =1x =1x =458y +=45y =∴145x y =⎧⎪⎨=⎪⎩21x y =-⎧⎨=⎩ax y b -=21a b--=将代入,得:解得:20.(满分共8分)解:(1)将点和点代入得:解得:,直线的表达式为(2)点把代入,得解得:点,即点21.(满分共8分)解:(1)即为所求;(2)即为所求;(3)22.(满分共8分)解:(1)14x y =⎧⎨=⎩ax y b -=4a b -=1,3a b ==-()0,4A ()5,2B --y kx b=+452b k b =⎧⎨-+=-⎩654k b ⎧=-⎪⎨⎪=⎩6,45k b ∴==∴l 645y x =-+ ()0,4,4A OA ∴=0y =645y x =+6405x +=103x =-∴10,03C ⎛⎫- ⎪⎝⎭103OC = ()0,4,4A OA ∴=11102042233AOC S OA OC ∴=⋅=⨯⨯=△ABC △111A B C △1111117251523122222A B C S =⨯-⨯⨯-⨯⨯-⨯⨯=△()500.910595y x x =+⨯⨯-=+甲0.95109.5y x x=⨯=乙(2)到乙商店购买较省钱把代入得:(元)把代入得:(元),到乙商店购买较省钱(3)23.(满分共10分)解:(1)74(2)11(3)73(4)③(5)(人)答:成绩优秀的同学人数为600人.24.(满分共10分)解:任务一:设一卷该布料裁切头部布料张,身子布料张,,,为非负整数,或或故答案为:8 30 6(方法二和方法三可以互换位置)任务二:设用卷该布料裁切头部布料8张,身子布料3张,用卷该布料裁切头部布料0张,身子布料6张,解得:(卷),需要购买该布料159卷.25.(满分共12分)解:(1)40(2)(秒)(3)①当小车从到运动时:解得:②当小车从到运动时:解得:或26.(满分共12分)解:(1)B8x =y 甲98577y =⨯+=甲8x =y 乙9.5876y =⨯=乙7677< ∴95725w x x x =+-=+10180060030⨯=m n 1540240m n +=4883nm -∴=,m n 160m n =⎧∴⎨=⎩83m n =⎧⎨=⎩0,6m n =⎧⎨=⎩x y 870012,367004x x y =-⎧⎨+=-⎩8673x y =⎧⎨=⎩8673159+= ∴()504223-÷= 23124∴+=()224s t ∴=⨯-248s t ∴=-A B ()224624t t =⨯-+16t =B A ()()50424822484t t ---=⨯-+31t =16t ∴=31t =(2)将代入得:将代入得:直线过定点,直线也过定点,是两直线的交点直线将的面积分为两部分,①当时,②当时,(3)0x=y =+y=(0,,B OB ∴=0y=y =+=4x ()4,0,4A OA ∴=11422AOB S OA OB ∴=⨯⨯=⨯⨯=△ 2l (M 1l (M M ∴ 2l AOB △1:70k>18BMD AOB S S ∴=⨯=△△12BMD M S BD x =⨯⨯=△BD=(0,D∴k ∴=0k<18AMC AOB S S ∴=⨯=△△12AMC M S AC y =⨯⨯= △23AC ∴=10,03C ⎛⎫∴ ⎪⎝⎭k ∴=k =。
2018-2019学年上学期期中教学质量调研八年级数学一.精心选择,一锤定音(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中只有一个答案是正确的,请将正确答案的序号直接填入下表中)序号 1 2 3 4 5 6 7 9 10答案1.下面四个手机应用图标中是轴对称图形的是2.已知图中的两个三角形全等,则的大小为A.B. C. D.3.如图,三角形被木板遮住一部分,这个三角形是A.锐角三角形B.直角三角形C.钝角三角形 D.以上都有可能4.如图,∠ACB=90,CD⊥AB,垂足为D,下列结论错误的是A.图中有三个直角三角形B. ∠1=∠2C. ∠1和∠B都是∠A的余角D.∠2=∠A5.已知n边形从一个顶点出发可以作9条对角线,则n=A.9B.10C.11D.126.如图,在方格纸中,以AB为一边作△ABP,使之与△ABC全等,从P1,P2,P3,P4四个点中找出符合条件的点P,则点P有A.1个B.2个C.3个D.4个7.如图,点O在△ABC内,且到三边的距离相等,若∠A=60,则∠BOC的大小为A. B. C. D.608.如图,在Rt△ABC中,∠BAC=90,AD⊥BC于D,将AB边沿AD折叠,发现B点的对应点E正好在AC的垂直平分线上,则∠C=2A.30B.C.60D.759.如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24,……,照这样走下去,他第一次加到出发地A点时,一共走的路程是A.140米B.150米C.160米D.240米10.如图,在Rt△ABC中,∠ACB=90,∠BAC的平分线交BC于D,过点C作CG⊥AB于G,交AD 于E,过点D作DF⊥AB于 F.下列结论①∠CED=;②;③∠ADF=;④CE=DF.正确的是A.①②④B.②③④C.①③D.①②③④二.细心填一填,试试自己的身手!(本大题共10个小题;每小题3分,共30分)11.一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是.12.三角形三边长分别为3,,7,则的取值范围是.13.一个正多边形的内角和为540,则这个正多边形的每个外角的度数为.14.如图,已知AB⊥BD,AB∥DE,AB=ED。
2023-2024学年度第一学期教学质量抽测八年级数学试题(A )温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页.满分120分.考试用时120分钟.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、姓名、准考证号填写在答题卡中规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共30分)一、选择题:本大题共10个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分30分.1.2023年9.23-10.8日,19届亚运会在杭州如火如荼地进行,运动健儿们摘金夺银,全国人民感受到一波强烈的民族自豪感.下列图案表示的运动项日标志中,是轴对称图形的是( )A .B .C .D .2.如图,在中,平分交于点,则的度数为()A .B .C .D .3.已知三角形的两边长分别为3、7,则第三边的取值范围是( )A .B .C .D .4.下列选项中,不能判断是等边三角形的是( )A .B .C .D .,且5.如图,长方形沿着折叠,使点落在边上的点处.如果,,则长方形的面积是()ABC △60,48,A B CD ∠=︒∠=︒ACB ∠AB D BDC ∠72︒90︒96︒108︒a 410a <<410a ≤≤4a >10a <ABC △A B C∠=∠=∠,60AB AC B =∠=︒60,60A B ∠=︒∠=︒AB AC =B C ∠=∠ABCD AE D BC F 60BAF ∠=︒3AB =ABCDA .12B .16C .18D .206.在下列条件:①;②;③;④中,能确定为直角三角形的条件有( ).A .4个B .3个C .2个D .1个7.下列说法中,正确的有()个①两个全等的三角形一定关于某直线对称;②关于某条直线对称的两个图形,对称点所连线段被对称轴垂直平分;③等腰三角形的高、中线、角平分线互相重合;④到三角形三个顶点距离相等的点是三角形三边垂直平分线的交点;⑤的三边为,且满足关系,则为等边三角形.A .1个B .2个C .3个D .4个8.如图所示,是直线上任意两点,,则下列结论错误的是()A .B .平分但不垂直C .垂直平分D .9.如图,在平面直角坐标系中,点在轴的负半轴上,点在第三象限,是等边三角形,点在线段上,且,点是线段上的动点,点是轴负半轴上的动点,当的值最小时,,则点的坐标是()::1:2:3A B C ∠∠∠=2A B C ∠=∠=∠90A B ∠+∠=︒1123A B C ∠=∠=∠ABC △ABC △a b c 、、222()()()0a b b c c a -+-+-=ABC △,C D l ,AC BC AD BD ==ACD BCD∠=∠CD AB AB CD AB ACD BCDS S =△△A x B ABO △E OA 2AE =F AB P y EP FP +7AF =AA .B .C .D .10.如图,在中,,点分别是的边的中点,边分别与相交于点,且,连接,现在下列四个结论;①,②平分,③,④,⑤.则其中正确的结论有( )A .①②③④⑤B .②③④C .①②③⑤D .①②④第Ⅱ卷(非选择题 共90分)二、填空题(共6小题,每小题3分,满分18分)11.如图,把手机放在一个支架上面,就可以非常方便地使用,这是因为手机支架利用了三角形的______性.12.点关于轴的对称点的坐标是______.13.在中,若,则______.14.如图,在中,,以的一边为边画等腰三角形,使得它的第三个顶点在的其他边上,则可以画出的不同的等腰三角形的个数最多为______个()8,0-()9,0-()10,0-()7,0-ABC △120BAC ∠=︒,E F ABC △AB AC 、BC DE DF 、,H G ,DE AB DF AC ⊥⊥AD AG AH 、、60EDF ∠=︒AD GAH ∠B ADF ∠=∠GD GH =60EDF ∠=︒()3,4P -x P 'ABC △20,50B A C ∠=∠+︒∠=︒B ∠=Rt ABC △90B ∠=︒ABC △ABC △15.如图,中,是的角平分线,则______.16.如图,已知点是边上的动点(不与重合),在的同侧作等边和等边,连接,下列结论正确是______(填序号)①;②;③;④是等边三角形;⑤平分;⑥;⑦;⑧;⑨;⑩图中共有2对全等三角形.三、解答题:(本大题共11个小题,满分72分.解答时请写出必要的演推过程.)17.(4分)卷面分4分,第18题-27题.要求:①字迹清晰、工整;②卷面整洁;③使用蓝色笔或黑色笔,不用红色笔,作图时必须用铅笔和绘图工具.18.(6分)如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点(即三角形的顶点都在格点上).ABC △3,2,AB AC AD ==ABC △:BD DC =B AC ,A C AC ABD △BCE △,AE CD ABE DBC △≌△60CHE ∠=︒//GF AC BFG △HB AHC ∠AH DH BH =+CH BH EH =+HGF HBF ∠=∠HFG GBH ∠=∠ABC △(1)的面积为______.(2)在图中作出关于直线的对称图形.(3)在上找一点,使得的距离最短,在图中作出点的位置.19.(8分)如图,.求证:(1);(2).20.(7分)(1)一个多边形的内角和比它的外角和的3倍少,求这个多边形的边数;(2)下面是证明三角形内角和定理推论1的方法,选择其中一种,完成证明.三角形内角和定理推论1:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,,点是延长线上一点.求证:.方法一:利用三角形的内角和定理进行证明证明:方法二:构造平行线进行证明证明:21.(6分)如图,在中,与是的高.ABC △ABC △MN A B C '''△MN P PB PC +P ,12,AB AE C D =∠=∠∠=∠ABC AED △≌△1DEC ∠=∠180︒ABC △D BC ACD A B ∠=∠+∠ABC △AD CE ABC △(1)若,求;(2)若的高与的比是多小?22.(8分)如图所示,将两个含角的三角尺摆放在一起,可以证得是等边三角形,于是我们得到:在直角三角形中,如果一个锐角等于,那么它所对的直角边等于斜边的一半,交换命题的条件和结论,会得到一个新命题:在直角三角形中,______.请判断此命题的真假,若为真命题,请给出证明:若为假命题,请说明理由.23.(4分)如图,已知直角请用尺规作图法,在边上求作一点,使.(保留作图痕迹,不写作法)24.(8分)如图,在中,,点在上,且,7cm,10cm,8cm AB BC CE ===AD 2,3,AB BC ABC ==△AD CE 30︒ABD △30︒,90,ABC B AB BC ∠=︒<△AC P BP AC ⊥ABC △AB AC =D AC BD BC AD ==求(1)图中有哪些等腰三角形?(2)各角的度数.25.(8分)如图,在中,是的垂直平分线,交于点连接.求证:(1)是等边三角形;(2)点在线段的垂直平分线上.26.(10分)在平面直角坐标系中,点满足,点在第一象限,,且 图1 图2 图3(1)如图1,点的坐标为(2)如图2,若点运动到位置,点运动到位置,保持,求的值;(3)如图3,若是线段上一点,为中点,作,连,判定线段与的关系,并加以证明.27.(3分)在人教版八年级上册第十二章、第十三章学习了角平分线以及线段垂直平分线的相关内容,在以后得学习中还将学习一类图形——平行四边形,类比角平分线以及线段垂直平分线的研究思路(路径),我们将从哪些方面学习平行四边形?2023-2024学年度第一学期教学质量抽测八年级数学试题(A )参考答案与试题解析一、选择题(共10小题,满分30分,每小题3分)题号12345678910答案B C A D C B C B A C二、填空题(共6小题,满分18分,每小题3分)11.稳定;12.(3,4); 13.75°; 14.7; 15.3∶2; 16.①②③④⑤⑥⑦⑧⑨三.解答题:(本大题共11个小题,满分72分.解答时请写出必要的演推过程.)7.(4分)卷面分4分,第18题-27题.要求:①字迹清晰、工整;②卷面整洁;③使用蓝色笔或黑色笔,ABC △Rt ABC △90,30,ACB B DE ∠=︒∠=︒AB AB BC 、D E 、CD AE 、ADC △E CD ()()0,,,0,,A a B b a b 2(2)40a b -+-=P PA PB =PA PB⊥P A 1A B 1B PA PB ⊥11OB OA -Q AB C AQ ,PR PQ PR PQ =⊥BR BR PC不用红色笔,作图时必须用铅笔和绘图工具.18.解:(1).(2)如图,即为所求;(3)如图,点即为所求.19.证明:(1),,即,在和中,,;(2),,,.20.解:(1)设这个多边形的边数是,依题意得,,.这个多边形的边数是7.(2)证明:方法一:,.又,.,.方法二:过点作.,111343214131232 1.55222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---=△A B C '''△P 12∠=∠ 12EAC EAC ∴∠+∠=∠+∠BAC EAD ∠=∠ABC △AED △C D BAC EAD AB AE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABC AED ∴△≌△ABC AED △≌△B AED ∴∠=∠1B AEC DEC AED ∠+∠=∠=∠+∠ 1DEC ∴∠=∠n ()21803360180n -⨯︒=⨯︒-︒()261n -=-7n =∴180A B ACB ∠+∠+∠=︒ ()180ACB A B ∴∠=︒-∠+∠180ACB ACD ∠+∠=︒ 180ACB ACD ∴∠=︒-∠()180180A B ACD ∴︒-∠+∠=︒-∠ACD A B ∴∠=∠+∠C //CE AB ,ACE A ECD B ∴∠=∠∠=∠.21.(1)解:,,;(2)解:,,.22.解:在直角三角形中,一条直角边等于斜边的一半,那么这条直角边所对的角是,此命题是真命题,理由如下:已知:在中,,求证:.证明:延长至点,使,连接,,是线段的垂直平分线,,,,是等边三角形,,,.23.以点为圆心长度为半径画弧交于点,以为圆心,大于为半径画弧交于点,连接交于,点即为所作.24.解:(1)(2)设.,;ACD ACE ECD A B ∴∠=∠+∠=∠+∠1122ABC S AB CE BC AD =⋅=⋅ △11781022AD ∴⨯⨯=⨯⨯28cm 5AD ∴=1122ABC S AB CE BC AD =⋅=⋅ △112322CE AD ∴⨯⨯=⨯⨯23AD CE ∴=30︒ABC △190,2C BC AB ∠=︒=30A ∠=︒BC D CD BC =AD 90,ACB CD BC ∠=︒= AC ∴BD AB AD ∴=12BC AB = BD AB ∴=ABD ∴△60BAD ∴∠=︒AC BD ⊥ 1302BAC BAD ∴∠=∠=︒B AB AC D A D 、12AD E BE AC P P ,,ABC ABD BCD△△△A x ∠=AD BD = ABD A x ∴∠=∠=,;,,;,,.25.(1)证明:在中,,,是的垂直平分线,,,是等边三角形;(2)证明:是的垂直平分线,,,则,,平分,,,是等边三角形,,点在线段的垂直平分线上.26.(1)解:,,,,,过点作,过点作,则:,,,,,又,,,,即:,,,;(2),,,,又,,,;(3),理由如下:BD BC = 2BCD BDC ABD A x ∴∠=∠=∠+∠=AB AC = 2ABC BCD x ∴∠=∠=DBC x ∴∠=22180x x x ++=︒ 36x ∴=︒36,72A ABC ACB ∴∠=︒∠=∠=︒Rt ABC △90,30ACB B ∠=︒∠=︒160,2BAC AC AB ∴∠=︒=DE AB 12AD DB AB ∴==AD AC ∴=ADC ∴△DE AB ,AE BE DE AB ∴=⊥30EAB B ∴∠=∠=︒30EAC BAC EAB ∠=∠-∠=︒BAE CAE ∴∠=∠AE ∴BAC ∠,DE AB AC BC ⊥⊥ DE EC ∴=ADC △AD AC ∴=∴E CD 2(2)40a b -+-= 20,40a b ∴-=-=2,4a b ∴==()()0,2,4,0A B ∴2,4OA OB ∴==P PN OA ⊥B BM PN ⊥90PNA PMB ∠=∠=︒90APN NAP ∴∠+∠=︒PA PB ⊥ 90APN BPM ∴∠+∠=︒BPM NAP ∴∠=∠PA PB =PNA BMP ∴△≌△,PN BM AN PM ∴==OA AN PM OB ∴++=24AN AN ++=1AN ∴=3ON PN OA AN ∴==+=()3,3P ∴11,PA PB PA PB ⊥⊥ 1111APA A PB A PB B PB ∴∠+∠=∠+∠11APA B PB ∴∠=∠1360180,180PAO PBO AOB APB PBB PBO ∠+∠=︒-∠-∠=︒∠+∠=︒ 1PAO PBB ∴∠=∠PA PB =11PAA PBB ∴△≌△11AA BB ∴=()1111426OB OA OB BB AA OA OB OA ∴-=+--=+=+=2,BR PC BR BC =⊥延长至点,使,连接,为的中点,,,,,,,,,,,,,,,.27.答:平行四边形的定义、性质、判定及应用.(答出3点即可得满分).PC S PC CS =AS C AQ AC CQ ∴=PCQ SCA ∠=∠ PCQ SCA ∴△≌△,AS PQ ASC CPQ ∴=∠=∠//AS PQ ∴180SAP APQ ∴∠+∠=︒,PR PQ PA PB ⊥⊥ 180BPR APQ APB APR APQ APB RPQ ∴∠+∠=∠+∠+∠=∠+∠=︒SAP BPR ∴∠=∠,AS PQ PR PA PB === PRB ASP ∴△≌△2,BR PS PC APS PBR ∴==∠=∠90APS BPS ∠+∠=︒ 90BPS PBR ∴∠+∠=︒BR PC ∴⊥。
2023-2024学年第一学期八年级期中教学质量监测数学(华师)(满分120分,时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑.)1.16的平方根是()A .B .C .8D .42.下列计算正确的是( )A . B . C . D .3.我们在学习单项式(多项式)乘以多项式时,通过乘法分配律将其归结为了单项式与单项式相乘,这个过程体现的数学思想是()A .化归思想 B .类比思想C .数形结合思想D .建模思想4最接近的整数是( )A .1B .2C .3D .45.如图,已知,那么添加下列一个条件后,仍无法判定的是()A . B .C .D .6.已知一个多项式除以多项式,所得商式是,则这个多项式为( )A .B .C .D .7.如图,,若,则的度数为()A . B . C . D .8.古城花园有一块长为米,宽为米的长方形草坪,经统一规划后,长增加1米,宽减少1米,8±4±()3249a a a ⋅=()3392102⨯=7238m m m m ÷⋅=333(2)6xy x y =,AB AC BD CD ⊥⊥ABC DCB △≌△AB CD =ACB DBC ∠=∠AC BD =ABD DCA ∠=∠224a a +-1a -3264a a a +-+32364a a a +++3264a a a ---32364a a a +--ABC DEC △≌△60,53,20A E BCE ∠=︒∠=︒∠=︒ACE ∠77︒87︒97︒73︒()5x +()3x +改造后得到一块新的长方形草坪,该草坪面积与原来的相比,面积()A .不变B .减少C .增大D .无法确定9.如图,现有三种类型卡片,卡片是边长为的正方形,卡片是边长为的正方形,卡片是两边长分别为和的长方形,若想拼出一个边长为的正方形,则需三种类型卡片的数量分别为( )A .2,3,6B .4,9,0C .4,9,6D .4,9,1210.如图,在中,,点在上,点在延长线上,且,若的面积为2.5,则与的面积和为( )A .7B .9.5C .14D .19二、填空题(本大题共5个小题,每小题3分,共15分.)11.“如果,那么”是假命题,我们可以举反例_________.12.英国物理学家焦耳于1840年确定了电流产生的热量跟电流、电阻和通电时间之间的关系为:,其中表示电流通过导体产生的热量(单位:焦),表示电流(单位:安),表示导体的电阻(单位:欧),表示通电时间(单位:秒),现有某品牌热水壶,加热时,其电动机线圈电阻为2欧,加热3分钟,电动机线圈产生的热量为10焦,求通过电动机线圈的电流为_________安.13.因式分解:_________.14.计算:_________.15.如图,,点是的中点,点从点出发,沿方向以的速度运动,点从点出发,沿射线以的速度运动,当点到达点时,、两点同时停止运动,当线段经过点时,点的运动时间为_________.,,A B C A a B b C a b 23a b +,,A B C ABC △90B ∠=︒E AB D BC ,,3BC BE AB BD CD ===ABC △BCE △ABD △22a b >a b>I =Q I R t R Q I 22318122x y xy y -+=2923921925-⨯=,10cm AB CE AB =∥D BC P A A B A →→2cm /s Q C CE 1cm /s P A P Q PQ D Q三、解答题(本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤.)16.计算(本题共2个小题,每小题5分,共10分):(1)(2)17.(本题8分)先化简,再求值.,其中18.(本题7分)如图,在中,都是上的点,且.(1)求证:.(2)若,求的大小.19.(本题9分)从下列各数中,选择合适的数填空.,(1)无理数有_________.(2)如图,被阴影覆盖的数有_________.(3)平方根等于本身的数有_________.(4)将一个长,宽,高分别为3米,2米,2米的长方体铁块熔化,制成两个一样的正方体铁块,则该正方体铁块的棱长为_________米.20.(本题10分)甲同学计算一道关于的整式乘法题:,由于甲抄错了的符号,得到的结果是,请你计算出的值,并计算出这道整式乘法题的正确结果.21.(本题9分)阅读与思考2-+-()()3221523733x x x x x ⎛⎫+÷--+ ⎪⎝⎭()()()2(32)2225a b a b a b a b a -+-+-+-1,2a b ==-ABC △,,AB AC D E =BC ,BE CD AD AE ==ABD ACE △≌△36,25B BAD ∠=︒∠=︒DAE∠1,7-x ()()2(2)x a x b b x --+-a 25209x x -+,a b请阅读下列材料,并完成相应的任务.在一堂数学活动课上,“奋进”小组发现:如果一个数各数位上的数字之和能被9整除,那么这个数就能被9整除.例如:,所以9207能被9整除.“奋进”小组的同学对该结论进行了证明.以两位数为例:设一个两位数的个位数字为,十位数字为,若能被9整除,则该两位数也能被9整除.证明:能被9整除,设(为整数),,,为整数,能被9整除,即该两位数能被9整除.“创新”小组发现:如果将一个整数的个位数字去掉,再从余下的数中,减去个位数字的2倍,若差是7的倍数,则该整数能被7整除.例如:,所以294能被7整除.“创新”小组的同学想对该结论进行证明,以两位数为例:设一个两位数的个位数宇为,十位数字为,若能被7整除,则该两位数也能被7整除.(1)请你帮“创新”小组完成证明过程.(2)现有一个三位数,百位数字为3,十位数字为9,当其个位数字为多少时,该三位数能被7整除,请直接写出答案.22.(本题9分)如图1,有一数学课本长为厘米、宽为厘米、厚为1厘米.现用如图2所示的长方形包书纸包这本数学书,虚线为折痕,阴影是裁剪掉的部分,四角均为大小相同的正方形,正方形的边长即为折叠进去的宽度,折叠进去的宽度为2厘米.图1 图2(1)求该长方形包书纸的面积.(用含的代数式表示)(2)若该数学课本的长为26厘米,宽为18.5厘米,求该长方形包书纸的面积.23.(本题13分)如图1,在和中,.9207,920718,1892+++=÷=x y x y +x y + ∴9x y k +=k 9x k y ∴=-()10109999y x y k y y k y k ∴+=+-=+=+y k + 10y x ∴+294,294221,2173-⨯=÷=x y 2y x -a b ,a b ABC △ADE △,,AB AC AD AE BAC DAE ==∠=∠图1 图2(1)求证:.(2)在图1的基础上,过点作,交延长线于点,作,交延长线于点延长线交于点.①与有什么数量关系,请说明理由.②若四边形的面积为35,,点为的中点,则的长为多少?请直接写出答案.2023-2024学年度第一学期期中质量监测试题八年级数学参考答案及评分标准一、选择题(30分)1-5:BCACD 6-10:ABBDB二、填空题(15分)11.(答案不唯一) 12. 13. 14.4 15.或16.解:(1)原式.(2)原式.17.解:原式.当时,原式.18.(1)证明:,,BD CE =A AM BD ⊥DB M AN EC ⊥EC ,N EC DM F MF NF AMFC 6AM =F BM FM 1,0a b =-=1622(3)y x y -10310s 6425=--+-365=-()22215214321x x x x x =+-+--22215214321x x x x x =+--++421x =+()222229124425a ab b a b ab a =-+--+-222229124425a ab b a b ab a =-+-++-2105ab b =-+1,2a b ==-()210125(2)40=-⨯⨯-+⨯-=BE CD = ,BE DE CD DE ∴-=-BD CE ∴=在和中,,.(2)解:,,,,.19.(1.(2.(3)0(420.解:,,21.(1)证明:能被7整除,设(为整数),,,为整数,能被7整除,即该两位数能被7整除.ABD △ACE △,AB AC BD CE == AD AE =ABD ACE ∴△≌△ABD ACE △≌△36B C ∴∠=∠=︒25BAD CAE ∠=∠=︒180108BAC B C ∴∠=︒-∠-∠=︒108252558DAE BAC BAD CAE ∴∠=∠-∠-∠=︒-︒-︒=︒π()()2(2)x a x b b x +-+-()222244x ax a b x =++--222244x ax a b x =++-+22254x ax a b =++-25209x x =-+22420,9a a b ∴=--=5,4a b ∴=-=±()()22222(2)44x a x b b x x ax a b x --+-=-+-+22254x ax a b =-+-25209x x =++2y x - ∴27y x k -=k 72y k x ∴=+()()10107270217103y x k x x k x k x ∴+=++=+=+103k x + 10y x ∴+(2)2或922.解:(1)答:该长方形包书纸的面积为平方厘米.(2)当时,.答:该长方形包书纸的面积为1260平方厘米.23.(1)证明:,,,在和中,,,..(2),理由如下:连结,,,,又,在和中,,.(3).()()212222b a ++⨯+⨯()()254b a =++25820ab a b =+++()25820ab a b +++26,18.5a b ==25820ab a b +++22618.5526818.520=⨯⨯+⨯+⨯+1260=BAC DAE ∠=∠ BAC DAC DAE DAC ∴∠-∠=∠-∠BAD CAE ∴∠=∠ABD △ACE △AB AC = BAD CAE ∠=∠AD AE =ABD ACE ∴△≌△BD CE ∴=MF NF =AF ABD ACE △≌△ABD ACE S S ∴=△△11,22ABD ACE S BD AM S CE AN =⋅=⋅ △△BD CE AM AN =∴= Rt AMF △Rt ANF △AF AF = AM AN=Rt Rt AMF ANF∴△≌△MF NF ∴=3512MF =。
2019-2020学年八年级上学期期中教学质量监测数学试题一、选择题:(本题有10个小题,每小题3分,共30分)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.已知点A与点B关于x轴对称,若点A的坐标为(﹣1,3),点B的坐标为(﹣1,b),则b的值等于()A.﹣3 B.﹣1 C.1 D.33.下列各式运算正确的是()A.3y3•5y4=15y12B.(ab5)2=ab10C.(a3)2=(a2)3D.(﹣x)4•(﹣x)6=﹣x104.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论错误的是()A.CB=CD B.DA=DC C.AB=AD D.△ABC≌△ADC 5.如图,在四边形ABCD中,AB∥CD,不能判定△ABD≌△CDB的条件是()A.AB=CD B.AD=BC C.AD∥BC D.∠A=∠C6.如图,在Rt△ACB中,∠ACB=90°,BC=12,BD=2CD,AD平分∠BAC,则点D到AB 的距离等于()A.3 B.4 C.5 D.97.如图,等腰△ABC中,AB=AC,∠A=36°.用尺规作图作出线段BD,则下列结论错误的是()A.AD=BD B.∠DBC=36°C.S△ABD=S△BCD D.△BCD的周长=AB+BC8.已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 9.简便计算:100002﹣9×11×101×10001等于()A.1 B.0 C.﹣1 D.以上都不对10.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64二、填空题:(本题有6个小题,每小题3分,共18分)11.计算①a2•a1=;②(﹣3a2)2﹣a4=.12.小丽在镜子里看到对面墙上电子钟示数为12:01,则此时实际时刻为.13.已知10x=2,10y=5,则10x+y=.14.=.15.如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D、过点D作DE∥AB,交BC于点E,那么图中等腰三角形有个.16.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO 平分∠BMC.其中正确的.三、解答题:(本题有9个小题,共72分)17.计算:(1)(﹣2ab2)3(2)(﹣4m2n)•(﹣2mn)(3)﹣6a•(﹣a2﹣a+2)(4)(x﹣2y)(x+2y﹣1)+4y2.18.已知A=(3x﹣1)(2x+1)﹣x+1﹣6y2.(1)化简A;(2)当x、y满足方程组时,求A的值.19.如图平面直坐标系中,△ABC三个顶点都在格点上,点A的坐标为(2,4),解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC向左平移5个单位得到的△A2B2C2;(3)若点P为x轴上一点,且PB+PC的值最小,请通过计算求出P点的坐标.20.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过C点作CF⊥BE.垂足为F.(1)线段BF=(填写图中现有的一条线段);(2)证明你的结论.21.如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.22.如图,轮船从A港出发,以28海里/小时的速度向正北方向航行,此时测的灯塔M在北偏东30°的方向上.半小时后,轮船到达B处,此时测得灯塔M在北偏东60°的方向上.(1)求轮船在B处时与灯塔M的距离;(2)轮船从B处继续沿正北方向航行,又经半小时后到达C处.求:此时轮船与灯塔M 的距离是多少?灯塔M在轮船的什么方向上?23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)已知AC=14,BE=2,求AB的长.24.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.25.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC,BC于点M、N.(1)如图1,若∠BAC=112°,求∠EAN的度数;(2)如图2,若∠BAC=82°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),直接写出用α表示∠EAN大小的代数式.参考答案与试题解析一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义即可判断.【解答】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.2.已知点A与点B关于x轴对称,若点A的坐标为(﹣1,3),点B的坐标为(﹣1,b),则b的值等于()A.﹣3 B.﹣1 C.1 D.3【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,先求出b的值即可.【解答】解:∵点A(﹣1,3)关于x轴对称的点B的坐标为(﹣1,b),∴b=﹣3,故选:A.3.下列各式运算正确的是()A.3y3•5y4=15y12B.(ab5)2=ab10C.(a3)2=(a2)3D.(﹣x)4•(﹣x)6=﹣x10【分析】根据同底数幂的乘法、积的乘方法则以及幂的乘方法则进行计算即可.【解答】解:A.3y3•5y4=15y7,故本选项错误;B.(ab5)2=a5b10,故本选项错误;C.(a3)2=(a2)3,故本选项正确;D.(﹣x)4•(﹣x)6=x10,故本选项错误;故选:C.4.如图,四边形ABCD的对角线AC,BD相交于点O,△ABO≌△ADO.下列结论错误的是()A.CB=CD B.DA=DC C.AB=AD D.△ABC≌△ADC 【分析】根据全等三角形的性质和判定解答即可.【解答】解:∵△ABO≌△ADO.∴AB=AD,选项C正确,∠BAC=∠DAC,在△ABC与△ADC中,∴△ABC≌△ADC(SAS),选项D正确∴CB=CD,选项A正确;故选:B.5.如图,在四边形ABCD中,AB∥CD,不能判定△ABD≌△CDB的条件是()A.AB=CD B.AD=BC C.AD∥BC D.∠A=∠C【分析】利用平行线的性质得到∠ABD=∠CDB,而BD无公共边,然后根据全等三角形的判定方法对各选项进行判断.【解答】解:∵AB∥CD,∴∠ABD=∠CDB,而BD=DB,∴当AB=CD时,根据“SAS”可判断△ABD≌△CDB;当∠A=∠C时,根据“AAS”可判断△ABD≌△CDB;当∠ADB=∠CBD或AD∥BC时,根据“ASA”可判断△ABD≌△CDB.故选:B.6.如图,在Rt△ACB中,∠ACB=90°,BC=12,BD=2CD,AD平分∠BAC,则点D到AB 的距离等于()A.3 B.4 C.5 D.9【分析】根据角平分线的性质“角的平分线上的点到角的两边的距离相等”,可得点D 到AB的距离=点D到AC的距离=CD.【解答】解:∵BC=12,BD=2CD,∴CD=4,由角平分线的性质,得点D到AB的距离等于CD=,4.故选:B.7.如图,等腰△ABC中,AB=AC,∠A=36°.用尺规作图作出线段BD,则下列结论错误的是()A.AD=BD B.∠DBC=36°C.S△ABD=S△BCD D.△BCD的周长=AB+BC【分析】根据作图痕迹发现BD平分∠ABC,然后根据等腰三角形的性质进行判断即可.【解答】解:∵等腰△ABC中,AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,由作图痕迹发现BD平分∠ABC,∴∠A=∠ABD=∠DBC=36°,∴AD=BD,故A、B正确;∵AD≠CD,∴S△ABD=S△BCD错误,故C错误;△BCD的周长=BC+CD+BD=BC+AC=BC+AB,故D正确,故选:C.8.已知等腰三角形的周长为17cm,一边长为4cm,则它的腰长为()A.4cm B.6.5cm C.6.5cm或9cm D.4cm或6.5cm 【分析】分两种情况讨论:当4cm为腰长时,当4cm为底边时,分别判断是否符合三角形三边关系即可.【解答】解:①若4cm是腰长,则底边长为:20﹣4﹣4=12(cm),∵4+4<12,不能组成三角形,舍去;②若4cm是底边长,则腰长为:=6.5(cm).则腰长为6.5cm.故选:B.9.简便计算:100002﹣9×11×101×10001等于()A.1 B.0 C.﹣1 D.以上都不对【分析】根据有理数的混合运算,构造平方差公式即可求解.【解答】解:原式=100002﹣(10﹣1)×(10+1)×101×10001=100002﹣(100﹣1)×(100+1)×10001=100002﹣(10000﹣1)×(10000+1)=100002﹣100002+1=1故选:A.10.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A6B6A7的边长为()A.6 B.12 C.32 D.64【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2…进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.二.填空题(共6小题)11.计算①a2•a1=a3;②(﹣3a2)2﹣a4=8a4.【分析】根据同底数幂的乘法和积的乘方解答即可.【解答】解:①a2•a1=a3;②(﹣3a2)2﹣a4=8a4;故答案为:a3;8a412.小丽在镜子里看到对面墙上电子钟示数为12:01,则此时实际时刻为10:51 .【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,分析可得题中所显示的时刻与10:51成轴对称,所以此时实际时刻为:10:51.故答案为:10:51.13.已知10x=2,10y=5,则10x+y=10 .【分析】根据同底数幂的乘法法则计算即可.【解答】解:∵10x=2,10y=5,∴10x+y=10x•10y=2×5=10.故答案为:1014.=﹣1 .【分析】根据同底数幂的乘法与幂的乘方的知识求解.【解答】解:=,故答案为:﹣115.如图,在△ABC中,AB=AC,BD平分∠ABC,交AC于点D、过点D作DE∥AB,交BC于点E,那么图中等腰三角形有 3 个.【分析】根据等腰三角形的判定和性质定理以及平行线的性质即可得到结论.【解答】解:∵AB=AC,∴△ABC是等腰三角形;∵DE∥AB,∴△CED是等腰三角形;∴∠BDE=∠ABD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠CBD=∠BDE,∴△EBD是等腰三角形;则图中等腰三角形的个数有3个;故答案为:3.16.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO 平分∠BMC.其中正确的①②④.【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,①正确;由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,由AAS证明△OCG≌△ODH(AAS),得出OG=OH,由角平分线的判定方法得出MO平分∠BMC,④正确;由∠AOB=∠COD,得出当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM,由△AOC≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA>OC,故③错误;即可得出结论.【解答】解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;正确的有①②④;故答案为:①②④.三.解答题(共9小题)17.计算:(1)(﹣2ab2)3(2)(﹣4m2n)•(﹣2mn)(3)﹣6a•(﹣a2﹣a+2)(4)(x﹣2y)(x+2y﹣1)+4y2.【分析】(1)根据积的乘方可以解答本题;(2)根据同底数幂的乘除法可以解答本题;(3)根据单项式乘多项式可以解答本题;(4)根据平方差公式和合并同类项可以解答本题.【解答】解:(1)(﹣2ab2)3=﹣8a3b6;(2)(﹣4m2n)•(﹣2mn)=8m3n2;(3)﹣6a•(﹣a2﹣a+2)=3a3+2a2﹣12a;(4)(x﹣2y)(x+2y﹣1)+4y2=(x﹣2y)(x+2y)+(x﹣2y)×(﹣1)+4y2=x2﹣4y2﹣x+2y+4y2=x2﹣x+2y.18.已知A=(3x﹣1)(2x+1)﹣x+1﹣6y2.(1)化简A;(2)当x、y满足方程组时,求A的值.【分析】(1)直接去括号,然后合并同类项即可;(2)解方程组求出x、y,然后代入求值即可.【解答】解:(1)A=(3x﹣1)(2x+1)﹣x+1﹣6y2=6x2+x﹣1﹣x+1﹣6y2=6x2﹣6y2;(2)A=6x2﹣6y2=6(x2﹣y2)=6(x+y)(x﹣y)=6×5×1=30.19.如图平面直坐标系中,△ABC三个顶点都在格点上,点A的坐标为(2,4),解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1;(2)画出△ABC向左平移5个单位得到的△A2B2C2;(3)若点P为x轴上一点,且PB+PC的值最小,请通过计算求出P点的坐标.【分析】(1)根据轴对称的性质画出△A1B1C1;(2)根据图形平移的性质画出△A2B2C2即可;(3)连接BC1,交x轴于点P,则点P即为所求点.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求;(3)连接BC1,交x轴于点P,把(1,2),(5,﹣3)代入y=kx+b,可得:,解得:,所以直线BC1的解析式为:y=﹣,把y=0代入y=﹣,可得:x=,所以P(,0),20.如图,AD∥BC,∠BAD=90°,以点B为圆心,BC长为半径画弧,与射线AD相交于点E,连接BE,过C点作CF⊥BE.垂足为F.(1)线段BF=AE(填写图中现有的一条线段);(2)证明你的结论.【分析】(1)由已知得BF=AE;(2)由AD与BC平行得到一对内错角相等,再由一对直角相等,且BE=CB,利用AAS得到△AEB≌△FBC,利用全等三角形对应角相等即可得证.【解答】解:(1)BF=AE,故答案为:AE;(2)证明:∵CF⊥BE,∴∠A=∠BFC=90°,∵AD∥BC,∴∠AEB=∠FBC,在△AEB和△FBC中,,∴△AEB≌△FBC(AAS),∴BF=AE.21.如图在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求∠A的度数.【分析】由已知条件开始,通过线段相等,得到角相等,再由三角形内角和求出各个角的大小.【解答】解:设∠A=x°.∵BD=AD,∴∠A=∠ABD=x°,∠BDC=∠A+∠ABD=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠BCD=2x°,在△ABC中x+2x+2x=180,解得:x=36,∴∠A=36°.22.如图,轮船从A港出发,以28海里/小时的速度向正北方向航行,此时测的灯塔M在北偏东30°的方向上.半小时后,轮船到达B处,此时测得灯塔M在北偏东60°的方向上.(1)求轮船在B处时与灯塔M的距离;(2)轮船从B处继续沿正北方向航行,又经半小时后到达C处.求:此时轮船与灯塔M 的距离是多少?灯塔M在轮船的什么方向上?【分析】(1)据题意得到∠CBM=60°,∠BAM=30°,求得∠BMA=30°,得到AB=BM,于是得到结论;(2)根据已知条件得到△BMC是等边三角形,求得CM=BC,∠BCM=60°,于是得到结论.【解答】解:(1)据题意得,∠CBM=60°,∠BAM=30°,因为∠CBM=∠BAM+∠BMA,所以∠BMA=30°,所以∠BMA=∠BAM,所以AB=BM,AB=28×0.5=14,BM=14,答:轮船在B处时与灯塔M的距离为14海里;(2)∵BC=14,BM=BC且∠CBM=60°所以△BMC是等边三角形,所以CM=BC,∠BCM=60°,所以CM=14,答:轮船与灯塔M的距离是14海里,灯塔M在轮船的南偏东60°方向.23.如图,DE⊥AB于E,DF⊥AC于F,若BD=CD、BE=CF.(1)求证:AD平分∠BAC;(2)已知AC=14,BE=2,求AB的长.【分析】(1)求出∠E=∠DFC=90°,根据全等三角形的判定定理得出Rt△BED≌Rt△CFD,推出DE=DF,根据角平分线性质得出即可;(2)根据全等三角形的性质得出AE=AF,由线段的和差关系求出答案.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠E=∠DFC=90°,∴BD=CD,BE=CF,∴Rt△BED≌Rt△CFD(HL),∴DE=DF,∵DE⊥AB,DF⊥AC,∴AD平分∠BAC;(2)∵DE=DF,AD=AD,∴Rt△ADE≌Rt△ADF(HL)∴AE=AF,∵AB=AE﹣BE=AF﹣BE=AC﹣CF﹣BE,∴AB=14﹣2﹣2=10.24.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.【分析】(1)根据题意和题目中的条件可以找出△ABC≌△ADE的条件;(2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;(3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.【解答】证明:(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠E=45°,由(1)知△BAC≌△DAE,∴∠BCA=∠E=45°,∵AF⊥BC,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF到G,使得FG=FB,∵AF⊥BG,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,∵∠GCA=∠DCA=45°,在△CGA和△CDA中,,∴△CGA≌△CDA(AAS),∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.25.在△ABC中,DE垂直平分AB,分别交AB、BC于点D、E,MN垂直平分AC,分别交AC,BC于点M、N.(1)如图1,若∠BAC=112°,求∠EAN的度数;(2)如图2,若∠BAC=82°,求∠EAN的度数;(3)若∠BAC=α(α≠90°),直接写出用α表示∠EAN大小的代数式.【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC﹣(∠BAE+∠CAN)代入数据进行计算即可得解;(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN﹣∠BAC代入数据进行计算即可得解;(3)根据前两问的求解方法,分0°<α<90°与180°>α>90°两种情况解答.【解答】解:(1)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAC﹣∠BAE﹣∠CAN,=∠BAC﹣(∠B+∠C),在△ABC中,∠B+∠C=180°﹣∠BAC=68°,∴∠EAN=∠BAC﹣(∠BAE+∠CAN)=112°﹣68°=44°;(2)∵DE垂直平分AB,∴AE=BE,∴∠BAE=∠B,同理可得:∠CAN=∠C,∴∠EAN=∠BAE+∠CAN﹣∠BAC,=(∠B+∠C)﹣∠BAC,在△ABC中,∠B+∠C=180°﹣∠BAC=98°,∴∠EAN=∠BAE+∠CAN﹣∠BAC=98°﹣82°=16°;(3)当0°<α<90°时,∠EAN=180°﹣2α;当180°>α>90°时,∠EAN=2α﹣180°.。
2023年秋季期中教学质量监测初二年级数学 注意事项:1.满分150分,答题时间为120分钟。
2.请将各题答案填写在答题卡上。
一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.下列各数中,是无理数的是A 9B .117C .0.101001D 22.下列等式成立的是A 1=1B .3-27=3C .(-1)2023=2023D .914=3123.下列从左到右的变形为因式分解的是A .a (x-y )=ax-ayB .x 2-2x+3=x (x-2)+3C .x 2-4y 2=(x+2y )(x-2y )D .xy-1=xy (1-1xy )4.下列运算正确的是A .4a-a=4B .a 4·a 2=a 6C .(-3ab 2)2=6a 2b 4D .(-2a 2)3=8a 65.下列命题中,是假命题的是A .无理数包括正无理数、零和负无理数B .算术平方根不可能是负数C .如果a<0,那么a 2=-a ,(-a )2=-aD .同旁内角互补,两直线平行6.如图,已知△ABC ≌△DEF ,点B ,F ,C ,E 在同一条直线上,若CE=3,则BF 的长为A.5B.4C.3D.27.若计算(x-2m)(x+1)的结果中不含x的一次项,则m的值为C.1D.2A.0B.128.已知n是一个整数的平方,则满足要求的正整数n的个数为20-nA.1B.2C.3D.49.已知416-1可以被10到20之间的某两个整数整除,则这两个数是A.12,14B.13,15C.14,16D.15,1710.已知实数a,b,c皆为正数,且满足方程a(b+c)=152,b(c+a)=162,c(a+b)=170,则abc的值为A.672B.688C.720D.750二、填空题:本题共6小题,每小题4分,共24分.11.计算:8x3÷2x= .12.把命题“全等三角形的对应边相等”改写成“如果……,那么……”的形式是 .13.如图,若△OAD≌△OBC,且∠O=65°,∠C=20°,则∠AEC= °.14.已知对任意实数x,y,定义运算:x♥y=(x+y)(x-y),则3♥(4♥5)的值为 .15.已知22023-22022-22021+22020=k·22020,则k的值为 .16.为求1+2+22+23+…+22023的值,可设S=1+2+22+23+…+22023,则2S=2+22+23+…+22024.两式相减可得2S-S=22024-1,即S=22024-1.仿照以上方法,可得1+5+52+53+…+52023= .三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)计算:3-8+25-(-3)2.18.(本小题满分8分)分解因式:x3y-xy3.19.(本小题满分8分)如图,点E,F在线段BC上,AB∥CD,AB=CD,BE=CF.求证:△ABE≌△DCF.20.(本小题满分8分)已知2a+b的算术平方根为3,3a-b的立方根为2.(1)求a,b的值.(2)5a-5b+10的平方根.21.(本小题满分8分)先化简,再求值:[(x-3y)(x+3y)-(x-3y)2]÷(-3y),其中x=3,y=-2.22.(本小题满分10分)2是无理数,即无限不循环小数.2的小数部分,小宇想了一个办法,他发现2的整数部分是1, 2减去其整数部分,差就是小数部分.于是小宇用2-1来表示2的小数部分.根据以上内容,解答下列问题:21的整数部分是 ,小数部分是 .(2)5的小数部分为a,15的整数部分为b,求(a+2)2+b2的值.23.(本小题满分10分)已知2m=a,2n=b,3m=c,请用含a,b,c的式子表示下列代数式:(1)2m+n.(2)42m+3n.(3)36m.24.(本小题满分12分)如图1,这是一个长为4a ,宽为b 的长方形,沿图中虚线用剪刀平均剪成四块小长方形,然后拼成如图2所示的正方形.(1)图2中阴影部分的边长为 ;观察图2,请你写出(a+b )2,(a-b )2,ab 之间的等量关系: .(2)根据(1)中的等量关系,直接写出a+1a 与a-1a 之间的关系.(3)根据(2)中的等量关系解决如下问题:若a 2-3a+1=0,求a-1a 的值.25.(本小题满分14分)如图1,已知AC=BC ,DC=EC ,∠ACB=∠DCE=90°,连接AD ,BE.(1)求证:AD=BE.(2)将△DCE 绕点C 旋转到如图2所示的位置,F 为BE 的中点,连接CE ,AE ,BD.①求证:AE=BD.②探究CF 与AD 的数量关系和位置关系,并说明理由.2023年秋季期中教学质量监测初二年级数学参考答案1.D2.A3.C4.B5.A6.C7.B8.C9.D10.C 提示:由题意,得ab+ac=152①,bc+ab=162②,ac+bc=170③,①+②+③,得2(ab+bc+ac )=484,∴ab+bc+ac=242④.由④-①,得bc=90,由④-②,得ac=80,由④-③,得ab=72,∴bc ·ac ·ab=(abc )2=90×80×72=7202,∴abc=720.11.4x 2 12.如果两个三角形是全等三角形,那么它们的对应边相等 13.75 14.-72 15.316.52024-1417.解:原式=-2+5-3..........................................................................................6分=0....................................................................................................................8分18.解:原式=xy (x 2-y 2)......................................................................................4分=xy (x+y )(x-y ).................................................................................................8分19.证明:∵AB ∥CD ,∴∠B=∠C........................................................................................................3分在△ABE 和△DCF 中,AB =CD ∠B =∠C BE =CF,∴△ABE ≌△DCF (SAS)......................................................................................8分20.解:(1)由题意,得2a +b =93a -b =8,.....................................................................2分解得a =175b =115.....................................................................................................4分(2)∵a=175,b=115,5a-5b+10=17-11+10=16=4............................................................6分∵4的平方根为2或-2,....................................................................................7分5a-5b+10的平方根为2或-2..................................................................8分21.解:原式=[x2-9y2-(x2-6xy+9y2)]÷(-3y)=(x2-9y2-x2+6xy-9y2)÷(-3y)=(-18y2+6xy)÷(-3y)=6y-2x.............................................................................................................5分当x=3,y=-2时,原式=6×(-2)-2×3=-18.........................................................8分22.解21-4..........................................................................................4分(2)由题意,得a=5-2,b=3,..............................................................................8分将a=5-2,b=3代入,得(a+2)2+b2=(5-2+2)2+32=14......................................10分23.解:(1)2m+n=2m·2n=ab..................................................................................2分(2)42m+3n=(22)2m+3n=24m+6n=24m·26n=(2m)4·(2n)6=a4b6........................................6分(3)36m=(62)m=(6m)2=[(2×3)m]2=(2m·3m)2=(ac)2=a2c2....................................10分24.解:(1)b-a;.................................................................................................2分(a+b)2-(a-b)2=4ab...........................................................................................5分(2)(a+1a )2-(a-1a)2=4.........................................................................................8分(3)∵a2-3a+1=0,且a≠0,∴a-3+1a=0,∴a+1a=3..........................................................................................................10分∵(a+1a )2-(a-1a)2=4,∴(a-1a )2=(a+1a)2-4=32-4=5,∴a-1a=±5....................................................................................................12分25.解:(1)证明:∵AC=BC,DC=EC,∠ACB=∠DCE=90°,∴△ACD≌△BCE(SAS),∴AD=BE...........................................................................................................4分(2)①证明:∵∠ACB=∠DCE=90°,∴∠ACB+∠BCE=∠DCE+∠BCE ,∴∠ACE=∠BCD.在△ACE 和△BCD 中,AC =BC ∠ACE =∠BCD CE =CD,∴△ACE ≌△BCD (SAS),∴AE=BD...........................................................................................................8分②CF=12AD ,CF ⊥AD.............................................................................................9分理由:如图,延长CF 至点P ,使PF=CF ,连接BP ,延长FC 交AD 于点M.∵F 为BE 的中点,∴BF=FE.在△BFP 和△EFC 中,BF =EF ∠BFP =∠EFC FP =FC,∴△BFP ≌△EFC (SAS),∴BP=CE ,∠BPF=∠ECF ,∴CE ∥BP ,∴∠CBP+∠BCE=180°.∵∠BCE+∠ACD=360°-∠ACB-∠DCE=180°,∴∠CBP=∠ACD.又∵CE=CD=BP ,AC=BC ,∴△PBC ≌△DCA (SAS),∴CP=AD.∵PF=CF ,∴CF=12CP=12AD.................................................................................................12分∵△PBC≌△DCA,∴∠BCP=∠CAD.又∵∠BCP+∠ACB+∠ACM=180°,∠ACB=90°,∴∠BCP+∠ACM=90°,∴∠CAD+∠ACM=90°,∴∠AMC=90°,∴CF⊥AD.AD,CF⊥AD...............................................................................14分综上所述,CF=12。
青龙县2023-2024学年度第一学期期中教学质量诊断试题八年级数学卷Ⅰ一、选择题(本大题共16个小题,每小题各2分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡上正确填涂.)1.下列命题的逆命题为真命题的是()A.全等三角形的面积相等B.若,则C.对顶角相等D.两条直线被第三条直线所截,如果两直线平行,那么同位角相等2.在式子中,分式的个数是()A.2B.3C.4D.53.49的平方根是()A.B.C.7D.4.下列数据是准确数的是()A.小明的身高是B.一本书的质量是300克C.八年级一班有学生45人D.教室的面积是5.分式的最简公分母是()A.B.C.D.6.下列各分式中,最简分式是()A.B.C.D.7.估算的值在()A.4到5之间B.5到6之间C.6到7之间D.7到8之间8.计算的结果为()A.B.C.D.9.用四舍五入法按要求对0.07018分别取近似数,其中错误的是()A .0.1(精确到0.1)B .0.07(精确到百分位)C .0.07(精确到千分位)D .0.0702(精确到0.0001)10.化简的结果为()A .B .C .D .11.已知,求作:,使得如图是小明的作图痕迹,他作图的依据是()图1 图2A .B .C .D .12.有下列各数:(相邻两个3之间1的个数逐次增加1),,其中无理数的个数为()A .4B .3C .2D .113.如图,若,则下列结论中一定成立的是( )A .B .C .D .14.若分式的值为0,则的值为()A .0或1B .0或或2C .0或1或2D .0或15.若关于的分式方程有增根,则的值是()A .4B .1C .0D .16.如图所示的网格是由9个相同的小正方形拼成的,图形的各个顶点均为格点,则的度数为()A.B.C.D.卷Ⅱ(非选择题,共68分)二、填空题(本大题共8个小题,每题2分,共16分)17.要使分式有意义,应满足的条件是______.18.约分:______.19.计算:______.20.如图所示,小明试卷上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与试卷原图完全一样的三角形,那么两个三角形完全一样的依据是______.21.关于的方程的解是,则______.22.若,则______.23.如图,,则.以点为圆心,线段长为半径画弧交数轴于点,则点表示的数是______.24.已知,则的值是______.三、解答题(本大题共5个小题;共52分.解答应写出演算步骤,证明过程或文字说明)25.(10分)计算(1)(2)26.(12分)解方程(1)(2)27.(8分)先化简,再求值:,其中.28.(10分)已知:如图,点在同一直线上,.求证:(1).(2)若,求的度数.29.(12分)现有两种商品,已知买一件商品要比买一件商品少30元,用160元全部购买商品的数量与用400元全部购买商品的数量相同.(1)求两种商品每件各是多少元?(2)如果小亮准备购买两种商品共10件,总费用不超过380元,且不低于300元,问有几种购买方案,哪种方案费用最低?青龙县2023-2024学年度第一学期期中教学质量诊断试题八年级数学答案一、选择题(本大题共16个小题,每小题各2分,共32分。
20232024学年度第一学期期中教学质量监测考试八年级数学试题第I 卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项符合题目要求.1.下面由杭州亚运会比赛项目图标组成的四个图形中,可看作轴对称图形的是( )A .B .C .D .2.用下列长度的三根木棒首尾相接,能做成三角形框架的是( )A .2cm ,2cm ,4cmB .3cm ,4cm ,5cmC .1cm ,2cm ,3cmD .2cm ,3cm ,6cm3.已知等腰△ABC 中,AB =AC ,若该三角形有一个内角是70°,则顶角A 的度数为( )A .70°B .55°C .40°D .40°或70°4.如图,在和中,点,,,在同一直线上,,,只添加一个条件,能判定的是( )A .B .C .D .5.如图所示,△ABC 为钝角三角形,则边AC 上的高是( )ABC DEF A E B D AC DF AC DF =ABC DEF ≌AE DB=A DEF ∠=∠BC DE =ABC D∠=∠A.AD B.AE C.BF D.CH6.如图,工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是( )A.三角形具有稳定性B.两点之间,线段最短C.直角三角形的两个锐角互为余角D.垂线段最短7.在平面直角坐标系中,已知点与点关于轴对称,那么的值为()A.B.C.1D.8.两把相同的长方形直尺按如图所示方式摆放,记两把直尺的接触点为,其中一把直尺边缘和射线重合,另一把直尺的下边缘与射线重合,连接并延长.若,则的度数为( )A.6B.5C.5D.49.如图是用正n边形地砖铺设小路的局部示意图,若用4块正n边形地砖围成的中间区域是一个小正方形,则n 的值为()A.4B.6C.7D.810.如图,,点在线段上,,则的度数是()(,3)A m(4,)B n y()2023m n+2015720157-1-P OAOB OP28BOP∠=︒AOB∠2︒6︒2︒6︒ABC AED≌△△E BC150∠=︒AED∠A .2B 12.如图,在中,再分别以点,为圆心,大于结论:①平分A .5个二.填空题、本大题共14.如图,小明与小红玩跷跷板游戏,如果跷跷板的支点水平位置CD 下降30cm 时,这时小明离地面的高度是15.在中,已知点D ,E ,ABC B D AE BAC ∠ABC16.如图,的周长最小值为17.如图,已知等腰的直角顶点若,,则点A 的坐标是18.已知第二象限的点坐标为点关于轴对称点;作点三、解答题:共7小题,共19.如图,在中,(1)求证;(2)若,,求的长.20.如图,在中,平分的度数.Rt △ACP △Rt ABC △()0,3C -()5,0B 1A 3A x 4A ACD E AFB DFE ≌6AB =3DE CE =CD ABC CD ∠21.如图,在平面直角坐标系中,的三个顶点的坐标分别是,,.(1)在图中画出关于轴对称的;(2)直接写出,,三点的坐标;( ),( ),( );(3)如果要使以、、为顶点的三角形与全等,直接写出所有符合条件的点(除点外)坐标.22.如图,轮船从A 港出发,以28海里/小时的速度向正北方向航行,此时测的灯塔M 在北偏东30°的方向上.半小时后,轮船到达B 处,此时测得灯塔M 在北偏东60°的方向上.(1)求轮船在B 处时与灯塔M 的距离;(2)轮船从B 处继续沿正北方向航行,又经半小时后到达C 处.求:此时轮船与灯塔M 的距离是多少?灯塔M 在轮船的什么方向上?23.已知:如图中,,,,.(1)求证:;xOy ABC (2,3)A (1,0)B (1,2)C ABC y 111A B C △1A 1B 1C 1A 1B 1C B C D ABC D A ABC AB AC =30C ∠=︒AB AD ⊥DE AC ⊥AE EC =(1)我们把两组邻边分别相等的四边形叫做,试猜想筝形的对角线有什么性质?然后用全等三角形的知识证明你的猜想.AB CB =含答案与解析1.B【分析】本题考查轴对称图形的识别.根据能否找到一条直线使图形折叠后能够完全重合,进行判断即可;掌握轴对称图形的定义,是解题的关键.【详解】解:观察图形,只有选项B 能够找到一条直线使图形折叠后能够完全重合,是轴对称图形;故选B .2.B【分析】根据三角形的任意两边之和大于第三边,对各选项分析判断后利用排除法求解.【详解】解:A 、2+2=4,不能组成三角形,故本选项不合题意;B 、3+4>5,能组成三角形,故本选项符合题意;C 、1+2=3,不能组成三角形,故本选项不合题意;D 、2+3<6,不能组成三角形,故本选项不合题意.故选:B .【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.D【分析】若70°是顶角,则可直接得出答案;若70°是底角,则设顶角是y ,根据三角形内角和为180°即可求解.【详解】若70°是顶角,则顶角为70°;若70°是底角,则设顶角是y ,∴2×70°+y =180°,解得:y =40°.故选D .【点睛】本题考查了等腰三角形的性质及三角形内角和定理,属于基础题,关键是注意分类讨论.4.A【分析】本题考查了全等三角形的判定,根据平行线的性质得到,加上,根据全等三角形的判定定理判断是解题的关键.【详解】解:∵,,∴,添加,则,根据“”判定,故选项A 符合题意;添加,不能判定,故选项B 不符合题意;添加,不能判定,故选项C 不符合题意;添加,不能判定,故选项D 不符合题意.故选:A .5.C【分析】根据三角形高线的定义,过点B 作BF ⊥AC 交CA 的延长线于点F ,则BF 为AC 边上的高.A D ∠=∠AC DF =AC DF AC DF =A D ∠=∠AE DB =AB DE =SAS ABC DEF ≌A DEF ∠=∠ABC DEF ≌BC DE =ABC DEF ≌ABCD ∠=∠ABC DEF ≌【详解】解:∵△ABC 为钝角三角形,∴边AC 上的高是BF ,故选:C .【点睛】本题主要考查了三角形的高线,从三角形的一个顶点向对边作垂线,垂足与顶点之间的线段叫做三角形的高.钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.6.A【分析】根据三角形具有稳定性解答即可.【详解】解:工人师傅在安装木制门框时,为防止变形常常钉上两根木条,这样做的依据是三角形具有稳定性.故选:A .【点睛】本题主要考查三角形的稳定性,正确理解概念是解题的关键.7.D【分析】本题考查了关于y 轴对称的点的坐标,根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.【详解】解:点与点关于轴对称,,.故选:D .8.B【分析】过点作,一把直尺边缘与的交点为,如图,根据题意得到,根据角平分线的性质定理的逆定理可判断平分,所以,然后根据平行线的性质求解.【详解】解:过点作,一把直尺边缘与的交点为,如图, 两把直尺为完全相同的长方形,,,平分,,,(,3)A m (4,)B n y 4,3m n ∴=-=()()02022323=43=1m n -++-∴P PD OB ⊥OA E PD PE =OP AOB ∠28AOP BOP ∠=∠=︒P PD OB ⊥OA E PD PE ∴=PE OA PD OB ⊥⊥ ,OP ∴AOB ∠28AOP BOP ∴∠=∠=︒56AOB ∴∠=︒∴△BEF ≌△CED (AAS )∴EF =DE ,BF =CD =3,∴AF =AB +BF =8,∵AE ⊥DE ,EF =DE ,∴AF =AD =8,故选:C .【点睛】本题考查全等三角形的判定与性质,以及垂直平分线的判定与性质,准确推导出全等三角形并理解线段垂直平分线的性质是解题关键.12.A【分析】由作图可判断①, 由, 可判断②,证明,可判断③,证明,可判断④,由,,,可判断⑤,从而可得答案.【详解】解:由作图可知平分,故①正确,∵,∴,由作图可得:,∴是等边三角形,故②正确,∵平分,∴是的垂直平分线,∴,而,∴,∴,∴,∴,∴ ,∴垂直平分线段,故③正确;∵,∴,∴是等腰三角形,故④正确;∵,,,∴,故⑤正确;正确的个数是个,,903060AB AD BAC =∠=︒-︒=︒,ED AC AD CD ⊥=30DBC C ∠=∠=︒90CDE ABC ∠=∠=︒EA EC =EB ED =AE BAC ∠90,30ABC C ∠=︒∠=︒903060BAC ∠=︒-︒=︒AB AD =ABD △AE BAC ∠AE BD EB ED =AE AE =ABE ADE ≌90ADE ABE ∠=∠=︒C CAE ∠=∠EA EC =AD CD =DE AC 90,60ABC ABD ∠=︒∠=︒30DBC C ∠=︒=∠BCD △90CDE ABC ∠=∠=︒EA EC =EB ED =ABE CDE ≌△△5故答案为:2.【点睛】本题考查了三角形中线的性质,熟知三角形中线将三角形面积分成相等两部分是解题的关键.16.7【分析】本题考查中垂线的性质.根据中垂线的性质得到,进而得到的周长,根据,得到当三点共线时,的值最小为的值,进而得到的周长的最小值为,即可.熟练掌握中垂线上的点到线段两端点的距离相等是解题的关键.【详解】解:连接,∵垂直平分,点为直线上一动点,∴,∴的周长,∵,∴当三点共线时,的值最小为的值,∴的周长的最小值为;故答案为:7.17.【分析】过点A 作轴于点D ,根据题意得出,再由全等三角形的判定和性质得出,,结合图形即可得出点的坐标.【详解】解:过点A 作轴于点D ,如图所示,∴,∵,,∴,PA PB =ACP △AC PA PC AC PB PC =++=++PB PC BC +≥,,P B C PB PC +BC ACP △AC BC +PB EF AB P EF PA PB =ACP △AC PA PC AC PB PC =++=++PB PC BC +≥,,P B C PB PC +BC ACP △7AC BC +=()3,2-AD y ⊥35OC OB ==,ACD CBO ≌53CD OB AD CO ====,AD y ⊥90ADO ∠=︒()0,3C -()5,0B 35OC OB ==,∵,即,∴,∵,∴,∴,∴,∵A 在第二象限,∴,故答案为:.【点睛】题目主要考查坐标与图形,全等三角形的判定和性质,理解题意,结合图形求解是解题关键.18.【分析】本题考查的是点的坐标,熟知两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数,两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变,可发现规律,进而得出答案.【详解】解:∵坐标为,∴点关于x 轴的对称点为是,点关于y 的对称点为是,点关于x 轴的对称点为是,点关于y 的对称点为是,显然4次为一循环,∵,∴点的坐标为.故答案为:.19.(1)证明见解析;(2).【分析】()利用证明;()根据,得到,求出,即可得到;此题考查了平行线的性质,三角形全等的判定及性质,熟记三角形全等的判定方法是解题的关键.【详解】(1)∵,90ACB ∠=︒9090ACO BCO OBC OCB ∠∠∠∠+=︒+=︒,ACO OBC ∠∠=90ACB ADO AC BC ∠∠==︒=,ACD CBO ≌53CD OB AD CO ====,2OD CD CO =-=()3,2A -()3,2-().m n --1A (),m n 1A 2A (),m n -2A 3A (),m n --3A 4A (),m n -4A 5A (),m n 202345053÷=⋯2023A (),m n --(),m n --8CD =1AAS 2AFB DFE ≌6AB DE ==CE CD AB CD ∥∴,,∵为的中点,∴,在和中,∴;(2)∵,∴,∵,∴,∴.20.【分析】本题考查了三角形的内角和定理及外角的定理,根据垂直的定义得到,根据角平分线的定义得到,由三角形的内角和定理得出,再根据三角形的外角定理即可求解.【详解】解:交于点,,平分,,,,,,,,,.21.(1)见解析;(2),,(3)或或【分析】本题主要考查了作轴对称图形,全等三角形的判定等知识,(1)分别作三个顶点关于y 轴的对称点,再连接即可;(2)根据(1)中的图形得出坐标;ABF DEF ∠=∠BAF D ∠=∠F AD AF DF =AFB △DFE △,ABF DEF BAF D AF DF ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AFB DFE ≌△△AFB DFE ≌6AB DE ==3DE CE =2CE =268CD CE DE =+=+=70EAC ∠=︒AFC EFC ∠=∠ACF ECF ∠=∠CAF CEA ∠=∠AE CD ⊥Q CD F ∴90AFC EFC ∠=∠=︒ CD ACB ∠∴ACF ECF ∠=∠ 180AFC EAC ACF ∠+∠+∠=︒180EFC CEA ECF ∠+∠+∠=︒∴EAC CEA ∠=∠ CEA B BAE ∠=∠+∠37B ∠=︒33BAE ∠=︒∴70CEA ∠=︒∴70EAC ∠=︒1(2,3)A -1(1,0)B -1(1,2)C -(0,3)D (0,1)-(2,1)-(2)根据平面直角坐标系可得,点故答案为:,,;(3)以为一边,使另外两边长为,则,,.22.(1)轮船在B 处时与灯塔M 的距离为14【分析】(1)根据轮船到达B 处,此时测得灯塔(2)计算出BC 的长度,根据∠CBM=60°可以判断【详解】解:(1)根据题意可知BA=28×0.5=14因为此时灯塔M 在北偏东60°的方向上,根据三角形外角定理可以得到∠BAM=∠M所以BA=BM=14海里,即轮船在B 处时与灯塔M 的距离为14海里;1(2,3)A -(2,3)-(1,0)-(1,2)-BC 21(0,3)D 2(0,1)D -3(2,1)D -(1)轮船从B 处继续沿正北方向航行,又经半小时后到达C 处,所以BC=28×05=14海里,所以BC=BM又因为∠CBM=60°所以△ABM 为等边三角形所以CM=14海里所以灯塔M 在轮船的南偏东60°方向【点睛】本题考查的是等腰三角形判定与性质和等边三角形的判定与性质,能够判断出△BAM 为等腰三角形和△BCM 为等边三角形是解题的关键.23.(1)证明见解析(2)【分析】本题考查的是直角三角形的性质、等腰三角形的性质,掌握在直角三角形中,角所对的直角边等于斜边的一半是解题的关键.(1)根据等腰三角形的性质、三角形内角和定理证明;(2)根据直角三角形中,角所对的直角边等于斜边的一半解答.【详解】(1)证明:,,,,,,,,,,.(2),,,,12BC =30︒AB AC = 30C ∠=︒∴30B ∠=︒120BAC ∠=︒ AB AD ⊥90BAD ∠=︒∴30DAC C ∠=∠=︒∴DAC C ∠=∠∴DA DC = DE AC ⊥∴AE EC = 30C ∠=︒DE AC ⊥2DE =∴24DC DE ==,,,.24.(1),,理由见解析(2)见解析【分析】(1)证,得,再证,得,,得,即可得出;(2)过点分别作,,垂足分别为,,证,即可得出.【详解】(1)猜想,,理由如下:在和中,,,,在和中,,,,,,;(2)证明:过点分别作,,垂足分别为,,如图2所示:平分,,在和中,, AB AD ⊥30B ∠=︒∴28BD DC ==∴12BC =BD AC ⊥AO OC =()ADB CDB SSS ≅ ADO ODC ∠=∠()ΔΔAOD COD SAS ≅AOD COD ∠=∠OA OC =90DOC ∠=︒BD AC ⊥D DE AB ⊥DF BC ⊥E F Rt ADE △≌Rt CDF BAD BCD ∠=∠BD AC ⊥AO OC =ADB ∆BCD ∆AB BC AD DC BD BD =⎧⎪=⎨⎪=⎩()ΔΔADB CDB SSS ∴≅ADO ODC ∴∠=∠AOD ∆ODC ∆AD DC ADO ODC OD OD =⎧⎪∠=∠⎨⎪=⎩()ΔΔAOD COD SAS ∴≅AOD COD ∠=∠∴OA OC =90DOC ∴∠=︒BD AC ∴⊥D DE AB ⊥DF BC ⊥E F BD Q ABC ∠DE DF ∴=Rt ADE △Rt CDF DE DF AD CD=⎧⎨=⎩∴Rt ADE △≌Rt CDF.【点睛】本题考查了全等三角形的判定与性质、角平分线的性质等知识,熟练掌握全等三角形的判定方法是解题的关键.25.问题1:;问题2:问题1中结论仍然成立,理由见解析;问题3:结论:.【分析】问题1,先证明,得到,,再证明,得到,即可得到;问题2,延长到点G .使.连接,先判断出,进而判断出,再证明,最后用线段的和差即可得出结论;问题3,在上取一点G .使.连接,然后同问题2的方法即可得出结论.【详解】解:问题1,如图1,延长到点G .使.连接,∵,∴,∴ ,在和中,,∴ ,∴ ,,∴,即,∵ ,BAD BCD ∴∠=∠BE FD EF +=DF EF BE =+CBE CDG ≌△△CE CG =BCE DCG ∠=∠CEF CGF ≌EF GF =EF DG DF BE DF =+=+FD DG BE =CG ABC GDC ∠=∠CBE CDG ≌△△CEF CGF ≌DF DG BE =CG FD DG BE =CG 90ADC B ∠∠==︒18090CDG ADC ∠-∠=︒=︒90CBE CDG ∠∠==︒CBE △CDG ===BE DG CBE CDG BC DC ⎧⎪∠∠⎨⎪⎩()SAS CBE CDG △≌△CE CG =BCE DCG ∠=∠BCE ECD DCG ECD ∠+∠=∠+∠120ECG BCD ∠∠==︒60ECF ∠=︒∵ ,∴,在和中,,+=180ABC ADC ∠∠︒ABC GDC ∠=∠CBE △CDG BE DG CBE CDG BC DC =⎧⎪∠=∠⎨⎪=⎩∵ ,∴,即 在和中,,180ABC ADC ∠+∠=︒ABC ∠ADC CBE ∠=∠CDG ∠CBE △CDG BE DG CBE CDG BC DC =⎧⎪∠=∠⎨⎪=⎩()SAS CBE CDG △≌△∴ ,∴,∴.即.【点睛】本题主要考查全等三角形的性质与判定,解题的关键在于能够正确作出辅助线构造全等三角形.()SAS CEF CGF ≌EF GF =EF GF DF DG DF BE ==-=-DF BE EF =+。
武清区第一学期期中质量调查八年级数学第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合要求的。
请把每小题的答案填写在下表中。
(1)下列各图中,正确画出AC边上高的是(A)(B)(C)(D)(2)下列长度的三条线段,可以组成三角形的是(A)10,5,4 (B)3,4,2(C)1,11,8 (D)5,3,8(3)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是(A)(B)(C)(D)(4)下列说法一定正确的是(A)形状相同的两个三角形全等(B)面积相等的两个三角形全(C)完全重合的两个三角形全等(D)所有的等边三角形全等(5)已知一个多边形的内角和是900°,则这个多边形(A)五边形(B)六边形(C)七边形(D)八边形(6)在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是(A)∠A(B)∠B(C)∠C(D)∠B或∠C(7)如图,Rt△ABC中,∠ACB=90°,∠A=55°,将其折叠,使点A落在边CB上A’处,折痕为CD,则∠A’DB的度数是(A)40°(B)30°(C)20°(D)10°(8)如图,已知MB=ND,∠MBA=∠NDC,下列哪个条件不能判定△ABM≌△CDN(A)∠M=∠N(B)AM=CN(C)AM∥CN(D)AB=CD(9)在直角坐标系中,点A,点B关于y轴对称,点A的坐标(2,-8),则点B的坐标是(A)(2,8) (B)(-2,-8) (C)(-2,8) (D)(8,2) (10)在下列结论中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上的中线的等腰三角形是等边三角形;④有一个角是60°,且是轴对称的三角形是等边三角形.其中正确的个数是(A)4个(B)3个(C)2个(D)1个(11)如图,在△ABC中,以B为圆心,BA长为半径画弧交边BC于点D,连接AD,若∠B=40°,∠C=36°,则∠DAC的度数是(A)34°(B)44°(C)54°(D)64°(12)如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α的大小为(A)30°(B)45°(C)60°(D)90°第Ⅱ卷(非选择题 共84分)二、填空题:本大题共6小题,每小题3分,共18分。
第一学期八年级数学教学质量检测(一)一、选择题:本题有10 小题,每小题3分,共30 分.在每小题给出的四个选项中,只有一项是符合要求的.1. 下列语句是命题的是(▲)A.作直线A B 的垂线B.在线段A B 上取点CC.同旁内角互补D.垂线段最短吗?2. 如图四个图形中,线段B E 是△ABC 的高线的是(▲)AA.B.C.D.3. 具备下列条件的两个三角形中,一定全等的是(▲) A.有两边一角对应相等B.有两角一边分别相等C.三条边对应相等D.三个角对应相等4. 已知等腰三角形的两条边长分别是7和3,则第三条边长是(▲)A.8 B.7C.4 D.35. 如图,等腰△ABC 的周长为21,底边B C=5,AB 的垂直平分线D E 交A B 于点D,交A C于点E,则△BEC 的周长为(▲)A.13 B.14 C.15 D.166. 一艘轮船由海平面上A地出发向南偏西40°的方向行驶40 海里到达B地,再由B地向北偏西20°的方向行驶40 海里到达C地,则A、C 两地相距(▲)A.30 海里B.40 海里C.50 海里D.60 海里第5题图第6题图第7题图第8题图第 10 题图7. 如图,N ,C ,A 三点在同一直线上,在△ ABC 中,∠A :∠ABC :∠ACB =3:5:10,又 △ MNC ≌△ABC ,则∠BCM :∠BCN 等于(▲)A .1:2B .1:3C .2:3D .1:4 8. 如图,AB ∥CD ,AC ∥DB ,AD 与 B C 交于点 O ,AE ⊥BC 于点 E ,DF ⊥BC 于点 F ,那么 图中全等的三角形有(▲)对 A .5 B .6 C .7 D .8 9. 一个等腰三角形的底边长为 5,一腰上中线把其周长分成的两部分的差为 3,则这个等腰 三角形的腰长为(▲) A .2 B .8 C .2 或 8 D .10 10. 如图,在△ABC 中,AB =20cm ,AC =12cm ,点 P 从点 B 出发以每秒 3cm 的速度向点 A 运动,点 Q 从点 A 同时 出发以每秒 2cm 的速度向点 C 运动,其中一个动点到达 端点时,另一个动点也随之停止运动,当△APQ 是以 PQ 为底的等腰三角形时,运动的时间是(▲) A .2.5 秒 B .3 秒 C .3.5 秒 D .4 秒二、填空题:本题有 6 个小题,每小题 4 分,共 24 分. 11. 写出一个原命题是真命题,逆命题是假命题的命题: ▲ .12. 在“三角尺拼角”实验中,小明同学把一副三角尺按如图所示的方式放置,则 ∠1= ▲ °.13. 如图,CE 平分∠ACB ,且 C E ⊥DB ,∠DAB =∠DBA ,又知 A C =18,△CDB 的周长为 28, 则 B D 的长为 ▲ .14. 如图,在△ABC 中,AB =AC ,∠BAD =28°,AD =AE ,则∠EDC = ▲ .15. 已知△ABC 中,AB =BC ≠AC ,作与△ABC 只有一条公共边,且与△ABC 全等的三角形, 这样的三角形一共能作出 ▲ 个. 16. 如图,C 为线段 AE 上一动点(不与 A 、E 重合),在 AE 同侧分别作等边△ABC 和等边△ CDE ,AD 与 B E 交于点 O ,AD 与 B C 交于点 P ,BE 与 C D 交于点 Q ,连接 P Q ,以下五 个结论:①AD =BE ;②PQ ∥AE ;③AP =BQ ;④DE =DP ;⑤∠AOB =60°,其中正确的结论 是 ▲ (把你认为正确的结论的序号都填上).第 12 题图 第 13 题图 第 14 题图 第 16 题图三、解答题:本题有 7 小题,共 66 分.解答应写出文字说明,证明过程或推演步骤. 17.(本题满分 6 分) 指出下列命题的条件和结论,并改写成“如果……,那么……”的形式. (1)两直线平行,内错角相等;(2)三角形内角和等于 180°.18.(本题满分 8 分)一个零件的形状如图,按规定∠A = 90°,∠B 、∠C 分别是 32°和 21°.某检验工人量得∠BDC = 148°,就断定这个零件不合格,试用三角形的有关知识说明零件不合格的理由.19.(本题满分 8 分)第 18 题图如图,点 C ,F ,E ,B 在一条直线上, ∠ CFD = ∠BEA , C E = BF ,DF = AE .(1)求证:DF ∥AE ;(2)写出 C D 与 A B 之间的关系,并证明你的结论.第 19 题图20.(本题满分 10 分)如图,CD ∥AB ,∠ABC ,∠BCD 的角平分线交 A D 于 E 点,且 E 在 A D 上,CE 交 B A 的 延长线于 F 点. (1)试问 B E 与 C F 互相垂直吗?若垂直,请说明理由; (2)若 C D =3,AB =4,求 B C 的长.第 20 题图21.(本题满分10 分)已知命题:“P 是等边△ABC 内的一点,若P到三边的距离相等,则P A=PB=PC.”(1)写出它的逆命题.判断其逆命题成立吗?若成立,请给出证明.(2)进一步证明:点P到等边△ABC 各边的距离之和为定值.22.(本题满分12 分)如图,在R t△ABC 中,∠C= 90 ,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,试画出所有不同的等腰三角形并说明画图方法.AC B第22 题图23.(本题满分12 分)如图(1),等边△ABC 中,D 是A B 边上的动点,以C D 为一边,向上作等边△EDC,连接AE.(1)△DBC 和△EAC 会全等吗?请说说你的理由;(2)试说明A E∥BC 的理由;(3)如图(2),将(1)动点D 运动到边BA 的延长线上,所作仍为等边三角形,请问是否仍有AE∥BC?证明你的猜想.第23 题图2019 学年第一学期八年级数学教学质量检测(一)参考答案及评分建议一、选择题:本题有 10 小题,每小题 3 分,共 30 分.二、填空题:本题有 6 个小题,每小题 4 分,共 24 分. 11.不唯一,略 12.120° 13.8 14.14° 15.716.①②③⑤三、解答题:本题有 7 小题,共 66 分.解答应写出文字说明,证明过程或推演步骤. 17.(1)如果两条直线平行,那么内错角相等(2)如果三个角是一个三角形的内角,那么这三个内角和等于 180°18.连接 A D 并延长至 E若是合格零件,则∠BDC=∠CDE+∠BDE =∠C+∠CAD+∠BAD+∠B=∠C+∠CAB+∠D =21°+90°+32°=143°而检验工人现测得∠BDC=148°,故两件不合格第 18 题图19. (1)证明:∵ ∠ CFD = ∠BEA ,点 C 、F 、E 、B 在一直线上 ∴∠DFE =∠AEF ∴DF ∥AE(2)CD 与 A B 之间的关系是:CD=AB ,且 C D ∥AB 证明:∵CE=BF ,∴CF=BE第 19 题图题号 1 2 3 4 5 6 7 8 9 10 答案CDCBABDCBD⎨ ⎩⎨ ⎩在 ΔCDF 和 ΔBAE 中⎧CF = BE ⎪∠CFD= ∠BEA ⎪DF = AE∴ΔCDF ≌ΔBAE ∴CD=BA ,∠C=∠B ∴CD ∥BA20.(1)垂直. 理由: ∵CD ∥AB ,∴∠ABC+∠BCD=180°,∵∠ABC ,∠BCD 的角平分线交于 E 点, ∴∠ABE=∠EBC ,∠DCE=∠ECB ,∴∠EBC+∠ECB= 1 ∠ABC+ 1 ∠BCD= 1(∠ABC+∠BCD )=90°,2 2 2∴∠CEB=90°,∴BE 与 C F 互相垂直. (2)∵∠CEB=90°, ∴∠FEB=90°, 在△FBE 和△CBE 中,⎧∠CBE= ∠FBE∵ ⎪BE = BE , ∠BEC = ∠BEF第 20 题图∴△FBE ≌△CBE (ASA ), ∴BF=BC ,EF=EC , ∵CD ∥AB , ∴∠DCE=∠AFE ,∵∠FEA=∠CED,∴△DCE ≌△AFE , ∴DC=AF ,∵CD=3,AB=4,BF=AF+AB ∴BF=BC=7.21.(1)逆命题:P 是等边三角形 A BC 内的一点,若 P A=PB=PC ,则 P 到三边的距离相等. 该逆命题成立.证明:∵PA=PB ,∴P 在 A B 的垂直平分线上, ∵AC=BC ,∴C 在 A B 的垂直平分线上, ∴CP 是 A B 的垂直平分线, ∴CP 平分∠ACB ,同理,BP 平分∠ABC ,AP 平分∠BAC , ∴P 是△ABC 三个角的角平分线的交点,∴PD=PE=PF . (2)∵AB=BC=AC 且 S △ABC =S △ABP +S △PBC +S △APC ,∴由面积法可得 P 点到各边的距离之和=任意边上的高线长, 即为定值.22.图示及画法如下:第 21 题图①以 B 为圆心,BC 长为半径画弧,交 A B 于点 I ,△BCD 就是等腰三角形; ②以 C 为圆心,BC 长为半径画弧,交 A B 于点 D ,△BCD 就是等腰三角形; ③以 A 为圆心,AC 长为半径画弧,交 A B 于点 E ,△ACE 就是等腰三角形; ④以 C 为圆心,BC 长为半径画弧,交 A C 于点 F ,△BCF 就是等腰三角形; ⑤作 A C 的垂直平分线交 A B 于点 H ,△ACH 就是等腰三角形; ⑥作 A B 的垂直平分线交 A C 于 G ,则△AGB 是等腰三角形;⎨ ⎩⑦作 B C 的垂直平分线交 A B 于 I ,则△BCI 是等腰三角形.23.(1)△DBC 和△EAC 会全等 证明:∵∠ACB=60°,∠DCE=60°,∴∠BCD=60°﹣∠ACD ,∠ACE=60°﹣∠ACD ∴∠BCD=∠ACE在△DBC 和△EAC 中,⎧BC = AC ∵ ⎪∠BCD= ∠ACE ⎪EC = DC∴△DBC ≌△EAC (SAS ), (2)∵△DBC ≌△EAC , ∴∠EAC=∠B=60° 又∠ACB=60°, ∴∠EAC=∠ACB , ∴AE ∥BC(3)结论:AE ∥BC 理由: ∵△ABC 、△EDC 为等边三角形 ∴BC=AC ,DC=CE ,∠BCA=∠DCE=60°∠BCA+∠ACD=∠DCE+∠ACD ,即∠BCD=∠ACE 在△DBC 和△EAC 中,⎨ ⎩⎧B C = A C ∵ ⎪∠BCD = ∠ACE⎪C D = E C∴△DBC ≌△EAC (SAS ), ∴∠EAC=∠B=60° 又∵∠ACB=60° ∴∠EAC=∠ACB ∴AE ∥BC .第 23 题图。
一、精心选一选(本大题有10个小题,每小题3分,共30分)1、以下列各组线段为边,能组成三角形的是()A. 4cm、4cm、9cm B. 4cm、5cm、6cmC. 2cm、3cm、5cm D. 12cm、5cm、6cm2、下列句子是命题的是()A.画∠AOB=45°B. 小于直角的角是锐角吗?C.连结CDD. 三角形的中位线平行且等于第三边的一半3、如图,在△中,点是延长线上一点,=40°,=120°,则等于()A.60°B.70°C.80°D.90°4、木工师傅在做完门框后,为防止变形常常像图中所示那样钉上两条斜拉的木板条(即图中的AB和CD),这样做的根据是()A.矩形的对称性B.矩形的四个角都是直角C.三角形的稳定性D.两点之间线段最短5 、以下列各数为边长,不能组成直角三角形的是()A.3,4,5B.4,5,6C.5,12,13D.6,8,106、用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS7、一等腰三角形的两边长分别为3和6,则这个等腰三角形 (第9题)的周长为()A.12B.15C.12或15D.188.下列命题的逆命题是假命题的是()A.直角三角形中斜边上的中线等于斜边的一半B.两直线平行,内错角相等C.等腰三角形的两个底角相等D.对顶角相等9.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为()A.10 B.11 C.12 D.1310.若△ABC的三边a、b、c满足(a-b)(b2-2bc+c2)(c-a)=0,那么△ABC的形状是()(第20题图)A 、等腰三角形B 、直角三角形C 、等边三角形D 、锐角三角形二.细心填一填(本题有10小题,每题3分,共 30分)11.如图,在△ABC 中,∠A=55°,∠B=60°,则外角∠ACD=________度. 12.已知△ABC 中,AB=AC=4,∠A=60度,则△ABC 的周长为_______. 13.若ΔABC 的三个内角满足C B A ∠=∠=∠3121,则这个三角形是________三角形. 14.若a >b,则a 2>b 2,是 (真或假)命题。
15.如图,已知AC=DB ,再添加一个适当的条件___________ ,使△ABC ≌△DCB .(只需填写满足要求的一个条件即可). 16.如图,已知AE ∥BD ,∠1=130°,∠2=30°,则∠C=________度. 17.如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线 交AD 于点O ,连结OC ,若∠AOC=125°,则∠ABC=_________.18.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm ) 计算两圆孔中心A 和B 的距离为 mm . 19.观察下面几组勾股数,并寻找规律:①4,3,5; ②6,8,10; ③8,15,17; ④10,24,26;请你根据规律写出第⑤组勾股数是 .20.在直线l 上依次摆放着七个正方形(如图).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 4= .第18题三、简答题(共5小题,共60分)l321S 4S 3S 2S 121. (本题8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内...添涂黑二个..小正方形,使阴影部分成为轴对称图形.22、(8分)如图,四边形ABCD 中,AD ∥BC ,BD 平分∠ABC ,试判断△ABD 是否为等腰三角形,并说明理由。
23、(8分)如图,滑杆在机械槽内运动,∠ACB 为直角, 已知滑杆AB 长2.5米,顶端A 在AC 上运动,量得滑杆下端B 距C 点的距离为1.5米,当端点B 向右移动0.5米时,求滑杆顶端A 下滑多少米?24、(10分)如图, △A BC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连结EC .(1)求∠ECD 的度数;(2)若CE=12,求BC 长.25、(12分)如图,点B 在线段AC 上,点E 在线段BD 上,∠ABD=∠DBC ,AB=DB ,EB=CB ,M 、N 分别是AE 、CD 的中点,判断BM 与BN 的关系,并说明理由。
B26.(14分)如图,已知△ABC中,∠B=90 º,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.第一学期中教学质量评估八年级数学答题卷11、___________12、__________13、__________14、___________15、___________ 16、___________17、__________18、__________19、___________20、___________ 三、简答题(共5小题,共60分)21.(本题8分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用二种方法分别在下图方格内...添涂黑二个..小正方形,使阴影部分成为轴对称图形.22、(8分)如图,四边形ABCD 中,AD ∥BC ,BD 平分∠ABC ,试判断△ABD 是否为等腰三角形,并说明理由。
23、(8分)如图,滑杆在机械槽内运动,∠ACB 为直角, 已知滑杆AB 长2.5米,顶端A 在AC 上运动,量得滑杆下端B 距C 点的距离为1.5米,当端点B 向右移动0.5米时,求滑杆顶端A 下滑多少米?24、(10分)如图, △ABC 中,AB=AC ,∠A=36°,AC 的垂直平分线交AB 于E ,D 为垂足,连结EC .(1)求∠ECD 的度数;(2)若CE=12,求BC 长.B学校_____________________班级_________________姓名_____________考场考号__________________……………………………………………………………………………………………………………………………………………………………………25、(12分)如图,点B 在线段AC 上,点E 在线段BD 上,∠ABD=∠DBC ,AB=DB ,EB=CB ,M 、N 分别是AE 、CD 的中点,判断BM 与BN 的关系,并说明理由。
26.(14分)如图,已知△ABC 中,∠B=90 º,AB=8cm ,BC=6cm ,P 、Q 是△ABC 边上的两个动点,其中点P 从点A 开始沿A →B 方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B →C →A 方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒. (1)出发2秒后,求PQ 的长;(2)当点Q 在边BC 上运动时,出发几秒钟后,△PQB 能形成等腰三角形? (3)当点Q 在边CA 上运动时,求能使△BCQ 成为等腰三角形的运动时间.QQ 备用图数学参考答案一、选择题(每题3分)二、填空题(每空3分)11、____115__ 12、_ 12___ 13、___直角__14、___假____15、_AB=CD 或_∠ACB=_∠DBC___-16、__20_____17、__70___18、__100__ 19、 __12、35、37___ 20、___2________三、解答题 21、每个4分(答案不唯一)22、略23、解:设AE 的长为x 米,依题意得CE=AC-x ,∵AB=DE=2.5,BC=1.5,∠C=90°, ∴,…………2分∵BD=0.5, ∴在Rt △ECD 中,=1.5,∴2-x=1.5,x=0.5,即AE=0.5,…………………………………………………………7分 答:梯子下滑0.5。
……………………………………………….8分学校_____________________班级_________________姓名_____________考场考号__________________……………………………………………………………………………………………………………………………………………………………………24、解:(1)∵DE垂直平分AC ,∴CE=AE。
∴∠ECD=∠A=36°;(5分)(2)∵AB=AC,∠A=36°,∴∠B=∠ACB=72°,∵∠ECD =36°,∴∠BCD=∠ACB-∠ECD=72°-36°=36°,∴∠BEC=72°=∠B,∴BC=EC=5。
(10分)BM=BN 。
∠NBC=∠MBE , ∠NBM=∠MBE+∠NBE ∠CBE=∠NBC+∠NBE所以∠NBM=∠CBE=90,BM ⊥BN ……12分′26.(1)BQ=2×2=4 cm BP=AB-AP=8-2×1=6 cm PQ=2264=4分(2) BQ=2t BP=8-t ……6分 2t =8-t 解得:t=38 ……7′ (3) ①当CQ=BQ 时(图1),则∠C =∠CBQ ,∵∠ABC=90°∴∠CBQ+∠ABQ=90° ∠A+∠C=90° ∴∠A=∠ABQ∴BQ=AQ ∴CQ=AQ=5 ∴BC+CQ=11∴t=11÷2=5.5秒。
……9′②当CQ=BC 时(如图2),则BC+CQ=12 ∴t=12÷2=6秒。
……11′③当BC=BQ 时(如图3),过B 点作B E ⊥AC 于点E , 则BE=AC BC AB ⋅=5121086=⨯, 所以CE=518)512(62222=-=-BE BC ,故CQ=2CE=7.2,所以BC+CQ=13.2,∴t=13.2÷2=6.6秒。
……13′由上可知,当t 为5.5秒或6秒或6.6秒时, △BCQ 为等腰三角形。
……14′图1图2。